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Abstract— This paper presents a novel divide-and-conquer method to analyze 
spatial information, such as geometric shapes, contours and trajectories 
extracted as a discrete sequence of points (or pixels) from images or spatial 
sensors, including GPS or transponders. The method extracts contour point 
sequences and then uses a scale invariant analysis to extract invariant arc 
features. The arc feature is a generalization of scale invariant corners used in 
many object recognition and image matching methods. The method considers 
detection of corner like features in the presence of slow curvature and sharp 
noise and discretization (spatial quantization), typical for images obtained by 
aerial photography, digital map scanning or other GIS image acquisition 
techniques. The resulting feature vectors can be used for stable and robust 
object feature analysis and object detection. The developed method is found to 
be capable of ignoring local sharp noise and detecting globally prevailing 
sharp features. Experimental analysis confirms the efficiency and robustness 
of this method using several difficult shapes with considerable noise and 
ambiguity. The method allows not only stable feature detection but also 
general shape analysis such as convexity, linearity and curvature. 

1. INTRODUCTION 
Analysis of shapes and object boundaries for object recognition and classification is an 
important problem attracting more and more attention in Spatial Information Community 
(Canosa 2006). It is becoming increasingly important for GIS community to analyze 
spatial information, such as geometric shapes, contours and trajectories and derive 
information about spatial objects (such as their shape, contour, curvature etc). One of the 
ways to achieve this is to extract a discrete sequence of points (or pixels) from images or 
spatial sensors, including GPS or transponders, and to process these pixels further to 
identify object boundary. In the recent years, researchers started to utilize the unique 
footprint manifested by edges and invariant features (i.e. corners) for object recognition 
(Canosa 2006, Forsen and Moe 2006, Lowe 2004). These recognition methods are often 
applied to analyze the unique signature inherent due to the shape and color of objects 
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which are spatially stable and scale-wise invariant (Lowe 2004). The analysis of such 
shapes and trajectories is very important in GIS. Analysis of GPS coordinates or 
transponder signals to estimate the navigation pattern of ships and vessels near the coastal 
region is a practical example where sophisticated shape analysis methods could be 
applied. Recognition of certain shapes or trajectories is crucial to such problems.  

 

Figure 1. Noise and quantization (right) error in 
boundary extraction masks the local curvature

 

Regardless of whether shapes (or object boundaries) are extracted from images, a 
common artifact of the extraction process is the accumulation of noise and quantization 
patterns (Fig. 1) (Apu and Gavrilova 2007). It is often difficult to eliminate these noises 
without loss of detail. In shapes, the loss of detail is most profound around globally 
prevailing corners, which are important object features (Lowe 1999, 2004). Several 
methods have been proposed to deal with such problems. Popular approaches includes 
Kalman filter, Weiner filter, Fourier low pass filter, N-Cuts, Snakes (Active Contours) etc 
(Blum and Nagel, 1978, Denzler and Niemann 1995, Ferrie et al. 1993, Mardia and Jupp 
2000). Some of these methods are computationally extensive and causes smoothing of 
corners (Canny 1986, Canosa 2006). Others have erratic convergence behavior (i.e. 
snakes) or require user interaction to setup key points and parameters for every shape 
(Aguado et al. 2000, Denzler and Niemann 1995, Ferrie et al. 1993). A new method to 
analyze shape curvature while preserving sharp discontinuities called Circular Augmented 
Rotational Trajectory (CART) was first proposed by Apu and Gavrilova (2007). The 
CART transformation presented prior to this paper was fast, robust and presented a 
number of opportunities in shape analysis. For example, CART representation of a shape 
can be used to test for linearity, discontinuity, curvature, convexity and other shape 
signatures (Apu and Gavrilova 2007). 

In this paper, we present a new method based on computationally efficient divide-and-
conquer technique that allows to extracts contour point sequences from images and then 
uses a scale invariant analysis to extract invariant arc features and significantly improves 
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standard CART performance and applicability.  
The rest of the paper is organized as follows. First we present a novel Divide-and-

Conquer algorithm DQ-CART that is order of magnitude faster than previously presented 
algorithms. In our experimentation, the recorded speedup was between 10 times and 100 
times depending on the complexity of the shape. The runtime of the new algorithm is 
highly adaptive and depends significantly on the complexity of the shape (simple shapes 
with low curvature converge much faster). Experimentation revealed that the new DQ-
CART algorithm produces a more accurate Rotational Trajectory and corresponding R-
Space representation. The new algorithm also enables the method to be efficiently applied 
to to a large number of shapes in real-time. We next present a new technique that allows 
the conversion of an R-Space shape representation to feature vectors called invariant arcs. 
Invariant arcs are generalization of invariant feature points as presented by Lowe (2004), 
Harris and Stephens (1988), Moreton and Sequin (1993) and others. This serves as a 
connection between other state of the art recognition methods such as Ada-Boost, Cascade 
etc. to DQ-CART representation (Canosa 2006). Therefore, the ideas presented in this 
paper are pivotal to the integration of the curvature analysis method with methods for 
object recognition, feature analysis and feature classification (using clustering of 
classifiers based on feature vectors). 

2. LITERATURE SURVEY  
In the area of Image Processing, the task of object boundary analysis is considered to be 
an important problem, which continues to expand and develop at present (Aguado et al. 
2000, Canny 1986, Canosa 2006, Denzler and Niemann 1995, Ferrie et al. 1993). Early 
attempts show preferences towards edges and contours which soon turned out to be an 
insufficient representation for robust object recognition and analysis (Canny 1986, Canosa 
2006). Application of methods such as the Canny Edge detector is often limited and hard 
to apply to natural images (or scenes) (Canosa 2006). Background Clutter, color 
ambiguity, intensity variation and other artifacts causes edge-detectors to fail. A common 
approach often found in machine vision utilizes Hough Transform (HT) for detection of 
certain geometric patterns (i.e. straight lines) to identify landmarks and man made objects 
(Aguado et al. 2000). A Generalized Hough Transform (GHT) can analyze arbitrary shape 
patterns but often found to be highly sensitive to noises. More sophisticated methods exist 
such as the Active Contours and snakes that use energy minimization technique to 
converge an object boundary (Blum and Nagel 1978, Denzler and Niemann 1995, Ferrie 
et al. 1993). In reality these methods are often not robust enough for stable and reliable 
object recognition and researchers continue to seek more sophisticated method that 
consider the multimodality, clutter and noise often present in natural images.  

A significant advancement has been made recently in the development of methods 
relying on invariant object features (Harris and Stephens 1988). Invariant features are 
spatially and scale-wise robustly identifiable footprints of objects and shapes in images 
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that contributes to the unique identification or recognition of an objects. Examples of 
invariant features in present literature include minutiae in fingerprint, Harris corner, Scale 
Invariant Feature Transform (SIFT), MSER etc (Canosa 2006, Forssen and Moe 2006, 
Lowe 1999, 2004, Moreton and Sequin 1993). A common approach at present is to 
identify such features from images and present them as feature vectors (Lowe 1999). A 
good number of techniques exist in pattern recognition that uses feature vectors as 
classifiers for robust object recognition (Canosa 2006). Weak classifiers such as the Ada-
Boost and Haar Cascade are examples of such methods (Lowe 1999). The main difficulty 
of these methods lies in the robust detection of such features in the presence of clutter, 
occlusion, noise and other image artifacts. The Harris corner detector for example, often 
fails to detect obvious corners in natural images (Harris and Stepfens 1988). The SIFT 
method has proven to be a very effective technique that expands the idea of corners and 
considers a histogram based feature vector which are invariant and robust in the scale 
space (Lowe 2004). Scale invariant features have been proven to be effective and most 
useful for object recognition (Lowe 1999). However, methods such as SIFT are often 
found insufficient for the analysis of geometric shapes in which these features are 
ambiguously detected in different but similar shapes (Forssen and Moe 2006). For 
example, SIFT or Harris corner cannot be used efficiently to discriminate a hexagonal 
object from a pentagonal object. Forssen presented a method called MSER that addresses 
this limitation by utilizing region based features (Forssen and Moe 2006). These 
limitations are particularly amplified when considering applications such as street sign 
recognition in natural setting where occlusion, shadow, intensity variation, lighting 
variation and noise are present. Although invariant corners and features can be robustly 
detected using current methods, some crucial geometric information such as linearity, 
convexity, curvature etc. are missing from these representations.  

The Circular Augmented Rotational Trajectory (CART) method was originally 
conceived to address this problem and was shown to be highly effective for such analysis 
(Apu and Gavrilova 2007). A comprehensive description of CART is discussed in (Apu 
and Gavrilova 2007). In short, the CART method converts a sequence of points into a 
rotation invariant R-Space representation. IN this paper, we present a new method to 
convert invariant R-Space representation into feature vectors called invariant arcs, which 
are directly compatible to be used as weak classifiers. Powered by a highly efficient 
divide and conquer algorithm, the DQ-CART method becomes one of the most efficient 
and effective shape analysis tool. 

3. METHOD DESCRIPTION 
The transformation takes as input a sequence of n  points (in ) . A 
point sequence  either represents a contour/shape or a trajectory (i.e. GPS). The 
extraction of such contour points can be achieved in several ways. Several image 
segmentation algorithms (i.e. meanshift) can be applied to obtain region boundaries. An 

2
1 2, ,..., nx x x x=

x
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efficient working algorithm to extract contour points from simple images is called LR-
Traversing (Apu and Gavrilova 2006). This method is fast enough for real-time 
application but does not work for textured images. One solution is to add a texture 
analysis method to preprocess the image.  More reliable and robust methods are to extract 
contour points are currently under development.  

The point sequence  is transformed into a representation called R-Space. A detailed 
description of the R-Space and its application is discussed by Apu and Gavrilova (2007). 
In this paper, we first provide a quick overview of R-Space, followed by the new DQ-
CART algorithm and the invariant arc transform. 

x

3.1. R-Space Shape representation and CART 
The original CART method converts a sequence of points into R-Space which is a rotation 
invariant shape representation. The main idea is to estimate the local curvature at each 
point as the turn-rate due to a quadratic/circular arc. This process is continued along the 
shape estimating the turn-rate at each step and finally augmenting these circular arcs as an 
approximation of the shape. The result is a function [ ]2 2 2: , ,..., , ,...,Rτ

λ
⎡ ⎤ →⎣ ⎦ , 

that creates with a predefined arc-length λ  and a tolerance . The tolerance  is defined 
such that the curve resulting from the R-Space representation must not deviate from the 
original curve by more than . That is: 

τ τ

τ
( )( ) ( )( )( )p q p R x q x p qτ

λ τ∀ ∃ ∈ ∧ ∈ → − ≤  (1) 

The goal of the CART algorithm is to minimize the turn-rates while maintaining the 
constraint in (1). In essence, the method requires the estimation of the signed curvature 
per unit length  such that: ( )i xω ω= ∇ i

)( ) ( ) (1 1, CCW , , ,i i ix i x x x x iω θ− +∇ = ×   (2) 
Here CCW is defined as followed: 

  

CCW( , , )
1; if a,b and c are clockwise

   0; if a, b and c are co-linear
1; if a,b and c are counter clockwise

a b c =

−⎧
⎪
⎨
⎪+⎩

( ),x iθ  is the local curvature based on quadratic approximation of the turn-rate (degrees 
per unit length of arc). The estimation of  can be as simple as differentiating the curve. 
However, the approach would generate an R-Space representation that is highly sensitive 
to noise.  

θ

A robust approximation algorithm was presented by Apu and Gavrilova (2007). The 
algorithm was based on an approximation of the curvature by projecting various curves 
toward the shape from the current point  and selecting the path that allows traversing of 
maximum arc-length without violating the constraint in (1). Special care was taken to 

ix
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handle discontinuity by a novel backtracking mechanism. Although the method performs 
well, it is far from being the most efficient. The search for the best fitting curve (and 
corresponding turn-rate) requires projecting many curves for each step of the process each 
of which must be scanned to validate the constraint in (1). The Divide and Conquer CART 
algorithm (DQ-CART) presented in the following subsection is much more efficient and 
robust. It is also simpler to implement compared to the old method and requires less 
number of intrinsic parameters and special cases.  

3.2. Curvature Estimation and Local Ambiguities 
In this subsection, we establish the need for a sophisticated algorithm to estimate . 
Let us assume that the shape was extracted from an image by tracking border pixels. The 
resulting contour is quantized to the nearest integer pixel coordinate. Since there are only 
four directions (no diagonal) to travel from one pixel to its neighbor the resulting turn rate 
is approximately an integer multiple of 90 degrees (Fig. 1). These large magnitudes of 
pseudo-turns will mask any low curvature arcs (even straight lines). Unfortunately, shapes 
extracted from images (or GPS) is saturated by this discretized pattern which is almost 
impossible to separate from actual curvature by looking at a local subrange of the shape. 
For example, the shapes in Fig. 2 pose such a problem in the marked regions. It is 
apparent that there are several possible interpretations to these point sequences and even if 
the two local point sequences are identical (or similar) their interpretation may be 
dramatically different depending on the global shape context. The right hand side of Fig. 2 
also shows several other possible interpretations to these point sequences which are 
equally viable. Therefore, it is often not possible to pick the right turn-rate without 
looking at the global shape.  

( ),x iθ

Figure 2. An example of ambiguity in local curvature. The two marked region 
comes from two different shapes that has similar configuration, but interpreted 
differently by CART due to its global context. The right magnifications show 
additional possible interpretation of the region. 
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3.3. The DQ-CART Algorithm 
 

Surprisingly, the divide and conquer CART algorithm is based on a simple idea. We take 
a shape by its two end points  and  and consider a base connecting these two end 
points (Fig. 3). In the case that the shape may be a loop ( ), we can initially 

divide the shape into two by taking the midpoint. For every segment 

0x 1nx −

0 nx x −≈ 1

..i jx x⎡ ⎤
⎣ ⎦ , we find a 

point  where i k  such that  is the highest peak with respect to the line 
segment 

kx j≤ ≤ kx

i jx x  (maximum distance from the line segment). If an arc through the three 
points  satisfies the constraint in (1), then a stepping proportional to the arc-
length is taken (adaptive stepping).  However, a minimization algorithm is first applied to 
relax the curvature of this arc such that the constraint (1) is not broken (optimization). 
However, if the maximal arc breaks the threshold  , the curve is split by pushing this 
point  into a stack and processing the segment [

, ,i k jx x x

τ

kx ]..i kx x  (Fig. 3).  At the beginning of 
each iteration, the right endpoint is retrieved from the stack and examined. The left (from 
array index point of view) endpoint is traversed and advanced accordingly. 

Figure 3. The progressive division of the shape (divide 
and conquer). For each base a peak is computed. The 
algorithms prepares to step along the 4th base since the 
4th peak is small enough to allow a valid arc. 

 

For ease of understanding we break the algorithm into methods in a top-down manner. 
Due to space constraint some trivial methods are only described. 
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3.3.1. System  assumptions and parameters 
There are a few global variables that retains the original shape and the CART 
representation. The array Path[] of size n contains the n original contour points. The arrays 
cPos[], cDir[], cTurn[] and cNear[] contains the position, tangent, turn-rate and nearest 
point (index of the nearest point in Path[]) respectively that represents the R-Space of the 
shape. The size of these arrays is indicated by m. The method uses a number of constants, 
all of which is related to the precision of the algorithm. No parameters require adjusting 
while scanning different shapes. The following parameters presented in Table 1 are 
defined to process images (and pixel coordinates).  

Table 1. System Constants for DQ-CART 

Constant Description Default 

Granularity, λ  Length of an unit arc step 1.0 

Tolerance,  τ
Maximum distance from 

original curve 1.75 

PATH_RATIO Adaptive stepping ratio 40% 

MIN_LOOP 
Precision of the 

minimization loop, a value 
of allows 1/2^10 resolution 

10 

DISC_STEP Backtracking steps when 
discontinuity is detected 6 

 
3.3.2. The DQ-CART Transformation 
The main DQ-CART algorithm utilizes a stack to subsequently divide the curve and 
expand the R-Space contour along the original contour without violating constraint (1). 
The algorithm maintains a partially complete R-Space array set, left and right index, index 
of the maximal peak maxi, current position pos, current direction dir and index to the 
nearest point.  Readers should pay attention to some details pertaining to border 
conditions in order to prevent infinite loops in some cases. The algorithm is somewhat 
tricky due to these border cases (i.e. what if maxi==right), but once they are handled 
properly the algorithm works perfectly. 

The method starts with initialization, and introduction of the subdivision stack that 
stores curve indices. Next, the main loop proceeds in traversing the curvature until the end 
of the contour is reached. First, the right index is retrieved from the stack. The current 
extrema is computed. A possible discontinuity due to the steep turn-rate is handled in the 
process (note that definition of a steep turn-rate is discussed later). If the calculated arc 
appears to satisfy specified constraint (1), a proportional stepping is performed. 
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Otherwise, the maximal peak is pushed into the stack the entire process is repeated. 

3.3.3 Discontinuity Handling 
Readers should be aware that the CART algorithm uses a tolerance  that limits the 
maximum turn-rate (curvature) of a standard stepping. If this condition is violated, the 
algorithm may take a turn so steep that it forms a complete cycle without breaking the 
tolerance condition. Thus, the method may enter an infinite loop! To prevent this from 
happening we must limit the maximum allowable turn-rate . A good (and safe) 
constraint is given below: 

τ

maxt

max
270t πτ=     (3) 

The detection mechanism utilized in the algorithm is not intuitive, but the most efficient 
way. When a discontinuity is present, the effective counter-measure is handled by 
Resolve_Discontinuity() method.  

3.3.4. Optimizing the turn-rate 
The optimization of the turn-rate is a process of relaxation that finds the minimum turn-
rate that satisfies the constraint (1). The method starts with a tolerance passing arc and 
tries to converge to a less steep arc. As part of processing, we assert the latest turnrate into 
R-Space state as Valid_Path method also inserts R-Space points into the array set. 
 
 
 
 
 

 

 

 
 
 
 
 
 
 Figure 4. The subsequent turn-rate optimization. A Binary 

search is performed along the range [mid,right] [q1..q2] 
and the best matching curve is returned. 

 
 

 

3.3.5 Computing Subsequent Optimal Turn-Rate 
The final step of the processing is an optimal turn-rate computation. This method employs 
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a binary search for the most optimal curvature (Fig. 4). There are several special cases that 
must be considered, omitted here for briefness. Last but not the least, some constants in 
addition to the ones listed in Table 1 is used deep in the code which are all related to 
precision. One example would be a neighborhood span constant specifying the number of 
points scanned to find the nearest point pairs (utilized in Constant_Turn() method). 

3.4. The Invariant Arc Analysis 
Once the R-Space representation has been computed, the resulting array cTurn[] can be 
used to compute the scale invariant arcs. The scale invariant arcs are stable subrange of 
the R-Space (corner like features) that is spatially stable. Since method deals with 
arbitrary curvature the interaction of left hand side and right hand side arcs causes the 
feature point to shift spatially when moving along the scale space. In short, not all regions 
of a shape is stable. 

We present a very easy mechanism to find these stable arcs that is tested to be robust 
and accurate. Intuitively, we apply a Haar Wavelet like feature called the radial integral R-
Space ω : 

 

( ),
i r

r
i

j i r

x jω ω
+

= −

= ∇∑
  

 (4) 

  
For efficient processing the cumulative sum of  is precomputed and requires 

constant operation for each ω  evaluation. A scale influence function  is computed as 
followed: 

ω∇
rµ

1

krr i
i k k

ωµ
=

=∏    
 (5) 
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Figure 5. Using the CART method to extract global shapes 

The peaks (local maxima) in the resulting function define the presence of these 
invariant arc features. Each peak is expanded to find the bell shaped regions. This is the 
span of the arc feature. To find the exact location of the feature an algorithm similar to 
Comp_Extrema() is applied. The Feature Vector is identified at this peak. The direction of 
the vector is towards the center of the arc. The length of the vector is equal to the 
sharpness ρ : 

 
Peak turn-rate

total turn
ρ =

   
 (6) 

 
The feature vector can be extended further to include additional information such as arc 

length, color regions, total turn, turn strength, scale influence etc.   

4. EXPERIMENTAL RESULTS AND ANALYSIS 
The new method was tested against a number difficult shapes used to analyze the previous 
algorithm. The convergence behavior was mostly identical Fig 5). A noticeable 
improvement in the R-Space resolution (especially near steep curves) is observed in the 
new DQ-CART. The most dramatic improvement was observed in recorded runtime. The 
range of speedup was observed between 10 times to up to 100 times. As the complexity 
and length of the shape is essential for large aerial photo processing or digitized maps, the 
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importance of increase in run-time becomes much more profound. For comparison, a 
summary of few test cases is provided in Table 2.  

Table 2. System Constants for DQ-CART 

Shape # 
CART 
(MS) 

DQ-CART 
(MS) Speedup 

1 94.7 9.2 10.3 
2 61.4 4.0 15.4 
3 692.6 25.9 26.7 
4 501.2 11.2 44.8 
5 213.9 8.1 26.4 
6 107.1 5.8 18.5 
7 98.4 9.2 10.7 
8 97.6 4.4 22.2 
9 37.5 3.1 12.1 

 
A good number of tests have been performed with the invariant arc analysis. To test the 

repeatability and robustness we carried out an experiment with 5 test shapes. Each test 
shape was manipulated to generate a number of rotated and scaled (also reduced/increased 
number of contour points) shapes. Because the process was done manually, we limited the 
number of transforms to 10 (thus a total of 30). The master shape is used as a template and 
the feature vectors are recorded. The feature vectors from each subsequent template are 
then matched with the master template to compute a robustness score. A 100% score 
means that all features were matched across all transformations. In most cases, the number 
of features that are missed were weak features that are barely detectable. As a result, their 
presence was intermittent in different scaling and rotation of the shapes. A weighted 
scoring (weighted according to scale influence ) would reveal a much better picture 
since during the experiment the stable corners were never missed.   

rµ

5. CONCLUSION 
In this paper we presented a novel divide and conquer algorithm to compute the 
representation of shapes and offered a novel technique to transform this representation to 
feature vectors. The method allows to extract shape contour even in the presence of noise 
and sharp features, and provides a convenient representation for invariant arcs. The 
experimentation supports the claims that the new method is significantly faster than the 
one presented in earlier literature. The runtime analysis indicates that the new method can 
be applied to a large number of shapes off-line or in real-time, thus opening a large 
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number of possible applications. The conversion to robust invariant arc allows pattern 
recognition using state of the art weak classifiers such as a Ada-Boost and Cascades. 
Further directions of research will involve extensive case study of method performance 
with variety of spatial images, and concentrate on the invariance analysis and robust 
feature vectors. 
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