
7 Likelihood Ratio and related tests

[CB8.2, CB10.3, BD4.9]

Definition 1 The likelihood ratio test statistic for testing H : θ ∈ Θ0 vs K :
θ ∈ Θ1 is

λ(x) =
supθ∈Θ0

L(θ | x)

supθ∈ΘL(θ | x)

where Θ = Θ0

⋃
Θ1.

A likelihood ratio test is of the form

φ(x) =

{
1 if λ(x) ≤ c
0 if λ(x) > c

(1)

The value of c is determined from the level of the test such that PH(λ ≤ c) = α.
Example 1: Consider testing H : µ = µ0 vs K : µ 6= µ0 where X1, · · · , Xn are
iid N (µ, 1).
For the numerator, supθ∈Θ0

L(θ | x) = 1
(2π)n/2 exp(− 1

2

∑n
i=1(xi − µ0)2)

The sup in the denominator is attained at θ = x̄ which is mle.
Hence supθ∈ΘL(θ | x) = 1

(2π)n/2 exp(− 1
2

∑n
i=1(xi − x̄)2)

λ(x) = exp(−1

2
(

n∑
i=1

(xi − µ0)2 −
n∑
i=1

(xi − x̄)2))

λ(x) < c ⇐⇒
∑n
i=1(xi−µ0)2−

∑n
i=1(xi− x̄)2 > c1 ⇐⇒ | x̄−µ0 |> c2.

Thus the likelihood ration test rejects H when x̄ differs from µ0 by a large
amount. The amount is determined from the constraint given by the level of
the test, that is, Pµ0

(| x̄− µ0 |> c2) = α.

Exercise: Find the likelihood ration test for H : θ ≤ θ0 vs K : θ > θ0

when X1, · · · , Xn are iid from the exponential distribution with pdf f(x | θ) =
exp(−x+ θ)I(x > θ).

7.1 Large Sample Distribution of LRT

Let X1, · · · , Xn be iid with density f(x, θ). We are interested in testing H : θ =
θ0 against K : θ 6= θ0, where θ is of dimension k, using a likelihood ratio test. To
carry out the test, we need to determine the appropriate critical value c. Recall
that c is determined by the requirement that PH(λ(x) < c) = α. In order to
determine the critical value, we thus need to determine the distribution of λ(X)
when the null hypothesis is true. We now develop a large sample approximation
to solve this problem.

Let θ̂ = argmaxθL(θ) denote the mle, and write the maximized likelihood
ratio statistic as

λ(x) =
L(θ0)

L(θ̂)
(2)
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Define the statistic ξLR(x) = −2 ln(λ(x)) = 2(l(θ̂)− l(θ0)) where l(θ) = lnL(θ).
Since ξLR is a monotonic decreasing transformation of λ, the LR test can be
implemented by rejecting the null hypothesis when ξLR(x) is large.

To find the approximate distribution of ξLR(X) under the null hypothesis,
write

l(θ0) = l(θ̂) + (θ0 − θ̂)′
∂l(θ̂)

∂θ
+

1

2
(θ0 − θ̂)′

∂2l(θ̃)

∂θ∂θ
(θ0 − θ̂) (3)

where θ̃(ω) is between θ0 and θ̂(ω). Since mle is the root of the likelihood

equation, ∂l(θ̂)
∂θ = 0. We have

ξLR = −(θ0 − θ̂)′
∂2l(θ̃)

∂θ∂θ
(θ0 − θ̂) (4)

=
√
n(θ0 − θ̂)′

(
− 1

n

∂2l(θ̃)

∂θ∂θ

)
√
n(θ0 − θ̂) (5)

Proceeding as in our derivations of the properties of the maximum likelihood
estimator,

√
n(θ̂ − θ0) ⇒ N (0, I(θ0)−1) (6)

− 1

n

∂2l(θ̃)

∂θ∂θ′
P→ I(θ0) (7)

so that by Slutsky and the Continuous Mapping Theorem,

ξLR
H0⇒ χ2

k (8)

An asymptotically justified level 1− α confidence set based on the LR statistic
is hence of the form

θ∗ | (θ̂ − θ∗)′V̂ −1(θ̂ − θ∗) < c (9)

where V̂ =
(
−∂

2l(θ̃)
∂θ∂θ′

)−1

and c solves P (χ2
k > c) = α. This confidence set may be

recognized as the interior of an ellipse centered at θ = θ̂. In the one-dimensional
case, we obtain a confidence interval (θ̂− c∗V̂ −1/2, θ̂+ c∗V̂ −1/2) where c∗ is the
positive number that solves P (N (0, 1) > c∗) = α/2.

7.2 Wald statistic

A close cousin of the LR statistic is the Wald statistic

ξW =
√
n(θ̂ − θ0)

(
− 1

n

∂2l(θ̂)

∂θ∂θ′

)
√
n(θ̂ − θ0) (10)

which differs from ξLR only because the estimated information matrix is evalu-
ated at θ̂ rather than θ̃. Note that we can compute the Wald statistic without
doing any computations under the null hypothesis.
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Since both θ̂ and θ̃ converge in probability to θ0 under the null hypothesis,

ξW − ξLR
P,H0→ 0

The motivation of the Wald statistic is that under the null hypothesis, the
difference between the estimator θ̂ and θ0 satisfies

√
n(θ̂−θ0)⇒ N (0, I(θ0)−1)and

− 1
n
∂2l(θ̂)
∂θ∂θ′ consistently estimates I(θ0)−1. Under the alternative, || θ̂ − θ0 || is

large and we reject.

7.3 Lagrange Multiplier statistic

Another approximation to ξLR is given by the Lagrange Multiplier test statistic

ξLM =
√
nSn(θ0)

(
− 1

n

∂2l(θ0)

∂θ∂θ′

)−1√
nSn(θ0) (11)

=

(
n−1/2

n∑
i=1

si(θ0)

)′(
− 1

n

∂2l(θ0)

∂θ∂θ′

)−1
(
n−1/2

n∑
i=1

si(θ0)

)
(12)

with the advantage that we do not need to compute θ̂ in order to compute ξLM.

Since under the null hypothesis n−1/2
∑n
i=1 si(θ0)⇒ N (0, I(θ0)) and− 1

n
∂2l(θ0)
∂θ∂θ′

P→
I(θ0) we also find ξLM

H0⇒ χ2
k.

7.4 Pearson’s chi-square

[Lehman 5.5, Ferguson 9,10, Rao 6b]
Let X1, X2, · · · , Xn be iid from a multinomialk(1, p) distribution, where p is a
k-vector with nonnegative entries that sum to one. That is,

P (Xi = ej) = pj for all 1 ≤ j ≤ k (13)

where ej = the k vector with 1 at the j-th position and 0’s everywhere else.

Note that the multinomial distribution is a generalization of the binomial
distribution to the case in which there are k categories of outcome instead of only
2. Also note that we ordinarily do not consider a binomial random variable to
be a 2-vector, but we could easily do so if the vector contained both the number
of successes and the number of failures. Equation (13) implies that the random
vector Xi has expectation p and covariance matrix

Σ =


p1(1− p1) −p1p2 · · · −p1pk
−p1p2 p2(1− p2) · · · −p2pk

...
...

. . .
...

−p1pk −p2pk · · · pk(1− pk)

 (14)

Using the Cramer-Wold device, the multivariate central limit theorem implies

√
n(X̄n − p)⇒ Nk(0,Σ). (15)
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Note that the sum of the j-th column of Σ is pj − pj(p1 + · · ·+ pk) = 0, which
is to say that the sum of the rows of Σ is the zero vector, so Σ is not invertible.

We wish to derive the asymptotic distribution of Pearson’s chi-square statis-
tic

χ2 =

k∑
j=1

(nj − npj)2

npj
, (16)

where nj is the random variable that is the j-th component if nX̄n , the number
of successes in the j-th category for trials 1, · · · , n. We will discuss two different
ways to do this. One way avoids dealing with the singular matrix Σ, whereas
the other does not.

In the first approach, define for each i, Y i = (Xi1, · · · , Xik−1). That is, let
Y i be the k− 1-vector consisting of the first k− 1 components of Xi. Then the
covariance matrix of Y i is the upper-left (k−1)× (k−1) submatrix of Σ, which
we denote by Σ∗. Similarly, let p∗ denote the vector (p1, · · · , pk−1). First, verify
that Σ∗ is invertible and that

Σ∗−1 =


1
p1

+ 1
pk

1
pk

· · · 1
pk

1
pk

1
p2

+ 1
pk
· · · 1

pk
...

...
. . .

...
1
pk

1
pk

· · · 1
pk−1

+ 1
pk

 (17)

Second, verify that

χ2 = n(Ȳ n − p∗)t(Σ∗)−1(Ȳ n − p∗) (18)

The facts in equations (17) and (18) are checked in exercise 1. If we now define

Zn =
√
n(Σ∗)−1/2(Ȳ n − p∗), (19)

then clearly the central limit theorem implies Zn ⇒ Nk−1(0, I). By definition,
the χ2

k−1 distribution is the distribution of the sum of the squares of k − 1
independent standard normal random variables. Therefore,

χ2 = (Zn)tZn ⇒ χ2
k−1, (20)

which is the result that leads to the familiar chi-square test.
In a second approach to deriving the limiting distribution (20), we use some

properties of projection matrices.

Definition 2 A matrix P is called a projection matrix if it is idempotent; that
is, if P 2 = P .

The following lemmas, to be proven in exercise 2, give some basic facts about
projection matrices.

Lemma 1 Suppose P is a projection matrix. Then every eigenvalue of P equals
0 or 1. Suppose that r denotes the number of eigenvalues of P equal to 1. Then
if Z ∼ Nk(0, P ), then, ZtZ ∼ χ2

r.
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This can be derived from the Fisher-Cochran Theorem.

Lemma 2 The trace of a square matrix equals the sum of its eigenvalues. For
matrices A and B whose sizes allow them to be multiplied in either order,
Tr(AB) = Tr(BA).

Define Γ = diag(p). Clearly, equation (15) implies

√
nΓ−1/2(X̄n − p)⇒ Nk(0,Γ−1/2ΣΓ−1/2). (21)

Since Σ may be written in the form Γ− ppt,

Γ−1/2ΣΓ−1/2 = I − Γ−1/2pptΓ−1/2 = I −√p√pt (22)

clearly has trace k− 1; furthermore, (I −√p√pt)(I −√p√pt) = I − 2
√
p
√
pt +

√
p
√
pt
√
p
√
pt = I −√p√pt because

√
pt
√
p = 1, so the covariance matrix (22)

is a projection matrix.
Define ∆n =

√
nΓ−1/2(X̄ − p). Then we may check (exercise 2) that

χ2 = (∆n)t∆n (23)

Therefore, since the covariance matrix (22) is a projection with trace k − 1,
Lemma 1 and Lemma 2 prove that χ2 ⇒ χ2

k−1 as desired.
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