
6 Elements of hypothesis testing

[CB8.3,BD4.2-4.3]

6.1 Introduction

Hypothesis testing begins with an assumption, called a hypothesis, that we make
about a population parameter.
The bottom line in hypothesis testing is when we ask whether a population
like we think this one is would be likely to produce a sample like the one we are looking at.

In hypothesis testing, we must state the assumed or hypothesized distribu-
tion of the population before we begin sampling.
The assumption we wish to test is called the null hypothesis (H). In para-
metric inference this will be in terms of a finite number of parameters.
Whenever we reject the hypothesis, the conclusion we draw is called alterna-
tive hypothesis (K).
Note: Null hypotheses are either rejected, or else there is insufficient evidence
to reject them. (i.e., we don’t accept null hypotheses.)

Type I Error: rejecting a true null hypothesis.
Max value of P(Type I error)=α Significance level of the test
Type II Error: not rejecting a false null hypothesis.
P(Type II error) = 1-β=1-Power of the test

Definition 1 The power of a test φ against the alternative θ is the probability
of rejecting H when θ is true and is denoted by β(θ, φ).

Example 1: The null hypothesis is that the battery has an average life of 300
days, with the alternative hypothesis being that the battery life is more than
300 days. You are the quality control engineer for the battery manufacturer.
(a) Would you rather make a Type I or a Type II error?
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(b) Based on your answer to part (a), should you use a high or a low significance
level?

Testing procedure: Fix H, K, α. Obtain sample. Calculate a test statistic
based on the sample. If the test statistic has a low probability (fixed at α) when
H is true, then H is rejected. Otherwise H is not rejected.

One and two sided alternative hypotheses. The null hypothesis is usually
stated as an equality. The alternative hypothesis can be either an equality or
an inequality.

One and two tailed tests. Depending on the type of the alternative the
rejection region can be right-tailed, left-tailed or two-tailed.

Example 2: A drug will be released in the market only if it’s efficacy is more
than 30%. What are the null and alternative hypotheses? Which is appropriate,
a one-tailed or a two-tailed test?

Figure 1: Example 3

Example 3: In figure 6.1, we have a sample of size n from a normal population
with unknown mean µ. H: µ = 2400, K: µ > 2400. At α = 0.05, we reject H for
values of X̄ > 2400 + 1.645σX̄ . In this case, the observed value of X̄ is 2430,
which is 1.06σX̄ . Hence we fail to reject H.

Parametric set-up: Data: X ∈ X , X ∼ Pθ, H : θ ∈ Θ0,K : θ ∈ Θ1. If Θ0

consists of a single point, we call it a simple null, otherwise, a composite
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null. Similarly, with K.
In example 2, H : θ = θ0,K = θ > θ0, then we have a simple null vs a

composite alternative. If we allow H : θ ≤ θ0, then we have a composite null.
In most cases (Monotone Likelihood Ratio situations), the solutions to both
problems are the same. In this example with H : θ = θ0, it is reasonable to
reject H if X= number of cases in which the drug is effective in n trials, is
”much” larger than what would be expected by chance if H is true and the
value of θ is θ0.
Thus, we reject H if X exceeds or equals some integer, say k.

Critical region or rejection region denotes the values of the test statistic
X for which we reject H. In this example the critical region C is {X : X > k}.
This is equivalent to specifying a test function φ : X → {0, 1}, where 1 denotes
rejection.

Thus P (typeIerror) = Pθ=θ0(X ≥ k)
and P (typeIIerror) = Pθ(X < k), θ < θ0.
k is called the critical value.
The power is obtained as

∑n
i=k

(
n
k

)
θi(1 − θ)n−i. A plot of the function for

n = 10, θ0 = 0.3, k = 6 is in figure 4.1.1 below (taken from BD).
Note that in this example the power at θ = θ1 > 0.3 is the probability that

the level 0.05 test will detect an improvement of the recovery rate from 0.3 to
θ1. When θ1 is 0.5, a 67% improvement, this probability is only .3770. What is
needed to improve on this situation is a larger sample size n. One of the most
important uses of power is in the selection of sample sizes to achieve reasonable
chances of detecting interesting alternatives

Also, the power function is increasing. It follows that the level and size of
the test are unchanged if instead of Θ0 = {θ0} we used Θ0 = [0, θ0]. That is,

α(k) = sup{Pθ(X ≥ k) : θ < θ0} = Pθ0(X ≥ k).
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6.2 Neyman-Pearson Theory

We start with the problem of testing a simple hypothesis H : θ = θ0 versus a
simple alternative K : θ = θ1. Simple likelihood ratio statistic is defined by

L(x, θ0, θ1) =
p(x, θ0)

p(x, θ1)

where p(x, θ) is the density (pdf) or frequency (pmf) function of the random
vector X.
We call φk a likelihood ratio or Neyman-Pearson (NP) test (function) if for some
0 < k <∞ we can write the test function φk as

φk(x) =

{
1 if L(x, θ0, θ1) < k
0 if L(x, θ0, θ1) > k

(1)

with φk(x) any value in (0,1) if equality occurs.

Because we want results valid for all possible test sizes α in [0, 1], we consider
randomized tests φ, which are tests that may take values in (0, 1). If 0 < φ(x) <
1 for the observation vector x, the interpretation is that we toss a coin with
probability of heads φ(x) and reject H iff the coin shows heads.

Theorem 1 (Neyman-Pearson Lemma)

1. If α > 0 and φk is a size α likelihood ratio test, then φk is MP in the class
of level α tests.

2. For each 0 < α < 1 there exists an MP size α likelihood ratio test provided
that randomization is permitted, 0 < φ(x) < l,for some x.

3. If φ is an MP level α test, then it must be a level α likelihood ratio test;
that is, there exists k such that Pθ(φk(x) 6= φ(x), L(X, θ0, θ1 6= k) = 0 for
θ = θ0 and θ = θ1

It follows from the Neyman-Pearson lemma that an MP test has power at
least as large as its level; that is,

Corollary 1 If φ is an MP level α test, then Eθ1φ(x) > α with equality iff
p(x, θ0) = p(x, θ1)∀x.

In example 2, suppose the alternative is θ1 = 0.5. As before θ0 = 0.3.
Thus we have a simple null vs simple alternative situation where the model is
X ∼ Bin(n, θ). The likelihood ration is

L(X, θ0, θ1) =

(
n
X

)
(0.3)X(0.7)n−X(

n
X

)
(0.5)X(0.5)n−X

= (3/7)X(7/5)n

L < k is equivalent to X > (n log(7/5) − k)/ log(7/3) = k1 (say). So the test
that rejects the null hypothesis for large values of X is MP in the class of level
α tests by NP lemma.
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In order to determine the test explicitly given α = 0.05 and n=10, we find
the highest k1 such that P (X > k1) < α.
From R, 1-pbinom(4,10,0.3)=0.1502683=P (X > 4)
and 1-pbinom(5,10,0.3)=0.04734899=P (X > 5).
So, k1=5 and a=(α − P (X > k))/P (X = 5)=0.02575813. So the test function
is

φ(x) =

 1 ifX > 5
0.02575813 ifX = 5
0 ifX < 5

(2)

That is, reject H if X > 5 and with probability a if X = 5.
For θ = 0.5, the power is

β(θ, φ) = P (X < 5) + aP (X = 5)

= 1− pbinom(5, 10, 0.5) + a ∗ dbinom(5, 10, 0.5)

= 0.383292

6.3 UMP tests and MLR families

Now we want to consider the case of composite null H : θ ∈ Θ0 vs composite
alternative K : θ ∈ Θ1

Definition 2 A level α test φ∗ is uniformly most powerful (UMP) for H vs K
if

β(θ, φ∗) ≥ β(θ, φ)∀θ ∈ Θ1

for any other level α test φ.

Definition 3 The family of models {Pθ : θ ∈ Θ} with Θ ⊂ R is said to be
a monotone likelihood ratio (MLR) family if for θ1 < θ2 the distributions Pθ0
and Pθ2 are distinct and the ratio p(x, θ2)/p(x, θ1) is an increasing function of
a statistic T (x).

In example 2, for θ1 < θ2,

p(x, θ2)/p(x, θ1) =
θX2 (1− θ2)n−X

θX1 (1− θ1)n−X
=

(
θ2(1− θ1)

θ1(1− θ2)

)X (
1− θ2

1− θ1

)n
is increasing in X and the model is MLR in T (X) = X.

Result: Consider the one-parameter exponential family model

p(x, θ) = h(x)exp{η(θ)T (x)−B(θ)}.

If η(θ) is strictly increasing in θ ∈ Θ, then this family is MLR. Example 2 is of
this form with T (x) = x and η(θ) = log(θ/(1− θ)).
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Define the Neyman-Pearson (NP) test function

δt(x) =

{
1 if T (x) > t
0 if T (x) < t

(3)

with δt(x) any value in (0,1) if T (x) = t. Consider the problem of testing
H : θ = θ0 versus K : θ = θ1 with θ0 < θ1 . If {Pθ : θ ∈ Θ},Θ ⊂ R, is an
MLR family in T (x), then L(x, θ0, θ1) = g(T (x)) for some increasing function
g. Thus, δt equals the likelihood ratio test φg(t) and is MP. Because δt does not
depend on θ1 it is UMP at level α := Eθ0δt(X) for testing H : θ = θ0 versus
K : θ > θ0.

Theorem 2 Suppose {Pθ : θ ∈ Θ},Θ ⊂ R is an MLR family in T (x). Then

1. For each t ∈ (0,∞), the power function β(θ) = Eθδt(X) is increasing in
θ.

2. If Eθ0δt(X) = α > 0, then δt is UMP level α for testing H : θ ≤ θ0 versus
K : θ > θ1 for θ1 > θ0.

6.4 Unbiased tests

Definition 4 A test φ is unbiased if βφ(θ) ≥ α for all θ ∈ Θ1 and βφ(θ) ≤ α
for all θ ∈ Θ0.

Remark: If φ is a UMP level α test, then φ is unbiased. Proof: compare φ
with the trivial test function φ̃ ≡ alpha.

Definition 5 A uniformly most powerful unbiased level α test is a test φ̃ for
which Eθφ̃ ≥ Eθφ for all θ ∈ Θ1 and for all unbiased level α tests φ.

That is, φ̃ is uniformly (for all θ ∈ Θ1) most powerful (Eθφ̃ ≥ Eθφ) among all
unbiased tests φ.

Theorem 3 Consider testing H : θ = θ0 versus K : θ 6= θ0 in a one parameter
exponential family with natural parameter θ and natural sufficient statistic T .
The test φ with Eθ0φ(T ) = α given by

φ(T (x)) =

{
1 if T (x) > c2 or T (x) < c1
0 if c1 < T (x) < c2

(4)

with φ(T (x)) any value in γ ∈ (0, 1) if T (x) = ci, i = 1, 2. is UMPU for H
versus K.
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