7 Likelihood Ratio and related tests

[CB8.2, CB10.3, BD4.9]

Definition 1 The likelihood ratio test statistic for testing $H: \theta \in \Theta_{0}$ vs K : $\theta \in \Theta_{1}$ is

$$
\lambda(x)=\frac{\sup _{\theta \in \Theta_{0}} L(\theta \mid x)}{\sup _{\theta \in \Theta} L(\theta \mid x)}
$$

where $\Theta=\Theta_{0} \bigcup \Theta_{1}$.
A likelihood ratio test is of the form

$$
\phi(x)=\left\{\begin{array}{lll}
1 & \text { if } & \lambda(x) \leq c \tag{1}\\
0 & \text { if } & \lambda(x)>c
\end{array}\right.
$$

The value of c is determined from the level of the test such that $P_{H}(\lambda \leq c)=\alpha$. Example 1: Consider testing $H: \mu=\mu_{0}$ vs $K: \mu \neq \mu_{0}$ where X_{1}, \cdots, X_{n} are iid $\mathcal{N}(\mu, 1)$.
For the numerator, $\sup _{\theta \in \Theta_{0}} L(\theta \mid x)=\frac{1}{(2 \pi)^{n / 2}} \exp \left(-\frac{1}{2} \sum_{i=1}^{n}\left(x_{i}-\mu_{0}\right)^{2}\right)$
The sup in the denominator is attained at $\theta=\bar{x}$ which is mle.
Hence $\sup _{\theta \in \Theta} L(\theta \mid x)=\frac{1}{(2 \pi)^{n / 2}} \exp \left(-\frac{1}{2} \sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}\right)$

$$
\lambda(x)=\exp \left(-\frac{1}{2}\left(\sum_{i=1}^{n}\left(x_{i}-\mu_{0}\right)^{2}-\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}\right)\right)
$$

$\lambda(x)<c \quad \Longleftrightarrow \quad \sum_{i=1}^{n}\left(x_{i}-\mu_{0}\right)^{2}-\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}>c_{1} \quad \Longleftrightarrow\left|\bar{x}-\mu_{0}\right|>c_{2}$.
Thus the likelihood ration test rejects H when \bar{x} differs from μ_{0} by a large amount. The amount is determined from the constraint given by the level of the test, that is, $P_{\mu_{0}}\left(\left|\bar{x}-\mu_{0}\right|>c_{2}\right)=\alpha$.

Exercise: Find the likelihood ration test for $H: \theta \leq \theta_{0}$ vs $K: \theta>\theta_{0}$ when X_{1}, \cdots, X_{n} are iid from the exponential distribution with pdf $f(x \mid \theta)=$ $\exp (-x+\theta) I(x>\theta)$.

7.1 Large Sample Distribution of LRT

Let X_{1}, \cdots, X_{n} be iid with density $f(x, \theta)$. We are interested in testing $H: \theta=$ θ_{0} against $K: \theta \neq \theta_{0}$, where θ is of dimension k, using a likelihood ratio test. To carry out the test, we need to determine the appropriate critical value c. Recall that c is determined by the requirement that $P_{H}(\lambda(x)<c)=\alpha$. In order to determine the critical value, we thus need to determine the distribution of $\lambda(X)$ when the null hypothesis is true. We now develop a large sample approximation to solve this problem.

Let $\hat{\theta}=\operatorname{argmax}_{\theta} L(\theta)$ denote the mle, and write the maximized likelihood ratio statistic as

$$
\begin{equation*}
\lambda(x)=\frac{L\left(\theta_{0}\right)}{L(\hat{\theta})} \tag{2}
\end{equation*}
$$

Define the statistic $\xi_{L R}(x)=-2 \ln (\lambda(x))=2\left(l(\hat{\theta})-l\left(\theta_{0}\right)\right)$ where $l(\theta)=\ln L(\theta)$. Since $\xi_{L R}$ is a monotonic decreasing transformation of λ, the LR test can be implemented by rejecting the null hypothesis when $\xi_{L R}(x)$ is large.

To find the approximate distribution of $\xi_{L R}(X)$ under the null hypothesis, write

$$
\begin{equation*}
l\left(\theta_{0}\right)=l(\hat{\theta})+\left(\theta_{0}-\hat{\theta}\right)^{\prime} \frac{\partial l(\hat{\theta})}{\partial \theta}+\frac{1}{2}\left(\theta_{0}-\hat{\theta}\right)^{\prime} \frac{\partial^{2} l(\tilde{\theta})}{\partial \theta \partial \theta}\left(\theta_{0}-\hat{\theta}\right) \tag{3}
\end{equation*}
$$

where $\tilde{\theta}(\omega)$ is between θ_{0} and $\hat{\theta}(\omega)$. Since mle is the root of the likelihood equation, $\frac{\partial l(\hat{\theta})}{\partial \theta}=0$. We have

$$
\begin{align*}
\xi_{L R} & =-\left(\theta_{0}-\hat{\theta}\right)^{\prime} \frac{\partial^{2} l(\tilde{\theta})}{\partial \theta \partial \theta}\left(\theta_{0}-\hat{\theta}\right) \tag{4}\\
& =\sqrt{n}\left(\theta_{0}-\hat{\theta}\right)^{\prime}\left(-\frac{1}{n} \frac{\partial^{2} l(\tilde{\theta})}{\partial \theta \partial \theta}\right) \sqrt{n}\left(\theta_{0}-\hat{\theta}\right) \tag{5}
\end{align*}
$$

Proceeding as in our derivations of the properties of the maximum likelihood estimator,

$$
\begin{array}{rll}
\sqrt{n}\left(\hat{\theta}-\theta_{0}\right) & \Rightarrow & \mathcal{N}\left(0, I\left(\theta_{0}\right)^{-1}\right) \\
-\frac{1}{n} \frac{\partial^{2} l(\tilde{\theta})}{\partial \theta \partial \theta^{\prime}} & \xrightarrow{P} I\left(\theta_{0}\right) \tag{7}
\end{array}
$$

so that by Slutsky and the Continuous Mapping Theorem,

$$
\begin{equation*}
\xi_{L R} \stackrel{H_{0}}{\Rightarrow} \chi_{k}^{2} \tag{8}
\end{equation*}
$$

An asymptotically justified level $1-\alpha$ confidence set based on the LR statistic is hence of the form

$$
\begin{equation*}
\theta^{*} \mid\left(\hat{\theta}-\theta^{*}\right)^{\prime} \hat{V}^{-1}\left(\hat{\theta}-\theta^{*}\right)<c \tag{9}
\end{equation*}
$$

where $\hat{V}=\left(-\frac{\partial^{2} l(\tilde{\theta})}{\partial \theta \partial \theta^{\prime}}\right)^{-1}$ and c solves $P\left(\chi_{k}^{2}>c\right)=\alpha$. This confidence set may be recognized as the interior of an ellipse centered at $\theta=\hat{\theta}$. In the one-dimensional case, we obtain a confidence interval $\left(\hat{\theta}-c^{*} \hat{V}^{-1 / 2}, \hat{\theta}+c^{*} \hat{V}^{-1 / 2}\right)$ where c^{*} is the positive number that solves $P\left(\mathcal{N}(0,1)>c^{*}\right)=\alpha / 2$.

7.2 Wald statistic

A close cousin of the LR statistic is the Wald statistic

$$
\begin{equation*}
\xi_{W}=\sqrt{n}\left(\hat{\theta}-\theta_{0}\right)\left(-\frac{1}{n} \frac{\partial^{2} l(\hat{\theta})}{\partial \theta \partial \theta^{\prime}}\right) \sqrt{n}\left(\hat{\theta}-\theta_{0}\right) \tag{10}
\end{equation*}
$$

which differs from $\xi_{\text {LR }}$ only because the estimated information matrix is evaluated at $\hat{\theta}$ rather than $\tilde{\theta}$. Note that we can compute the Wald statistic without doing any computations under the null hypothesis.

Since both $\hat{\theta}$ and $\tilde{\theta}$ converge in probability to θ_{0} under the null hypothesis, $\xi_{W}-\xi_{\mathrm{LR}} \xrightarrow{P, H_{0}} 0$

The motivation of the Wald statistic is that under the null hypothesis, the difference between the estimator $\hat{\theta}$ and θ_{0} satisfies $\sqrt{n}\left(\hat{\theta}-\theta_{0}\right) \Rightarrow \mathcal{N}\left(0, I\left(\theta_{0}\right)^{-1}\right)$ and $-\frac{1}{n} \frac{\partial^{2} l(\hat{\theta})}{\partial \theta \partial \theta^{\prime}}$ consistently estimates $I\left(\theta_{0}\right)^{-1}$. Under the alternative, $\left\|\hat{\theta}-\theta_{0}\right\|$ is large and we reject.

7.3 Lagrange Multiplier statistic

Another approximation to $\xi_{\text {LR }}$ is given by the Lagrange Multiplier test statistic

$$
\begin{align*}
\xi_{\mathrm{LM}} & =\sqrt{n} S_{n}\left(\theta_{0}\right)\left(-\frac{1}{n} \frac{\partial^{2} l\left(\theta_{0}\right)}{\partial \theta \partial \theta^{\prime}}\right)^{-1} \sqrt{n} S_{n}\left(\theta_{0}\right) \tag{11}\\
& =\left(n^{-1 / 2} \sum_{i=1}^{n} s_{i}\left(\theta_{0}\right)\right)^{\prime}\left(-\frac{1}{n} \frac{\partial^{2} l\left(\theta_{0}\right)}{\partial \theta \partial \theta^{\prime}}\right)^{-1}\left(n^{-1 / 2} \sum_{i=1}^{n} s_{i}\left(\theta_{0}\right)\right) \tag{12}
\end{align*}
$$

with the advantage that we do not need to compute $\hat{\theta}$ in order to compute $\xi_{\text {LM }}$.
Since under the null hypothesis $n^{-1 / 2} \sum_{i=1}^{n} s_{i}\left(\theta_{0}\right) \Rightarrow \mathcal{N}\left(0, I\left(\theta_{0}\right)\right)$ and $-\frac{1}{n} \frac{\partial^{2} l\left(\theta_{0}\right)}{\partial \theta \partial \theta^{\prime}} \xrightarrow{P}$ $I\left(\theta_{0}\right)$ we also find $\xi_{\mathrm{LM}} \stackrel{H_{0}}{\Rightarrow} \chi_{k}^{2}$.

7.4 Pearson's chi-square

[Lehman 5.5, Ferguson 9,10, Rao 6b]
Let $\underline{X}_{1}, \underline{X}_{2}, \cdots, \underline{X}_{n}$ be iid from a multinomial ${ }_{k}(1, p)$ distribution, where p is a k-vector with nonnegative entries that sum to one. That is,

$$
\begin{equation*}
P\left(\underline{X}_{i}=e_{j}\right)=p_{j} \quad \text { for all } \quad 1 \leq j \leq k \tag{13}
\end{equation*}
$$

where $\quad e_{j}=$ the k vector with 1 at the j-th position and 0 's everywhere else.
Note that the multinomial distribution is a generalization of the binomial distribution to the case in which there are k categories of outcome instead of only 2. Also note that we ordinarily do not consider a binomial random variable to be a 2 -vector, but we could easily do so if the vector contained both the number of successes and the number of failures. Equation (13) implies that the random vector \underline{X}_{i} has expectation \underline{p} and covariance matrix

$$
\Sigma=\left(\begin{array}{cccc}
p_{1}\left(1-p_{1}\right) & -p_{1} p_{2} & \cdots & -p_{1} p_{k} \tag{14}\\
-p_{1} p_{2} & p_{2}\left(1-p_{2}\right) & \cdots & -p_{2} p_{k} \\
\vdots & \vdots & \ddots & \vdots \\
-p_{1} p_{k} & -p_{2} p_{k} & \cdots & p_{k}\left(1-p_{k}\right)
\end{array}\right)
$$

Using the Cramer-Wold device, the multivariate central limit theorem implies

$$
\begin{equation*}
\sqrt{n}\left(\underline{\bar{X}}_{n}-\underline{p}\right) \Rightarrow \mathcal{N}_{k}(\underline{0}, \Sigma) . \tag{15}
\end{equation*}
$$

Note that the sum of the j-th column of Σ is $p_{j}-p_{j}\left(p_{1}+\cdots+p_{k}\right)=0$, which is to say that the sum of the rows of Σ is the zero vector, so Σ is not invertible.

We wish to derive the asymptotic distribution of Pearson's chi-square statistic

$$
\begin{equation*}
\chi^{2}=\sum_{j=1}^{k} \frac{\left(n_{j}-n p_{j}\right)^{2}}{n p_{j}} \tag{16}
\end{equation*}
$$

where n_{j} is the random variable that is the j-th component if $n \underline{\bar{X}}_{n}$, the number of successes in the j-th category for trials $1, \cdots, n$. We will discuss two different ways to do this. One way avoids dealing with the singular matrix Σ, whereas the other does not.

In the first approach, define for each $i, \underline{Y}_{i}=\left(\underline{X}_{i 1}, \cdots, \underline{X}_{i k-1}\right)$. That is, let \underline{Y}_{i} be the $k-1$-vector consisting of the first $k-1$ components of \underline{X}_{i}. Then the covariance matrix of \underline{Y}_{i} is the upper-left $(k-1) \times(k-1)$ submatrix of Σ, which we denote by Σ^{*}. Similarly, let \underline{p}^{*} denote the vector $\left(p_{1}, \cdots, p_{k-1}\right)$. First, verify that Σ^{*} is invertible and that

$$
\Sigma^{*-1}=\left(\begin{array}{cccc}
\frac{1}{p_{1}}+\frac{1}{p_{k}} & \frac{1}{p_{k}} & \cdots & \frac{1}{p_{k}} \tag{17}\\
\frac{1}{p_{k}} & \frac{1}{p_{2}}+\frac{1}{p_{k}} & \cdots & \frac{1}{p_{k}} \\
\vdots & \vdots & \ddots & \vdots \\
\frac{1}{p_{k}} & \frac{1}{p_{k}} & \cdots & \frac{1}{p_{k-1}}+\frac{1}{p_{k}}
\end{array}\right)
$$

Second, verify that

$$
\begin{equation*}
\chi^{2}=n\left(\underline{\bar{Y}}_{n}-\underline{p}^{*}\right)^{t}\left(\Sigma^{*}\right)^{-1}\left(\underline{\bar{Y}}_{n}-\underline{p}^{*}\right) \tag{18}
\end{equation*}
$$

The facts in equations (17) and (18) are checked in exercise 1. If we now define

$$
\begin{equation*}
\underline{Z}_{n}=\sqrt{n}\left(\Sigma^{*}\right)^{-1 / 2}\left(\underline{\bar{Y}}_{n}-\underline{p}^{*}\right), \tag{19}
\end{equation*}
$$

then clearly the central limit theorem implies $\underline{Z}_{n} \Rightarrow \mathcal{N}_{k-1}(\underline{0}, I)$. By definition, the χ_{k-1}^{2} distribution is the distribution of the sum of the squares of $k-1$ independent standard normal random variables. Therefore,

$$
\begin{equation*}
\chi^{2}=\left(\underline{Z}_{n}\right)^{t} \underline{Z}_{n} \Rightarrow \chi_{k-1}^{2} \tag{20}
\end{equation*}
$$

which is the result that leads to the familiar chi-square test.
In a second approach to deriving the limiting distribution (20), we use some properties of projection matrices.
Definition $2 A$ matrix P is called a projection matrix if it is idempotent; that is, if $P^{2}=P$.
The following lemmas, to be proven in exercise 2, give some basic facts about projection matrices.
Lemma 1 Suppose P is a projection matrix. Then every eigenvalue of P equals 0 or 1. Suppose that r denotes the number of eigenvalues of P equal to 1. Then if $Z \sim \mathcal{N}_{k}(\underline{0}, P)$, then, $Z^{t} Z \sim \chi_{r}^{2}$.

This can be derived from the Fisher-Cochran Theorem.
Lemma 2 The trace of a square matrix equals the sum of its eigenvalues. For matrices A and B whose sizes allow them to be multiplied in either order, $\operatorname{Tr}(A B)=\operatorname{Tr}(B A)$.

Define $\Gamma=\operatorname{diag}(\underline{p})$. Clearly, equation (15) implies

$$
\begin{equation*}
\sqrt{n} \Gamma^{-1 / 2}\left(\underline{\bar{X}}_{n}-\underline{p}\right) \Rightarrow \mathcal{N}_{k}\left(\underline{0}, \Gamma^{-1 / 2} \Sigma \Gamma^{-1 / 2}\right) . \tag{21}
\end{equation*}
$$

Since Σ may be written in the form $\Gamma-\underline{p p^{t}}$,

$$
\begin{equation*}
\Gamma^{-1 / 2} \Sigma \Gamma^{-1 / 2}=I-\Gamma^{-1 / 2} \underline{p p}^{t} \Gamma^{-1 / 2}=I-\sqrt{\underline{p}} \sqrt{\underline{p}}^{t} \tag{22}
\end{equation*}
$$

clearly has trace $k-1$; furthermore, $\left(I-\sqrt{\underline{p}} \sqrt{\underline{p}}^{t}\right)\left(I-\sqrt{\underline{p}} \sqrt{\underline{p}}^{t}\right)=I-2 \sqrt{\underline{p}} \sqrt{\underline{p}}^{t}+$ $\sqrt{\underline{p}} \sqrt{\underline{p}}^{t} \sqrt{\underline{p}} \sqrt{\underline{p}}^{t}=I-\sqrt{\underline{p}} \sqrt{\underline{p}}^{t}$ because $\sqrt{\bar{p}^{t}} \sqrt{\underline{p}}=1$, so the covariance matrix (22) is a projection matrix.

Define $\Delta_{n}=\sqrt{n} \Gamma^{-1 / 2}(\underline{\bar{X}}-\underline{p})$. Then we may check (exercise 2$)$ that

$$
\begin{equation*}
\chi^{2}=\left(\Delta_{n}\right)^{t} \Delta_{n} \tag{23}
\end{equation*}
$$

Therefore, since the covariance matrix (22) is a projection with trace $k-1$, Lemma 1 and Lemma 2 prove that $\chi^{2} \Rightarrow \chi_{k-1}^{2}$ as desired.

