Quiz 3 21.02.20

- 1. (4+2) Let X_1, \dots, X_n be iid Geometric(p) random variables, each X_i denoting the number of Bernoulli(p) trials required for the first success. Show that \bar{X} attains the Cramer-Rao lower bound. Hence conclude that \bar{X} is UMVUE for 1/p.
- 2. (2+2+2+2) Suppose $\delta(X)$ is a Bayes estimator, that is, the posterior mean of parameter $g(\theta)$ under prior π . Suppose $\delta(X)$ is also unbiased for $g(\theta)$.
 - (a) Show, by conditioning on X, that $E(\delta(X)g(\theta)) = E(\delta^2(X))$.
 - (b) Show, by conditioning on θ , that $E(\delta(X)g(\theta)) = E(g^2(\theta))$.
 - (c) Conclude that $E(\delta(X) g(\theta))^2 = 0.$
 - (d) If X_1, \dots, X_n are iid $\mathcal{N}(\mu, 1)$, then use the above result to conclude that \bar{X} cannot be a Bayes estimator for μ under any prior.
- 3. (2+4) Let X_1, \dots, X_n be iid observations from population with mean μ and variance σ^2 .
 - (a) Show that the estimator $\sum_{i=1}^{n} a_i X_i$ is unbiased for μ iff $\sum_{i=1}^{n} a_i = 1$
 - (b) Among all estimators of the above form find the one with minimum variance.