Indian Statistical Institute B S D S, First Semester, 2025-26

Mid-semester Examination

Statistics III: Multivariate Data and Regression Maximum Score 60 Duration: 120 minutes

Maximum Score 60 Total score 65

Name Student ID

- 1. Write your name and ID on each page.
- 2. Numbers in brackets denote total points allotted to each question.
- 3. You may use calculator.

08.10.25

- 4. Laptops and phones are not allowed.
- 5. This is a closed book and closed notes examination.
- 6. Show all your work.

Qn no	1	2	3	4	Total
Marks	15	15	20	15	65
Obtained					

1. (2+8+2+3=15) Suppose you have fitted a regression line Y=556.26-4.27X on 38 pairs of observations where 556.26 and -4.27 are the least squares estimators. The residual standard error is 36.37. The sample mean and standard deviation of X are 169.1 and 11.17 respectively.

- (a) For the value 170 of X, what is the estimate of the expected value of Y under the simple linear regression model?
- (b) What is the standard error of the estimator in part (a)? Derive the expression for the standard error and report the numerical value.
- (c) For the value 170 of X, what is the predicted value of Y?
- (d) What is the standard error of this prediction?

2. (5+10=15) Consider the following model:

$$y_i = \beta x_i + \epsilon_i x_i, \qquad i = 1, 2, \dots, n$$

where y_i are observed, x_i are known positive constants and β is an unknown parameter. The errors ϵ_i are independently and identically distributed random variables having the probability density function

$$f(u) = \frac{1}{2\lambda} \exp\left(-\frac{|u|}{\lambda}\right), \quad -\infty < u < \infty$$

and $\lambda > 0$ is an unknown parameter.

- (a) Find the least squares estimator of β .
- (b) Find the maximum likelihood estimators of β and λ

```
3. (2+5+4+5+4=20) Consider the following R code and output
  > model<-lm(total ~ Q1+Q2+Q3+Attendance+Midterm)</pre>
  > summary(model)
  Coefficients:
              Estimate Std. Error t value Pr(>|t|)
  (Intercept)
               -0.5175
                           4.8612 -0.106
                                            0.9157
  Q1
                0.4799
                           0.2465
                                    1.947
                                            0.0574
  Q2
                0.3376
                           0.1855
                                    1.820
                                            0.0750
  QЗ
               -0.1756
                           0.2454 - 0.716
                                            0.4778
  Attendance
                0.7309
                           0.3331
                                    2.194
                                            0.0331 *
  Midterm
                1.3647
                           0.1361 10.026 2.33e-13 ***
  Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' 1
  Residual standard error: 10.39 on 48 degrees of freedom
  Multiple R-squared: 0.867, Adjusted R-squared: 0.8531
  F-statistic: 62.57 on 5 and 48 DF, p-value: < 2.2e-16
  > best<-ols_step_best_subset(model)
  > best[["metrics"]][,c("predictors","adjr","cp","aic","sbc")]
                     predictors
                                     adjr
                                                 ср
                                                          aic
                                                                   sbc
  1
                        Midterm 0.7971602 21.816282 427.4404 433.4074
  2
             Attendance Midterm 0.8332057 9.918558 417.8265 425.7824
  3
          Q1 Attendance Midterm 0.8492731 5.312991 413.2874 423.2323
       Q1 Q2 Attendance Midterm 0.8545927 4.511955 412.2562 424.1901
  5 Q1 Q2 Q3 Attendance Midterm 0.8531299 6.000000 413.6833 427.6062
  > final<-lm(total ~ Q1+Attendance+Midterm-1)</pre>
  > summary(final)
  Coefficients:
             Estimate Std. Error t value Pr(>|t|)
                          0.2057
                                   2.853 0.00624 **
  Q1
               0.5867
  Attendance
               0.8700
                          0.2948
                                   2.951 0.00477 **
                          0.1189 11.148 2.79e-15 ***
  Midterm
               1.3260
  Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' 1
  Residual standard error: 10.42 on 51 degrees of freedom
  Multiple R-squared: 0.9763, Adjusted R-squared: 0.9749
  F-statistic: 701.1 on 3 and 51 DF, p-value: < 2.2e-16
```

Answer the following question regarding the model final.

- (a) What is the model final?
- (b) What are the estimates of the regression coefficients and their standard errors?
- (c) For model choice, which criterion among adjr, cp, aic, bic has been used? Explain your answer.
- (d) For each of the criteria, identify the optimal model.
- (e) What is the function of the term "-1" inside the 1m function? Why is it justified?

4. (10+2+3=15) Consider a mutiple linear regression model with p predictors and an intercept. Assume that the errors are independent with mean zero and variance σ^2 . Let \hat{y}_i be the fitted value of the response Y for the i-th observation with $i = 1, \dots, n$.

- (a) Find the value of $\sum_{i=1}^{n} \operatorname{Var}(\hat{y}_i)$ in terms of n, p and σ^2 . Show all your derivation.
- (b) State any additional assumptions that you may need.
- (c) What does this result say about the impact of including more predictors in the model?