
5 Large Sample (Asymptotic) Properties of Es-
timators

[CB10.1, BD5.2-5.3]
Asymptotics in statistics is usually thought of as the study of the limiting be-
havior of statistics or, more specifically, of distributions of statistics, based on
observing n i.i.d. observations X1, · · · , Xn as n → ∞. Asymptotics, in this
context, always refers to a sequence of statistics {Tn(X1, · · · , Xn)}n≥1, for in-
stance the sequence of means {X̄n}n≥1, or the sequence of medians, or it refers
to the sequence of their distributions {LF (Tn(X1, · · · , Xn))}n≥1. Asymptotic
statements are always statements about the sequence.

The strong law of large numbers (Kolmogorov) tells us that ifX1, X2, · · · , Xn

are independent and identically distributed, the existence of a finite constant c
for which X̄

a.s.→ c holds iff E(X1) is finite and equals c. [Serfling pg 27]
We interpret this as saying that, for n sufficiently large, Xn is approxi-

mately equal to its expectation. The trouble is that for any specified degree of
approximation, say, ε = .01, this does not tell us how large n has to be for the
approximation not holding to this degree, that is |X̄(ω) − c| > ε. Is n > 100
enough or does it have to be n > 100, 000?

Central Limit Theorem(Lindeberg-Levy) If X1, X2, · · · , Xn are independent
and identically distributed (distribution F ) with finite mean (EF (X1) = µ) and
variance (V arF (X1) = σ2), then

√
n(X̄n − µ)⇒ N (0, σ2).

Relaxation of assumptions lead to other CLT’s like Lindeberg Levy where in-
dependence is assumed but different means and variances are allowed satisfying
suitable conditions.

As an approximation, this reads P (X̄ ≤ x) ≈ Φ(
√
n(x − µ)/σ). Again we

are faced with the questions of how good the approximation is for given n, x and
F . What we in principle prefer are bounds, which are available in the classical
situations of WLLN and CLT above.

By Chebychev’s inequality, if EF (X2
l ) < ∞, then PF [|X̄n − µ| ≥ ε] ≤

σ2/nε2.As a bound this is typically far too conservative. If |X1| ≤ 1, the much
more delicate Hoeffding bound gives PF [|X̄n − µ| ≥ ε] ≤ 2exp(−nε2/2). Be-
cause |X1 ≤ 1 implies that σ2 ≤ 1 when σ2 is unknown the RHS of Chebychev
becomes 1/nε2. For ε = .1, n = 400 Chebychev is 0.25 whereas Hoeffding is
0.14. Of course |X1 ≤ 1 can be replaced with |X1 ≤M.

The celebrated Berry-Esseen bound states that if EF |X1|3 <∞, supx|P (
√
n(X̄n−

µ)/σ ≤ x) − Φ(x)| ≤ CEF |X1|3/σ3
√
n where C is a universal constant known

to be < 33/4.

5.1 Consistency

Consistency refers to convergence in probability (weak) or almost surely (strong).
In the iid case, by LLN, X̄n is consistent.

Ex: X1, · · ·Xn iid Bernoulli(p). p̂n = X̄n is consistent for p by LLN. Con-
sider θ = p(1 − p) which is the variance of X1 and its method of moments
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estimator p̂n(1− p̂n). This is consistent.
Result: If Xn converges to X in probability and g is a continuous function,

then g(Xn) converges to g(X) in probability.

Theorem 1 (Consistency of MoM estimators) X1, · · · , Xn iid. Xi ∈ X . Let
g = (g1, · · · , gd) map X onto Y ⊆ Rd. Suppose Eθgj(X1) < ∞, 1 < j < d,∀θ.
Let mj(θ) = Eθgj(Xl), 1 < j < d and q(θ) = h(m(θ)), where h : Y → Rp.
Then, if h is continuous q̂ = h(ḡ) is consistent for q(θ).

Theorem 2 (Consistency of MLE in exponential family) Suppose P is a canon-
ical exponential family of rank d generated by T . Suppose E the support of the
canonical parameter η, is open. Then, if Xl, · · · , Xn are a sample from Pη ∈ P

1. P(The MLE η̂ exists) → 1

2. η̂ is consistent.

Pf: Pg 304 of BD. Not to be done in class.
We begin the discussion of the consistency of the MLE by defining the so-

called Kullback-Liebler information.

Definition 1 If fθ0(x) and fθ1(x) are two densities, the Kullback-Leibler infor-

mation number equals K(fθ0 , fθ1) = Eθ0 log
fθ0 (X)

fθ1 (X) . If Pθ0 (fθ0(X) > 0 and fθ1(X) = 0) >

0, then K(fθ0 , fθ1) is defined to be 1.

We may show that the Kullback-Leibler information must be nonnegative using
Jensen’s inequality.

Theorem 3 (Jensen’s inequality) If g(t) is a convex function, then for any
random variable X, g(EX) ≤ Eg(X). Furthermore, if g(t) is strictly convex,
then Eg(X) = g(EX) only if P (X = c) = 1 for some constant c.

Considering the Kullback-Leibler information once again, we first note that

Eθ0
fθ1(X)

fθ0(X)
= Eθ1

(
Ifθ0 (X)>0

)
≤ 1.

Therefore, by the strict convexity of the function − log x,

K(fθ0 , fθ1) = Eθ0 − log
fθ1(X)

fθ0(X)
≥ − logEθ0

fθ1(X)

fθ0(X)
≥ 0, (1)

with equality if and only if Pθ0fθ0(X) = fθ1(X) = 1. Inequality (1) is sometimes
called the Shannon- Kolmogorov information inequality.

IfX1, · · · , Xn are iid with density fθ0(x), then l(θ) =
∑n
i=1 log fθ0(xi). Thus,

the Shannon-Kolmogorov information inequality may be used to prove the con-
sistency of the maximum likelihood estimator in the case of a finite parameter
space.
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Theorem 4 (Consistency of MLE) Suppose Ω is finite and that X1, · · · , Xn

are iid with density fθ0(x). Furthermore, suppose that the model is identifiable,
which is to say that different values of θ lead to different distributions. Then if

θ̂n denotes the maximum likelihood estimator, θ̂n
P→ θ0.

Proof: Notice that

1

n

n∑
i=1

log
fθ(Xi)

fθ0(Xi)

P→ Eθ0 log
fθ(Xi)

fθ0(Xi)
= −K(fθ0 , fθ) (2)

The value of −K(fθ0 , fθ) is strictly negative for θ 6= θ0 by the identifiability of

the model. Therefore, since θ̂n is the maximizer of the left hand side of Equation
(2),

P (θ̂n 6= θ0) = P

(
maxθ 6=θ0(

1

n

n∑
i=1

log
fθ(Xi)

fθ0(Xi)
) > 0

)
≤
∑
θ 6=θ0

P

(
1

n

n∑
i=1

log
fθ(Xi)

fθ0(Xi)
> 0

)
→ 0.

(3)

5.2 Asymptotic normality

In the simplest form of the central limit theorem, we consider a sequence
X1, X2, ...Xn of independent and identically distributed (univariate) random
variables with mean µ and finite variance σ2. In this case, the central limit
theorem states that √

n(X̄n − µ)⇒ N (0, σ2)

5.2.1 Delta Method

In this section, we wish to consider the asymptotic distribution of, say, some
function of X̄n. In the simplest case, the answer depends on results already
known: Consider a linear function h(t) = at + b for some known constants a
and b. Clearly E(h(X̄n)) = aµ + b = h(µ) by the linearity of the expectation
operator. Therefore, it is reasonable to ask whether

√
n(h(X̄n)−h(µ)) tends to

some distribution as n→∞. But the linearity of h(t) allows one to write

√
n(h(X̄n)− h(µ)) = a

√
n(X̄n − µ)

We conclude that √
n(h(X̄n)− h(µ))⇒ N (0, a2σ2)

None of the preceding development is especially deep; one might even say that
it is obvious that a linear transformation of the random variable Tn alters its
asymptotic distribution by a constant multiple. Yet what if the function h(t)
is nonlinear? It is in this nonlinear case that a strong understanding of the
argument above, as simple as it may be, pays real dividends. For if Tn is
consistent for θ (say), then we know that, roughly speaking, Tn will be very
close to θ for large n. Therefore, the only meaningful aspect of the behavior of
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h(t) is its behavior in a small neighborhood of θ. And in a small neighborhood
of θ, h(θ) may be considered to be roughly a linear function. Formally we use
the Taylor expansion to obtain the following result:

Theorem 5 (First Order Delta Method) If

√
n(Tn − θ)⇒ N (0, τ2) (4)

then √
n(h(Tn)− h(θ))⇒ N (0, τ2(h′(θ))2)

provided h′(θ) exists and is not zero.

Proof: Step 1: It follows from equation (4) that Tn → θ in probability.
Step 2: Consider the Taylor expansion of h around θ.

h(x) = h(θ) + (x− θ)(h′(θ) + r)

where r → 0 as x→ θ.
Define Rn as the remainder in

h(Tn) = h(θ) + (Tn − θ)(h′(θ) +Rn)

By step 1, Tn → θ in probability.
Hence Rn → 0 in probability.
This implies h′(θ) +Rn → h′(θ) in probability.

Step 3: The result follows by applying Slutsky’s theorem to
√
n(h(Tn)−h(θ)).√

n(h(Tn)− h(θ)) =
√
n(Tn − θ)× (h′(θ) +Rn).

Let Yn = (h′(θ) +Rn) and Xn =
√
n(Tn − θ) as above.

Xn ⇒ X and Yn → c in probability where c = h′(θ), X ∼ N (0, τ2).
By Slutsky’s theorem,

√
n(h(Tn)− h(θ)) = YnXn ⇒ cX.

The distribution of cX is N (0, τ2(h′(θ))2).
Example 1(Exponential Rate) Let Xi, i = 1, 2, · · · , n be independent

Exponential(λ) random variables and let Tn = 1
n

∑n
i=1Xi. Then by CLT,

√
n(Tn − λ)⇒ N (0, λ2)

Suppose we are now interested in the large sample behavior of the estimate 1
Tn

of the rate h(λ) = 1
λ .

Since h′(λ) = − 1
λ2 , it follows from Theorem 5 that

√
n(

1

Tn
− 1

λ
)⇒ N (0,

(
− 1

λ2

)
λ2 =

1

λ2
)

Example 2 (Binomial Variance) Let Xi, i = 1, 2, · · · , n be independent
Bernoulli random variables and let Tn = 1

n

∑n
i=1Xi. Then by CLT,

√
n(Tn − p)⇒ N (0, p(1− p))
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Suppose we are now interested in the large sample behavior of the estimate
Tn(1− Tn) of the variance h(p) = p(1− p).
Since h′(p) = 1− 2p, it follows from Theorem 5, when p 6= 1/2, that

√
n(Tn(1− Tn)− p(1− p))⇒ N (0, (1− 2p)2p(1− p))

What happens when h′(θ) = 0?

Theorem 6 (Second Order Delta Method) If

√
n(Tn − θ)⇒ N (0, τ2) and h′(θ) = 0 (5)

then

n(h(Tn)− h(θ))⇒ 1

2
τ2h′′(θ)χ2

1

Proof Consider the Taylor expansion of h(Tn) around h(θ) upto the second term.

h(Tn) = h(θ) + (Tn − θ)h′(θ) +
1

2
(Tn − θ)2(h′′(θ) +Rn)

where Rn → 0 as Tn → θ.
Step 1: It follows from equation (5) that Tn → θ in probability.

Hence Rn → 0 in probability. This implies h′′(θ) +Rn → h′′(θ) in probability.
Step 2: 1

τ2n(Tn − θ)2 ⇒ χ2
1.

This follows from equation (5) after dividing by τ and squaring a standard
normal random variable.

Step 3: The result follows by applying Slutsky’s theorem to n(h(Tn)−h(θ)).
n(h(Tn)− h(θ)) = n(Tn − θ)2 × (h′′(θ) +Rn) since h′(θ) = 0.
Let Yn = τ2(h′′(θ) +Rn) and Xn = 1

τ2n(Tn − θ)2.
Xn ⇒ X and Yn → c in probability where c = τ2h′′(θ), X ∼ χ2

1.
By Slutsky’s theorem, n(h(Tn)− h(θ)) = YnXn ⇒ cX.
The distribution of cX is τ2h′′(θ)χ2

1.
Example 3’(Binomial Variance at p = 1/2) For h(p) = p(1 − p), we

have at p = 1/2, h′(1/2) = 0 and h′′(1/2) = −2. Hence from theorem 6, at
p = 1/2,

n

[
Tn(1− Tn)− 1

4

]
⇒ −1

4
χ2

1 (6)

Although the equation (6) might appear strange, note that Tn(1 − Tn) ≤ 1/4,
so the left side is always negative. An equivalent form is

4n

[
1

4
− Tn(1− Tn)

]
⇒ χ2

1

We now present a result on multivariate Delta method without proof.

Theorem 7 (Multivariate Delta Method) Let (X1ν , · · · , Xsν), , ν = 1, · · · , n
be n independent s-tuples of random variables with E(Xiν) = ξi and Cov(Xiν , Xjν) =
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σij. Let X̄i =
∑n
ν=1Xiν/n, and suppose that h is a real valued function of s

arguments with continuous first partial derivatives. Then

√
n
[
h(X̄1, · · · , X̄s)− h(ξ1, · · · , ξs)

]
⇒ N (0, υ2), where υ2 =

s∑
i=1

s∑
j=1

σij
∂h

∂ξi

∂h

∂ξj

Example 4 (Variance of Variance estimator) Suppose X1, · · · , Xn are
iid random variables with mean µ and variance σ2. We are interested in the
joint distribution of s2 = 1

n

∑
(Xi − X̄)2, the estimator of σ2. Denoting E(Xk)

by mk, we have

E(X̄) = m1

E(X̄2) = m2

Cov(X̄, X̄2) = (m3 −m1m2)/n

Var(X̄) = (m2 −m2
1)/n

Var(X̄2) = (m4 −m2
2)/n

The parameter of interest is σ2 = h(m1,m2) = m2 −m2
1. The derivatives of h

are ∂h
∂m1

= −2m1 and ∂h
∂m2

= 1.

√
n
[
h(X̄, X̄2)− h(m1,m2)

]
⇒ N (0, υ2), where

υ2 = DhΣDhT =
(
−2m1 1

)( m2 −m2
1 m3 −m1m2

m3 −m1m2 m4 −m2
2

)(
−2m1

1

)
= −4m4

1 + 8m2
1m2 +m4 −m2

2 − 4m1m3

The central limit theorem and the delta method will prove very useful in
deriving asymptotic distribution results about functions of sample moments.

Example 9 (Distribution of sample T statistic) SupposeX1, X2, · · · , Xn

are iid with E(Xi) = µ and Var(Xi) = σ2 < ∞. Define s2
n = 1

n

∑
(Xi − X̄)2,

and let

Tn =

√
n(X̄n − µ)

sn
.

Letting An =
√
n(X̄n−µ)

σ and Bn = σ/sn, we obtain Tn = AnBn. Therefore,

since An ⇒ N(0, 1) by the central limit theorem and Bn
P→ 1 by the weak law

of large numbers, Slutsky’s theorem implies that Tn ⇒ N (0, 1). In other words,
T statistics are asymptotically normal under the null hypothesis.
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5.2.2 Asymptotic Normality of MLE

It will be necessary to review a few facts regarding Fisher information before we
proceed. For a density (or mass) function fθ(x), we define the Fisher information
function to be

I(θ) = Eθ

{
d

dθ
log fθ(X)

}2

(7)

If η = g(θ) for some invertible and differentiable function g(∆), then since

d

dη
=
dθ

dη

d

dθ
=

1

g′(θ)

d

dθ
(8)

by the chain rule, we conclude that

I(η) =
I(θ)

{g′(θ)}2
(9)

Loosely speaking, I(θ) is the amount of information about θ contained in a sin-
gle observation from the density fθ(x).
Suppose that fθ(x) is twice differentiable with respect to θ and that the oper-
ations of differentiation and integration may be interchanged in the following
sense:

Eθ

{
d

dθ
log fθ(X)

}
= Eθ

{
d
dθfθ(X)

fθ(X)

}
=

∫
d

dθ
fθ(X)dx =

d

dθ

∫
fθ(X)dx =

d

dθ
1 = 0

(10)

Eθ

{
d

dθ

d
dθfθ(X)

fθ(X)

}
= Eθ

{
d2

dθ2 fθ(X)

fθ(X)

}
− I(θ) =

d2

dθ2

∫
fθ(X)dx− I(θ) = −I(θ)

(11)
Equations (10) and (11) give two additional expressions for I(θ). From Equation
(10) follows

I(θ) = Varθ

{
d

dθ
log fθ(X)

}
(12)

and Equation (11) implies

I(θ) = −Eθ
{
d2

dθ2
log fθ(X)

}
. (13)

In many cases, Equation (13) is the easiest form of the information to work with.
Equations (12) and (13) make clear a helpful property of the information, namely
that for independent random variables, the information about θ contained in
the joint sample is simply the sum of the individual information components.
In particular, if we have an iid sample from fθ(x), then the information about
θ equals nI(θ). The reason that we need the Fisher information is that we will
show that under certain regularity conditions,

√
n(θ̂n − θ0)⇒ N

{
0,

1

I(θ0)

}
, (14)
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where θ̂n is the MLE.
Example 1 (Poisson case) Suppose that X1, · · · , Xn are iid Poisson(θ0)

random variables. Then the likelihood equation has a unique root, namely
θ̂n = X̄n, and we know that by the central limit theorem

√
n(θ̂n−θ0)⇒ N (0, θ0).

However, the Fisher information for a single observation in this case is

−Eθ
{
d2

dθ2
log fθ(X)

}
= Eθ

X

θ2
=

1

θ
(15)

Thus, in this example, equation (14) holds.

Rather than stating all of the regularity conditions necessary to prove Equa-
tion (12), we work backwards, figuring out the conditions as we go through the

proof. The first step is to expand l′(θ̂n) in a power series around θ0:

l′(θ̂n) = l′(θ0) + (θ̂n − θ0)l′′(θ0) +
1

2
(θ̂n − θ0)2l′′′(θ∗n) (16)

for some θ∗n between θ̂n and θ0. Clearly, the validity of Equation (16) hinges on
the existence of a continuous third derivative of l(θ). Rewriting equation (16)
gives

√
n(θ̂n − θ0) =

√
n{l′(θ̂n)− l′(θ0)}

l′′(θ0) + 1
2 (θ̂n − θ0)l′′′(θ∗n)

=

1√
n
{l′(θ0)− l′(θ̂n)}

− 1
n l′′(θ0)− 1

2n (θ̂n − θ0)l′′′(θ∗n)
(17)

Let’s consider the pieces of Equation (17) individually. If the MLE is consistent,

then l′(θ̂n)
P→ 0. If Equation (10) holds and I(θ0) <∞, then

1√
n

l′(θ0) =
√
n

(
1

n

n∑
i=1

d

dθ
log fθ0(Xi)

)
⇒ N (0, I(θ0)) (18)

by the central limit theorem and Equation (12). If Equation (11) holds, then

1

n
l′′(θ0) =

1

n

n∑
i=1

d2

dθ2
log fθ0(Xi)

P→ −I(θ0) (19)

by the weak law of large numbers and Equation (13). Finally, we would like to
have the term involving l′′′(θ∗n) disappear, so clearly it is enough to show that
1
n l′′′(θ) is bounded in probability in a neighborhood of θ0. Putting all of these
facts together gives a theorem.

Theorem 8 Let θ̂n denote a consistent root of the likelihood equation. Assume
also that l′′′(θ) exists and is continuous, that equations (10) and (11) hold,
and that 1

n l′′′(θ) is bounded in probability in a neighborhood of θ0. Then if
0 < I(θ0) <∞, (14) holds.
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The theorem is proved by noting that under the stated regularity conditions,

l′(θ̂n)
P→ 0 so that the numerator in (17) converges in distribution to N{0, I(θ0)}

by Slutsky’s theorem. Furthermore, the denominator in (17) converges to I(θ0),
so another application of Slutsky’s theorem gives the desired result.

Sometimes, it is not possible to find an exact zero of l′(θ). One way to get a
numerical approximation to a zero of l′(θ) is to use Newton’s method, in which
we start at a point θ0 and then set

θ1 = θ0 −
l′(θ0)

l′′(θ0)
. (20)

Ordinarily, after finding θ1 we would set θ0 equal to θ1 and apply Equation
(20) iteratively. However, we may show that by using a single step of Newton’s
method, starting from a

√
n-consistent estimator of θ0, we may obtain an esti-

mator with the same asymptotic distribution as θ̂n. The proof of the following
theorem is left as an exercise:

Theorem 9 Suppose that θ̃n is any
√
n-consistent estimator of θ0 (i.e.,

√
n(θ̃n−

θ0) is bounded in probability). Then under the conditions of Theorem 7, if we
set

δn = θ̃n −
l′(θ̃n)

l′′(θ̃n)
(21)

then √
n(δn − θ0)⇒ N (0,

1

I(θ0)
) (22)

5.3 Relative efficiency

we have considered various cases where the distribution of estimators converged
at rate

√
n to the normal distribution. If there are multiple estimators of the

same parameter with this property, then all of them are
√
n consistent. We can

use the asymptotic variance as a means of comparing such estimators. This is
the idea of asymptotic relative efficiency.

Definition 2 If two estimators Wn and Vn satisfy

√
n[Vn − θ]⇒ N (0, σ2

V )
√
n[Wn − θ]⇒ N (0, σ2

W )

The asymptotic relative efficiency(ARE) of Vn with respect to Wn is

ARE(Vn,Wn) =
σ2
W

σ2
V

(23)

Example 1(ARE of Poisson Estimators) SupposeX1, · · · , Xn are iid Poisson(λ),
and we are interested in estimating τ = Pλ(X1 = 0) = exp(−λ). For example
number of customers who come into a bank in a given time period is modeled as

9



a Poisson random variable and we are interested in the probability that no one
will enter the bank in one time period. A natural (but somewhat naive) esti-
mator comes from defining Yi = I(Xi = 0). The Yis are iid Bernoulli(exp(−λ))
and hence it follows that

√
n(Ȳn − exp(−λ))⇒ N (0, exp(−λ)(1− exp(−λ)))

Additionally,the MLE of exp(−λ) is τ̂ = exp(−λ̂) where λ̂ = X̄n is the MLE of
λ. Using the Delta method, we have

√
n(τ̂ − τ)⇒ N (0, λ exp(−2λ))

The ARE of Ȳn wrt the MLE is

ARE(Ȳ , exp(−X̄)) =
λ exp(−2λ)

exp(−λ)(1− exp(−λ))
=

λ exp(−λ)

(1− exp(−λ))

Examination of this function shows that it is strictly decreasing with a maximum
of 1 at λ = 0 and tailing off rapidly (< 0.1 when λ = 4) to 0 as λ→∞ . So in
this case the MLE is better in terms of ARE.

5.4 Asymptotic Bias and Efficiency

(CB 470-471)
There are two ways in which we can look at the bias as sample size goes

to infinity. We can look at the finite sample bias Bias(Tn) and take the limit
as n → ∞. This is called the limiting bias. We can also look for a suitably
scaled version of the estimator converges in distribution to a non-degenerate
random variable and look at the bias of that limiting distribution. This is the
asymptotic bias. Here are the precise definitions:

Definition 3 An estimator Tn of τ(θ) is unbiased in the limit, if limn→∞ E(Tn) =
τ(θ).

Definition 4 For an estimator Tn, suppose that kn(Tn − τ(θ)) ⇒ H. The
estimator Tn is asymptotically unbiased if the expectation of H is zero.

Example 1 (Asymptotically biased estimator) Let X1, · · · , Xn are iid
U(0, θ).

The MLE of θ is X(n) (24)

P (X(n) ≤ a) = (a/θ)n and E(X(n)) = θ (25)

Hence P (n(θ−X(n)) ≤ a) = P (X(n) ≥ θ−a/n) = 1− (1−a/nθ)n → 1− e−a/θ.
Thus n(θ −X(n)) ⇒ Exp( 1

θ ). The expectation of the limiting random variable
is not zero. So X(n) is not asymptotically unbiased. From (25) X(n) is unbiased
in the limit.

Similar concepts exist for efficiency, which concerned with the asymptotic
variance of the estimator.
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Definition 5 For an estimator Tn, if limn→∞ knVar(Tn) = τ2 <∞, where kn
is a sequence of constants, then τ2 is called the limiting variance.

Definition 6 For an estimator Tn, suppose that kn(Tn − τ(θ)) ⇒ H. Then
V ar(H) is called the asymptotic variance of Tn.

In most cases these two are the same. But in complicated cases, this may not
hold. It is always the case that the asymptotic variance is smaller than the
limiting variance (Lehmann and Casella Sec 6.1).

Example 2 Let us consider the mean X̄n of n iid normal observations with
mean µ and variance σ2. Suppose we are interested in estimating 1

µ and we use

the estimator Tn = 1
X̄n

. For each finite n the distribution of
√
nX̄n is N (0, σ2).

Var(
√
nTn) =∞, by direct integral of

1

x2
with respect to the normal pdf.

(26)
So, the limiting variance of Tn is infinity. On the other hand, by Delta method,

√
n(Tn −

1

µ
)⇒ N (0,

σ2

µ4
)

So the asymptotic variance of Tn is σ2

µ4 .

In the spirit of the Cramer Rao lower bound, there is an optimal asymptotic
variance.

Definition 7 A sequence of estimators Wn is asymptotically efficient for a pa-
rameter τθ if

√
n(Wn − τ(θ)⇒ N (0, ν(θ) and

ν(θ) =
(τ ′(θ)2)

Eθ((
∂
∂θ log f(X | θ))2)

=
(τ ′(θ)2)

I(θ)
, (27)

that is the asymptotic variance of Wn achieves the Cramer-Rao lower bound.

For a long time it was believed that if
√
n(Wn − τ(θ)⇒ N (0, ν(θ), (28)

then

ν(θ) ≥ (τ ′(θ)2)

I(θ)
(29)

under regularity conditions on the densities. This belief was shattered by the
example (due to hodges; see LaCam 1953) below:

Example 3 (Superefficient Estimator): Let X1, · · · , Xn be iid N (θ, 1)
and the parameter of interest is θ. In this case, h(θ) = θ, and

I(θ) = Eθ((
∂

∂θ
log f(X | θ))2)

= Eθ((
∂

∂θ

1

2
(X − θ)2)2)

= Eθ(X − θ)2

= 1
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Thus equation(29) reduces ν(θ) ≥ 1. Now consider the sequence of estimators

Tn =

{
X̄ if | X̄ |≥ 1/n1/4

aX̄ if | X̄ |< 1/n1/4

Then,
√
n(Tn − θ)⇒ N (0, ν(θ)), (30)

where ν(θ) = 1 when θ 6= 0 and ν(θ) = a2 when θ = 0. (31)

If a < 1, inequality (29) is violated at θ = 0.
This phenomenon is quite common and is called superefficiency. There will

typically exist estimators satisfying (28) but with ν(θ) violating (29) at least for
some values of θ. However, it was shown by LaCam(1953) that for any sequence
of estimators satisfying (28), the set S of points of super-efficiency has Lebesgue
measure zero.

5.5 Results and concepts from probability

1. Convergence almost surely(a.s), convergence in probability(P), conver-
gence in distribution(d).

2. a.s.⇒ P⇒ d. But not the other way around.

3. Strong and weak laws of large numbers.

4. Central Limit Theorem

5. Chebyshev and Jensen inequalities

6. Continuous mapping Theorem: (pg 24 od Serfling) g is a continuous func-
tion. Then,

(a) Xn ⇒ X implies g(Xn)⇒ g(X).

(b) Xn
P→ X implies g(Xn)

P→ g(X)

(c) Xn
a.s.→ X implies g(Xn)

a.s.→ g(X)

7. Slutsky’s Theorem:(pg 19 of Serfling) Xn ⇒ X and Yn
P→ c, where c is a

constant. Then

(a) Xn + Yn ⇒ X + c

(b) XnY n⇒ cX

(c) Xn/Y n⇒ X/c provided c 6= 0.
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