Quiz 2 07.02.20

For problems 1-3, assume that $(X_1, \dots, X_n) \sim i.i.d.Unif([0, \theta])$. Note: $E(X) = \theta/2, E(X_{(k)}) = k\theta/(n+1)$.

- 1. (2+4) Find a one-dimensional sufficient statistic T for θ . Find an estimating equation for θ that depends on (X_1, \dots, X_n) only through T.
- 2. (4) Find the MLE of $\theta/2$.
- 3. (3+3) Show that the Pareto prior, given below as π , is a conjugate distribution and find the posterior mean under Pareto(α, β) prior.

$$\pi(\theta|\alpha,\beta) = \frac{\alpha\beta^{\alpha}}{\theta^{\alpha+1}}, \theta \ge \beta > 0$$

Note: $E(\theta|\alpha,\beta) = \frac{\alpha\beta}{\alpha-1}$ for the above distribution.

4. (4) Suppose $X \sim Bin(n, 1/3)$ where n is the unknown parameter of interest. Find the MLE of n when X=5.