Statistics II, Quiz 1, 24.01.20

- 1. (3) Suppose $Y_i = \sum_{j=1}^p Z_{ij}\beta_j + \epsilon_i$, where $\epsilon_i \sim \mathcal{N}(0, \sigma^2)$ and independent for $1 \le i \le n$ and Z_{ij} are fixed and known. If n < p, then show that $\beta = (\beta_1, ..., \beta_p)$ is not identifiable.
- 2. (5) X_1, \dots, X_n are iid Exponential(λ). Show that $E(X_1 / \sum_{i=1}^n X_i) = 1/n$.
- 3. (10) Let $f(\mathbf{x}|\theta)$ be the pdf or pmf of **X**. Suppose there exists a statistic $T(\mathbf{X})$ such that, for any two points **x** and **y**, the ratio $f(\mathbf{x}|\theta)/f(\mathbf{y}|\theta)$ is constant as a function of θ iff $T(\mathbf{x}) = T(\mathbf{y})$. Then prove that $T(\mathbf{X})$ is a minimal sufficient statistic.
- 4. (2) The distribution of X belongs to a one-dimensional exponential family and we have iid observations X_1, \dots, X_n from this distribution. What is the dimension of the natural sufficient statistic for the joint distribution of (X_1, \dots, X_n) ?