Lectures 18-21

4 Criteria for estimators

[CB7.3, BD3.4]

Definition 1 The bias of an estimate T(X) of a parameter q(f) in a model
(non-empty set of pdf/pmf) mathcalP = Py : 0 € © as Biasyg(T) = Eo(T(X))—
q(0). An estimate such that Biasg(T) = 0 is called unbiased. Any function q(6)
for which an unbiased estimate T exists is called an estimable function.

This notion has intuitive appeal, ruling out, for instance, estimates that ignore
the data, such as T'(X) = ¢(6p), which can’t be beat for § = §, but can obviously
be arbitrarily terrible.

Eg: X and s? in normal distribution are unbiased for p and ¢2?. However,
note that S is not an unbiased estimate of 0. Eg: (Unbiased estimates may be
absurd) Let X ~ Poisson(\) and let g(\) = e~2*. Consider T(X) = (-1)%
as an estimate. It is unbiased but since T alternates between -1 and 1 while
q(A) > 0, it is not a good estimate.

Eg: (Unbiased Estimates in Survey Sampling) Suppose we wish to sample from
a finite population, for instance, a census unit, to determine the average value of
a variable (say) monthly family income during a time between two censuses and
suppose that we have available a list of families in the unit with family incomes
at the last census. Write x;, -+ ,zx for the unknown current family incomes
and correspondingly wuq,--- ,uy for the known last census incomes. We ignore
difficulties such as families moving. We let Xj,--- , X, denote the incomes of a
sample of n families drawn at random without replacement. The parameter of
interest is 4 Zfil x;. The model is
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Ex: X is unbiased and has variance %2(17 (n—1) ) where 0% = & Zf\il(xz —z)%

(N-1)
This method of sampling does not use the information contained in uy,--- ,uy.
One way to do this, reflecting the probable correlation between (uq,---,un)
and (z;,--- ,xN), is to estimate by a regression estimate

Xr=X-b((U) - 1)
Ex: For each b this is unbiased.
Ex: If the correlation between U; and X; is positive (population) and b <
2Cov(U, X)/Var(U), this is better than X.
Ex: The optimal choice of b is Cov(U, X)/Var(U). This value is unknown and
can be estimated by

2 (X = X)(U; - 0)
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. Ex: This estimator is biased.

4.1 Uniform Minimum Variance Unbiased (UMVU)

Note: If there exist 2 unbiased estimates T; and 75 of 6, then any estimate of
the form a7} 4 (1 — a)Ts for 0 < a < 1 will also be an unbiased estimate of 6.
Which one should we choose?

For unbiased estimates mean square error and variance coincide.

Definition 2 An unbiased estimate T * (X) of q(6) that has minimum MSE
among all unbiased estimates for all 0 is called UMVU (uniformly minimum
variance unbiased). If this happens for a single parameter value 0y then it is
locally minimum variance unbiased.

Theorem 1 Let U be the class of all unbiased estimates T of 8 € O with
Ey(T?) < V0, and suppose that U is non—empty. Let Uy be the set of all
unbiased estimates of 0, i.e., Uy = {v : Ep(v) = 0, Eg(v?) < ooVl € ©}. Then
Ty € U is UMVUE iff Eg(vT,) = 0V6 € OVv € Uy.

Eg: Let X be unif(d,6 + 1). Then T = X — 1/2 is unbiased for . An unbiased

estimator v(X) of zero has to satisfy f:“ v(z)de = 0 for all . One such
function is v(z) = sin(2wx).

Cov(X —1/2,sin(2r X)) = —cos(2n0) /2.

This is non-zero. So T is not UMVU.

Eg: Xi,---, X, iid unif(0,§). Here Y = (n 4 1)T/n is unbiased with T as
X(n)- Note that T' is a sufficient statistic. We need to check if this is un-
correlated with all unbiased estimators of zero. Suppose W is an unbiased
estimator of zero and cov(W,Y)>0. Then cov(E(W—Y),Y)=E(YE(W—Y))-
EW)E(Y)=EE(WY—Y)-E(W)E(Y)=cov(W,Y);0. So wlog, W can be consid-
ered a function of Y, equivalently a function of 7. But T is complete sufficient
implying W=0. Since Y is uncorrelated with W, Y is UMVE.

Theorem 2 Let U be the non—empty class of unbiased estimates of € © as
defined in Theorem 1. Then there exists at most one UMVUE T € U for 6.

Theorem 3 (Rao—Blackwell) Let W be any unbiased estimator of 7(0) and T
be a sufficient statistic for 0. Define ¢(T) = E(W | T). Then ¢(T) is an
estimator with E(¢(T)) = 7(0) and var($p(T)) < var(W).

Pf: CB pf 342

This process of conditioning an unbiased estimator on a sufficient statistic is
called Rao Blackwellization and leads to another unbiased estimator with uni-
formly lower variance. In other words, it is enough to consider the class of



unbiased estimators that are functions of sufficient statistics as any other unbi-
ased estimator will have higher variance than one of them (the corresponding
conditional correlation).

Eg: Suppose that X, -+, X,, comes from density Aexp(—Az). Suppose that
we want an estimate of § = exp(—10\). This corresponds to the probability P|
X; > 10]. The maximum likelihood estimate of \ is 1/X, so we could certainly
claim T = exp(—10/X) is the MLE of #. This is certainly not unbiased.
Use statistic u(X) = I(X; > 10). This statistic takes only the values 0 and 1,
and it only depends on the first observation, so it’s certainly a bad estimate. It
is, however, unbiased.
The Rao-Blackwell theorem says that we can get a better unbiased estimate by
using ©*(X) = E[u(X)|V] where V = 3" X, is a sufficient statistic.
The conditional distribution of X;/V given V is beta(1,n).
u*(X) = P[X; > 10|V] = P(beta(l,n) > 10/V) = (1 — 10/V)™

Eg (conditioning on an insufficient statistic): X1, X iid N(6,1). Then X is

unbiased for 6. Let ¢((X)) = F(X|X;). Then this is unbiased and has lower
variance. But it is not an estimator (depends on 6).

4.2 Mean squared Error

Definition 3 The Mean Squared Error (MSE) of an estimator W of a param-
eter 0 is the function of 0 defined by Eq(W — 0)2.

Alternatively, Mean absolute error or expectation of any other increasing
function of |W — 6| can be used as a measure of performance of an estimator.
The advantage of MSE id easy tractability and the interpretation MSE =
Var + Bias®. (prove). For an unbiased estimator MSE=var. But a biased
estimator might have lower MSE and will be preferred in most cases.

In the iid normal case, (n — 1)S?/0? ~ x2_,. Here E(S?) = o2, var|(n —
1)S%/0?] = 2(n — 1),var(S?) = 20*/(n — 1) = mse. Now let us consider
o2yrp = (n—1)82/n. Bias=02/n. Var=2(n — 1)o*/n%. MSE=(2n — 1)o4/n?.
This is smaller than MSE of the unbiased estimator S2. Thus by trading off
variance for bias, MSE is improved.

Eg Let Xi,--- X, be iid Ber(p). The MLE of p is X with MSE=Var=p(1-

p)/n.
Consider the Bayes estimator with Beta(a, ) prior. The estimator equals
(O Xi + a)/(n + a+ B). Taking a« = 8 = /n/2 makes MSE(pp) con-
stant as a function of p. With this prior, for small n, X has lower MSE than pp
unless p is close to zero or one. For large n, pp has lower MSE than X unless
p is close to half.



4.3 Information Inequality

Assumptions I. The set A = z: p(x,0) > 0 does not depend on 6. For all
x € A, 0 € ©,0/partialflogp(x, ) exists and is finite.

IL. If T is any statistic such that E(|T]) j oo for all # € O, then the operations of
integration and differentiation can be interchanged in d/partialf [ T(z)p(x,0)dx.

Theorem 4 If p(z,0) = h(z)exp{n(0)T(z) — B(0)} is an exponential family
and n(0) has a nonvanishing continuous derivative on O, then I and II hold.

The Fisher Information is defined as I(0) = E(logp(X, 0))>.

Theorem 5 Suppose that I and II hold and that E|logp(X,0)| < oco. Then
E(logp(X,0)) =0 and I(0) = Var(logp(X,0)).

Theorem 6 (Information Inequality/ Cramer Rao Lower Bound) Let T(X) be
any statistic such that Var(T(X)) j oo for all 0. Denote E(T(X)) by ¥(0). Sup-
pose that I and II hold and 0 < I(0) < co. Then for all 0,1(0) is differentiable
and

Var(T(X)) =



