
Lectures 18-21

4 Criteria for estimators

[CB7.3, BD3.4]

Definition 1 The bias of an estimate T (X) of a parameter q(θ) in a model
(non-empty set of pdf/pmf) mathcalP = Pθ : θ ∈ Θ as Biasθ(T ) = Eθ(T (X))−
q(θ). An estimate such that Biasθ(T ) = 0 is called unbiased. Any function q(θ)
for which an unbiased estimate T exists is called an estimable function.

This notion has intuitive appeal, ruling out, for instance, estimates that ignore
the data, such as T (X) = q(θ0), which can’t be beat for θ = θ0 but can obviously
be arbitrarily terrible.
Eg: X̄ and s2 in normal distribution are unbiased for µ and σ2. However,
note that S is not an unbiased estimate of σ. Eg: (Unbiased estimates may be
absurd) Let X ∼ Poisson(λ) and let q(λ) = e−2λ. Consider T (X) = (−1)X

as an estimate. It is unbiased but since T alternates between -1 and 1 while
q(λ) > 0, it is not a good estimate.
Eg: (Unbiased Estimates in Survey Sampling) Suppose we wish to sample from
a finite population, for instance, a census unit, to determine the average value of
a variable (say) monthly family income during a time between two censuses and
suppose that we have available a list of families in the unit with family incomes
at the last census. Write xl, · · · , xN for the unknown current family incomes
and correspondingly u1, · · · , uN for the known last census incomes. We ignore
difficulties such as families moving. We let Xl, · · · , Xn denote the incomes of a
sample of n families drawn at random without replacement. The parameter of
interest is 1

N

∑N
i=1 xi. The model is

P (X1 = a1, · · ·Xn = an) =

(
N

n

)−1
if {a1, · · · , an} ⊆ {x1, · · · , xn}

Ex: X̄ is unbiased and has variance σ2

n (1− (n−1)
(N−1) ) where σ2 = 1

N

∑N
i=1(xi− x̄)2.

This method of sampling does not use the information contained in u1, · · · , uN .
One way to do this, reflecting the probable correlation between (u1, · · · , uN )
and (xl, · · · , xN ), is to estimate by a regression estimate

X̄R = X̄ − b((̄U)− ū)

Ex: For each b this is unbiased.
Ex: If the correlation between Ui and Xi is positive (population) and b <
2Cov(Ū , X̄)/V ar(Ū), this is better than X̄.
Ex: The optimal choice of b is Cov(Ū , X̄)/V ar(Ū). This value is unknown and
can be estimated by

bopt =
1
n

∑n
i=1(Xi − X̄)(Ui − Ū)
1
N

∑N
i=1(ui − ū)2
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. Ex: This estimator is biased.

4.1 Uniform Minimum Variance Unbiased (UMVU)

Note: If there exist 2 unbiased estimates T1 and T2 of θ, then any estimate of
the form αT1 + (1− α)T2 for 0 ≤ α ≤ 1 will also be an unbiased estimate of θ.
Which one should we choose?
For unbiased estimates mean square error and variance coincide.

Definition 2 An unbiased estimate T ∗ (X) of q(θ) that has minimum MSE
among all unbiased estimates for all θ is called UMVU (uniformly minimum
variance unbiased). If this happens for a single parameter value θ0 then it is
locally minimum variance unbiased.

Theorem 1 Let U be the class of all unbiased estimates T of θ ∈ Θ with
Eθ(T

2) < ∞∀θ, and suppose that U is non–empty. Let U0 be the set of all
unbiased estimates of 0, i.e., U0 = {ν : Eθ(ν) = 0, Eθ(ν

2) < ∞∀θ ∈ Θ}. Then
T0 ∈ U is UMVUE iff Eθ(νT0) = 0∀θ ∈ Θ∀ν ∈ U0.

Eg: Let X be unif(θ, θ + 1). Then T = X − 1/2 is unbiased for θ. An unbiased

estimator ν(X) of zero has to satisfy
∫ θ+1

θ
ν(x)dx = 0 for all θ. One such

function is ν(x) = sin(2πx).

Cov(X − 1/2, sin(2πX)) = −cos(2πθ)/2π.

This is non-zero. So T is not UMVU.
Eg: X1, · · · , Xn iid unif(0,θ). Here Y = (n + 1)T/n is unbiased with T as
X(n). Note that T is a sufficient statistic. We need to check if this is un-
correlated with all unbiased estimators of zero. Suppose W is an unbiased
estimator of zero and cov(W,Y)>0. Then cov(E(W—Y),Y)=E(YE(W—Y))-
E(W)E(Y)=EE(WY—Y)-E(W)E(Y)=cov(W,Y)¿0. So wlog, W can be consid-
ered a function of Y , equivalently a function of T . But T is complete sufficient
implying W=0. Since Y is uncorrelated with W , Y is UMVE.

Theorem 2 Let U be the non–empty class of unbiased estimates of θ ∈ Θ as
defined in Theorem 1. Then there exists at most one UMVUE T ∈ U for θ.

Theorem 3 (Rao–Blackwell) Let W be any unbiased estimator of τ(θ) and T
be a sufficient statistic for θ. Define φ(T ) = E(W | T ). Then φ(T ) is an
estimator with E(φ(T )) = τ(θ) and var(φ(T )) ≤ var(W ).

Pf: CB pf 342
This process of conditioning an unbiased estimator on a sufficient statistic is
called Rao Blackwellization and leads to another unbiased estimator with uni-
formly lower variance. In other words, it is enough to consider the class of
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unbiased estimators that are functions of sufficient statistics as any other unbi-
ased estimator will have higher variance than one of them (the corresponding
conditional correlation).

Eg: Suppose that X1, · · · , Xn comes from density λexp(−λx). Suppose that
we want an estimate of θ = exp(−10λ). This corresponds to the probability P[
Xi > 10 ]. The maximum likelihood estimate of λ is 1/X̄, so we could certainly
claim T = exp(−10/X̄) is the MLE of θ. This is certainly not unbiased.
Use statistic u(X) = I(X1 > 10). This statistic takes only the values 0 and 1,
and it only depends on the first observation, so it’s certainly a bad estimate. It
is, however, unbiased.
The Rao-Blackwell theorem says that we can get a better unbiased estimate by
using u∗(X) = E[u(X)|V ] where V =

∑
Xi is a sufficient statistic.

The conditional distribution of X1/V given V is beta(1,n).
u∗(X) = P [X1 > 10|V ] = P (beta(1, n) > 10/V ) = (1− 10/V )n

Eg (conditioning on an insufficient statistic): X1, X2 iid N(θ, 1). Then X̄ is
unbiased for θ. Let φ((̄X)) = E(X̄|X1). Then this is unbiased and has lower
variance. But it is not an estimator (depends on θ).

4.2 Mean squared Error

Definition 3 The Mean Squared Error (MSE) of an estimator W of a param-
eter θ is the function of θ defined by Eθ(W − θ)2.

Alternatively, Mean absolute error or expectation of any other increasing
function of |W − θ| can be used as a measure of performance of an estimator.
The advantage of MSE id easy tractability and the interpretation MSE =
V ar + Bias2. (prove). For an unbiased estimator MSE=var. But a biased
estimator might have lower MSE and will be preferred in most cases.

In the iid normal case, (n − 1)S2/σ2 ∼ χ2
n−1. Here E(S2) = σ2, var[(n −

1)S2/σ2] = 2(n − 1), var(S2) = 2σ4/(n − 1) = mse. Now let us consider

σ̂2
MLE = (n− 1)S2/n. Bias=σ2/n. Var=2(n− 1)σ4/n2. MSE=(2n− 1)σ4/n2.

This is smaller than MSE of the unbiased estimator S2. Thus by trading off
variance for bias, MSE is improved.

Eg Let X1, · · ·Xn be iid Ber(p). The MLE of p is X̄ with MSE=Var=p(1-
p)/n.
Consider the Bayes estimator with Beta(α, β) prior. The estimator equals
p̂B(
∑
Xi + α)/(n + α + β). Taking α = β =

√
n/2 makes MSE(p̂B) con-

stant as a function of p. With this prior, for small n, X̄ has lower MSE than p̂B
unless p is close to zero or one. For large n, p̂B has lower MSE than X̄ unless
p is close to half.
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4.3 Information Inequality

Assumptions I. The set A = x : p(x, θ) > 0 does not depend on θ. For all
x ∈ A, θ ∈ Θ, ∂/partialθlogp(x, θ) exists and is finite.
II. If T is any statistic such that E(|T |) ¡∞ for all θ ∈ Θ, then the operations of
integration and differentiation can be interchanged in ∂/partialθ

∫
T (x)p(x, θ)dx.

Theorem 4 If p(x, θ) = h(x)exp{η(θ)T (x) − B(θ)} is an exponential family
and η(θ) has a nonvanishing continuous derivative on Θ, then I and II hold.

The Fisher Information is defined as I(θ) = E(logp(X, θ))2.

Theorem 5 Suppose that I and II hold and that E|logp(X, θ)| < ∞. Then
E(logp(X, θ)) = 0 and I(θ) = V ar(logp(X, θ)).

Theorem 6 (Information Inequality/ Cramer Rao Lower Bound) Let T(X) be
any statistic such that Var(T(X)) ¡ ∞ for all θ. Denote E(T(X)) by ψ(θ). Sup-
pose that I and II hold and 0 < I(θ) <∞. Then for all θ, ψ(θ) is differentiable
and

V ar(T (X)) ≥ (ψ′(θ))2

I(θ)
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