7 Likelihood Ratio and related tests

[CBS.2, CB10.3, BD4.9]

Definition 1 The likelihood ratio test statistic for testing H : 6 € ©g vs K :
0 € 0Oy is

)\(I’) _ SUPQEGOL(‘Q ‘ .'I/')
supgeeL(0 | x)

where © = O |J 0.
A likelihood ratio test is of the form

1 if Az)<c
o) = { 0 if Az)>c (1)

The value of ¢ is determined from the level of the test such that Py (A < ¢) = a.
Example 1: Consider testing H : pu = po vs K : u # po where Xi,---, X, are
iid N (u, 1).

For the numerator, supyce, L(0 | ) = Wexp(—% S (i — po)?)

The sup in the denominator is attained at 6 = T which is mle.

Hence supgegL(0 | ) = Wexp(—% S (z—2)?)

1 n n
Ma) = eap(—5 (3w — p)* = Y (i~ 5)?)
=1 =1
A(l’) <c < Z;L:l(xi—uo)z—Z?:l(Ii—j)Q > Cq < | CE—[IJO |> Co.
Thus the likelihood ration test rejects H when z differs from py by a large
amount. The amount is determined from the constraint given by the level of
the test, that is, P, (|  — po |> ¢2) = .

Exercise: Find the likelihood ration test for H : 6 < 6y vs K : 0 > 6
when Xi,---, X, are iid from the exponential distribution with pdf f(z | ) =
exp(—x + 0)I(z > 0).

7.1 Large Sample Distribution of LRT

Let X1, -+, X, be iid with density f(z, ). We are interested in testing H : =
0y against K : 6 = 6, where 6 is of dimension k, using a likelihood ratio test. To
carry out the test, we need to determine the appropriate critical value c¢. Recall
that ¢ is determined by the requirement that Py (A(z) < ¢) = a. In order to
determine the critical value, we thus need to determine the distribution of A(X)
when the null hypothesis is true. We now develop a large sample approximation
to solve this problem.

Let § = argmax,L(#) denote the mle, and write the maximized likelihood

ratio statistic as L(6o)
oy - L 2)




Define the statistic {pr(z) = —2In(A(z)) = 2(1(0) — (6y)) where () = In L(0).
Since £, is a monotonic decreasing transformation of A\, the LR test can be
implemented by rejecting the null hypothesis when £,z () is large.

To find the approximate distribution of £, z(X) under the null hypothesis,
write

A~ A~ ) A 2 7] ~
00) = 10)+ 00— 0y 2 4 Loy -y T gy

where 6(w) is between 6y and (w). Since mle is the root of the likelihood

equation, % = 0. We have

e = —(00 — é)laazel(;e) (6o — ) (4)

= V(to— 0y (—i%jé‘?) N 5)

Proceeding as in our derivations of the properties of the maximum likelihood
estimator,

Vi@ —6)) = N(0,I(6)7") (6)
182l(é) P
“nasoe 10 (™)

so that by Slutsky and the Continuous Mapping Theorem,
H,
§LR = X} (8)

An asymptotically justified level 1 — « confidence set based on the LR statistic
is hence of the form . . .
0 1 (0—0"YVHO - 6%) < c (9)

0000’
recognized as the interior of an ellipse centered at 6 = 0. In the one-dimensional
case, we obtain a confidence interval (6 — V=12 04 c*V=1/2) where ¢* is the
positive number that solves P(NV(0,1) > ¢*) = a/2.

. sy —1
where V = (— i 1(9)> and ¢ solves P(x7 > ¢) = a. This confidence set may be

7.2 Wald statistic

A close cousin of the LR statistic is the Wald statistic

X 1 021(9) A
= 0—0 —— 0—0 10

Ew = vn( o) ( - 9000 Vn( 0) (10)
which differs from {Lr only because the estimated information matrix is evalu-
ated at 6 rather than 6. Note that we can compute the Wald statistic without
doing any computations under the null hypothesis.



Since both § and 6 converge in probability to #y under the null hypothesis,
P,Ho
Ew—&r — 0

The motivation of the Wald statistic is that under the null hypothesis, the
difference between the estimator 6 and 6y satisfies v/n(6—6) = N (0, I(6y)~!)and

82709 A~
—%gegz,) consistently estimates I(fp)~!. Under the alternative, || 6 — 0 || is

large and we reject.

7.3 Lagrange Multiplier statistic

Another approximation to £1,r is given by the Lagrange Multiplier test statistic

9 1
Vs (o) (1 ot ) Visa6o) (1)

<n_1/223i(90>> (_i%égg)) (n—1/2;8i(90)> (12)

i=1

LM

with the advantage that we do not need to compute 0 in order to compute & -
Since under the null hypothesis n=*/2 "7 s;(69) = N(0,1(6p)) and — 2 %égig"/) KR

i=

1(0o) we also find &pm el Xz.

7.4 Pearson’s chi-square

[Lehman 5.5, Ferguson 9,10, Rao 6b]
Let X, X,, .-, X, beiid from a multinomialg(1,p) distribution, where p is a
k-vector with nonnegative entries that sum to one. That is,

P(X,=¢;)=p; forall 1<j<k (13)

where e; = the k vector with 1 at the j-th position and 0’s everywhere else.

Note that the multinomial distribution is a generalization of the binomial
distribution to the case in which there are k categories of outcome instead of only
2. Also note that we ordinarily do not consider a binomial random variable to
be a 2-vector, but we could easily do so if the vector contained both the number
of successes and the number of failures. Equation (13) implies that the random
vector X, has expectation p and covariance matrix

pi(l—p1)  —pip2 - —P1Dk
—pip2 p2(1—p2) - —D2Dk
Y= , , , . (14)
—DP1Pk —P2Pk < pe(1—pr)

Using the Cramer-Wold device, the multivariate central limit theorem implies



Note that the sum of the j-th column of ¥ is p; — p;(p1 + - - + px) = 0, which
is to say that the sum of the rows of X is the zero vector, so X is not invertible.

We wish to derive the asymptotic distribution of Pearson’s chi-square statis-
tic

XQZZMa (16)

np '

j=1

where n; is the random variable that is the j-th component if nX,, , the number
of successes in the j-th category for trials 1,--- ,n. We will discuss two different
ways to do this. One way avoids dealing with the singular matrix ¥, whereas
the other does not.

In the first approach, define for each i, Y, = (X1, -+, X,;,_1). That is, let
Y, be the k — 1-vector consisting of the first £ — 1 components of X ;. Then the
covariance matrix of Y, is the upper-left (k —1) x (k— 1) submatrix of ¥, which
we denote by 3*. Similarly, let p* denote the vector (p1,- - ,pr—1). First, verify
that ¥* is invertible and that

1,1 1 1
RTINS m
a7t i
2*71 o Pk p2 Pk Pk (17)
1 1 11
P I e
Second, verify that
Xt =n(Y, —p)' (E) (Y, —p) (18)
The facts in equations (17) and (18) are checked in exercise 1. If we now define
Z, = V(=) VA, - p), (19)

then clearly the central limit theorem implies Z,, = Nj;_1(0,I). By definition,
the x7_, distribution is the distribution of the sum of the squares of k — 1
independent standard normal random variables. Therefore,

X =(2,)"Z, = xi-1, (20)

which is the result that leads to the familiar chi-square test.
In a second approach to deriving the limiting distribution (20), we use some
properties of projection matrices.

Definition 2 A matriz P is called a projection matriz if it is idempotent; that
is, if P? = P.

The following lemmas, to be proven in exercise 2, give some basic facts about
projection matrices.

Lemma 1 Suppose P is a projection matriz. Then every eigenvalue of P equals
0 or 1. Suppose that r denotes the number of eigenvalues of P equal to 1. Then
if Z ~ Nx(0, P), then, Z'Z ~ 2.



This can be derived from the Fisher-Cochran Theorem.

Lemma 2 The trace of a square matriz equals the sum of its eigenvalues. For
matrices A and B whose sizes allow them to be multiplied in either order,
Tr(AB) = Tr(BA).

Define T' = diag(p). Clearly, equation (15) implies
ViD= Y2(X, — p) = N (0, 171251 1/2), (21)
Since ¥ may be written in the form I' — @t,
F—I/QZF—l/Q =] — F—l/thr—l/Q =7 \/QE\/]Et (22)
clearly has trace k — 1; furthermore, (I — ,/p,/p")(I — \/p\/P') = I —2,/p,/P' +
VPP /PP =1~ /b\/P" because /b’ /b = 1, so the covariance matrix (22)
is a projection matrix.

Define A, = /nI'"1/2(X — p). Then we may check (exercise 2) that

X2 (An)tAn (23)

Therefore, since the covariance matrix (22) is a projection with trace k — 1,
Lemma 1 and Lemma 2 prove that x* = x7_, as desired.



