Quiz 4
 11.03 .20

1. $(3+3)$ A sequence of random variables X_{n} is defined as $X_{n}=$ the number of trials required to obtain the first success when the probability of success in each trial is $1 / n$. Let $Y_{n}=X_{n} / n$.
(a) Find $P\left(Y_{n} \leq x\right)$.
(b) Show that the asymptotic distribution of Y_{n} is exponential.
2. $(2+4)$ Let $X_{i}, i=1,2, \cdots, n$ be independent $\operatorname{Bernoulli}(p)$ random variables and let $T_{n}=\frac{1}{n} \sum_{i=1}^{n} X_{i}$. A popular parameter is the odds $\frac{p}{1-p}$. For example, if the data represent the outcomes of a medical treatment with $p=2 / 3$, then a person has odds $2: 1$ of getting better. We consider the estimate $Y_{n}=\frac{T_{n}}{1-T_{n}}$ for the parameter $h(p)=\frac{p}{1-p}$.
(a) What is the limiting distribution of $\sqrt{n}\left(T_{n}-p\right)$ as $n \rightarrow \infty$.
(b) Find the limiting distribution of $\sqrt{n}\left(Y_{n}-h(p)\right)$ as $n \rightarrow \infty$ using the Delta method.
3. $(4+2+2)$ Let $X_{i}, i=1,2, \cdots, n$ be a random sample of size n from $f_{\theta}(x)=(1-\theta) \theta^{x} ; x=0,1,2, \cdots ; \theta \in(0 ; 1)$.
(a) Find the MLE of θ and show that it is consistent.
(b) Find the Fisher Information.
(c) Find the asymptotic distribution of the MLE.
