
Lectures 10-17

4 Methods of Point Estimation

[CB7.2, BD2]
Point estimate: Any function of the data. That is, any statistic.
Estimate vs estimator.

4.1 Method of Moments

Definition 1 Let X1, · · · , Xn be iid with pdf (or pmf) fθ, θ ∈ Θ. We as-
sume that first k moments m1, · · · ,mk of fθ exist. If θ can be written as
θ = h(m1, ...,mk), the method of moments estimate of θ is

θ̂MOM = T (X1, ..., Xn) = h(

n∑
i=1

Xi, · · · ,
n∑
i=1

Xk
i )

Note:

• The Definition above can also be used to estimate joint moments. For
example, we use

∑n
i=1XiYi to estimate E(XY ).

• If θ is not a linear function of the population moments, θ̂MOM will, in
general, not be unbiased. However, it will be consistent and (usually)
asymptotically Normal.

• Method of moments estimates do not exist if the related moments do not
exist.

• Method of moments estimates may not be unique. If there exist multi-
ple choices for θ̂MOM , one usually takes the estimate involving the low-
est–order sample moment.

eg. Normal
eg. Binomial with both n and p unknown.

Example 1 X1, · · · , Xn iid Gamma(p, λ). The first two moments of the gamma
distribution are E(X) = p/λ and E(X2) = p(p+ 1)/λ2. Use this to obtain the
MOM estimator.

Example 2 (Different MoM estimators)Example: X1, · · · , Xn iid Poisson(λ).
The first moment is λ . Thus, the method of moments estimator based on the
first moment is X̄. We could also consider using the second moment to form a
method of moments estimator.. The method of moments estimator based on the
second moment solves X̄2 = λ+ λ2 Solving this equation (by taking the positive

root), we find that λ̂ = −1/2 + (1/4 + X̄2)1/2 . The two method of moments
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estimators are different. For example, for the data
rpois(10,1) 2 3 0 1 2 1 3 1 2 1,
the method of moments estimator based on the first moment is 1.1 and the
method of moments estimator based on the second moment is 1.096872. We
choose rthtet one based on the lower moment.

Example 3 (Hardy-Weinberg proportions) Consider (first generation of) a pop-
ulation in which the alleles A and a are encountered with probabilities θ and 1-θ
respectively, θ ∈ (0, 1). If the alleles are chosen at random and independently
for each individual in the next generation, then the probability of having the AA
genotype is θ2, the aa genotype is (1− θ)2 and Aa genotype 2θ(1− θ). Suppose
we sample n individuals from the population, observe their genotypes and would
like to estimate the probability (proportion) of A allele in the population. The
corresponding statistical model is an i.i.d. sample X1, · · · , Xn, where Xi takes
values in AA, Aa,AA with probabilities θ2, 2θ(1 − θ)and(1 − θ)2 respectively.
Note that EθNAA = θ2 and EθNaa = (1 − θ)2. Also, E(NAA + 1/2NaA = θ.
Each of these can be used to find a method of moments estimator for θ.

Example 4 (The method of moments does not use all the information that is
available.) X1, · · · , Xn iid Uniform(0,θ). The method of moments estimator

based on the first moment is θ̂ = 2X̄. If 2X̄ < max(Xi) , we know that θ > θ̂.

Definition 2 Suppose we are given a function Ψ : Ω× Rd → Rd and define

V (θ0, θ) = Eθ0Ψ(X, θ)

Suppose V (θ0, θ) = 0 has θ0 as its unique solution for all θ0 ∈ Θ. Then we say

θ̂ solving
Ξ(X, θ̂) = 0

is an estimating equation estimate.

eg: Take Ξ = (µ̂1 − µ1, · · · , µ̂d − µd) to get the method of moments estimator.
eg: Least squares as estimating equation.

Definition 3 Consider a parameter that can be written as a function of F , i.e.,
θ = T (F ) . The plug-in estimator of θ is T (F̂n where Fn is the empirical cdf.

For parametric models plug-in estimators are not generally optimal. But they
are good starting points for numerical algorithms.
Sample median is a plug-in estimator of population median theta = F−1(1/2),
but not a MoM estimator.

4.2 Maximum likelihood estimation

Definition 4 Let (X1, · · · , Xn) be a random vector with pdf (or pmf) f(x1, · · · , xn; θ), θ ∈
Θ. We call the function L(θ;x1, · · · , xn) = f(x1, · · · , xn; θ) of θ the likelihood
function.
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Definition 5 A maximum likelihood estimate (MLE) is an estimate θ̂ML such
that

L(θ̂ML;x1, · · · , xn) = supθ∈ΘL(θ;x1, · · · , xn).

Note: It is often convenient to work with log L when determining the maximum
likelihood estimate. Since the log is monotone, the maximum is the same.
Use the derivative to find potential MLE. Use the double derivative to confirm
local maximum. Check boundary and confirm global maximum.
If the function is NOT differentiable with respect to θ. Use numerical methods.
Or perform directly maximization, using inequalities, or properties of the func-
tion.
For multivariate θ, second derivative test for maxima entails checking that the
Hessian matrix (matrix of second derivatives) is negative definite. Sign of de-
terminant of any principal minor is (−1)r, where r is the order.
Eg: X1, X2, X3, X4 i.i.d. Bernoulli(p), 0 < p < 1. Plot the likelihood function
for x = (1, 1, 1, 1), x=(0,0,0,0) and x=(1,1,0,0).
Eg (bivariate parameter) Normal.
Eg (non-unique) Unif(θ − 1/2, θ + 1/2)
Eg Unif(0, θ).
Eg Ber(p), with Θ = (1/2, 3/4). Here MLE is worse in the sense of MSE to
p̂ = 1/2. Eg: MLE of θ in the Hardy Weinberg set-up.
Eg: MLE(discrete parameter space) Hypergeometric. Total 12, marked θ, pick

5. If X = 3 then θ̂ = 7.
In this case, MoM estimator does not exist. 12*3/5=7.2 is not in parameter
space.
The likelihood function is not a probability mass function or a probability den-
sity function: in general, it is not true that L integrates to 1 with respect to θ .
The MLE is the parameter point for which the observed sample is most likely.

Theorem 1 Let T be a sufficient statistic for fθ, θ ∈ Θ. If MLE of θ exists, it
is a function of T .

Proof: Since T is sufficient, we can write

f(x, θ) = h(x)g(T (x), θ)

due to the Factorization Criterion. Maximizing the likelihood function with
respect to θ takes h(x) as a constant and therefore is equivalent to maximizing
g(T (x), θ) with respect to θ. But g(T (x), θ) involves x only through T .

• MLE may not exist.

• MLE may not be unique.

• Computation may be difficult.

Theorem 2 (Invariance of MLE) Let {fθ : θ ∈ Θ} be a family of pdf’s (or
pmf’s) with Θ ⊆ Rk, k ≥ 1. Let h : Θ→ ∆ be a mapping of Θ onto ∆ ⊆, Rp1 ≤
p ≤ k. If θ̂ is an MLE of θ, then h(θ̂) is an MLE of h(θ).
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Proof: For each δ ∈ ∆, we define Θδ = {θ : θ ∈ Θ, h(θ) = δ}
and M(δ;x) = supθ∈Θδ

L(θ;x), the likelihood function induced by h.

Let θ̂ be an MLE let and δ̂ = h(θ̂).

It holds M(δ̂;x) = supθ∈Θδ̂
L(θ;x) ≥ L(θ̂, x) since θ̂ ∈ Θδ̂

But alsoM(δ̂;x) ≤ supδ∈∆M(δ;x) = supδ∈∆(supθ∈Θδ
L(θ;x)) = supθ∈ΘL(θ;x) =

L(θ̂;x).

Therefore, M(δ̂;x) = L(θ̂;x) = supδ∈∆M(δ;x).

Thus, δ̂ = h(θ̂) is an MLE.
eg Let X1, ..., Xn be iid Ber(p). Let h(p) = p(1 − p). Since the MLE of p is
X =

∑
(Xi), the MLE of h(p) is X(1−X).

4.3 Bayesian methods

Model: X, · · · , Xn ∼ f(X|θ).
In the frequentist approach, θ is a fixed unknown constant.
In the Bayesian approach, we put a prior probability distribution on θ, say π(θ).
The model is then the conditional distribution of the data given a value of θ.
The joint distribution is, therefor the product of the prior and the model.
We use Bayes Rule to obtain the conditional distribution of θ given the data.
This is called the posterior distribution and is given below:

f(θ|X) =
joint

marginalofX
=

π(θ)f(X|θ)∫
η∈Θ

π(η)f(X|η)dη
.

The Bayes estimator is the conditional expectation of θ given the data, that is,
the expectation of the posterior distribution and is given by:

E(θ|X) =

∫
η∈Θ

ηf(η|X)dη =

∫
η∈Θ

ηπ(η)f(X|η)dη∫
η∈Θ

π(η)f(X|η)dη
.

Eg: Xi ∼ iidN (θ, 1), θ ∼ N (0, σ2).
Eg Bernoulli with beta(r,r) prior

Definition 6 A family of prior probability distributions π is said to be conjugate
to a family of likelihood functions L(x; θ) if the resulting posterior distributions
are in the same family as prior; the prior is called a conjugate prior for the
likelihood.

eg Poisson with Gamma prior as conjugate.

5 Numerical methods for finding MLE’s

5.1 Bisection

The bisection method is a method for finding the root of a one-dimensional
function that is continuous on R , for which f is monotone increasing or de-
creasing. It can be used when the likelihood equation is (or can be reduced to)
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a one-parameter equation. The bisection method works by repeatedly dividing
an interval in half and then selecting the subinterval in which the root exists.

5.2 Coordinate ascent

The coordinate ascent method is an approach to finding the maximum likelihood
estimate in a multidimensional family. The coordinate ascent method works
by using the bisection method iteratively. Suppose we have a k-dimensional
parameter (θ1, · · · , θk). The coordinate ascent method is: Choose an initial

estimate (θ̂1, · · · , θ̂k).

1. Set (θ̂1, · · · , θ̂k)old=(θ̂1, · · · , θ̂k)

2. Maximize l(θ1, θ̂2, · · · , θ̂k) over θ1 using the bisection method. Reset θ1 to

the value that maximizes the likelihood as θ̂1.

3. Maximize l over θ2 using the bisection method. Reset θ̂2.

4. continue to θK

5. Stop if the distance between (θ̂1, · · · , θ̂k)old and (θ̂1, · · · , θ̂k) is less than
some tolerance ε. Otherwise return to step 1.

The coordinate ascent method converges to the maximum likelihood estimate
when the log likelihood function is strictly concave on the parameter space. See
Figure 2.4.1 in Bickel and Doksum.

Example (Beta Distribution) This is a two parameter full rank exponential
family and hence the log likelihood is strictly concave. We found the method of
moments estimates and use them as initial estimates. r̂ = x̄(x̄− x̄2)/(x̄2 − x̄2)
ŝ = (1− x̄)(x̄− x̄2)/(x̄2 − x̄2)

R code for finding the MLE:

# Code for beta distribution MLE

# xvec stores the data

# rhatcurr, shatcurr store current estimates of r and s

# Generate data from Beta(r=2,s=3) distribution)

xvec=rbeta(20,2,3);

#xvec = (0.3184108, 0.3875947, 0.7411803, 0.4044642, 0.7240628, 0.7247060, 0.1091041, 0.1388588, 0.7347975, 0.5138287, 0.2683177, 0.4685777, 0.1746448, 0.2779592, 0.2876237, 0.5833377, 0.5847999, 0.2530112, 0.5018544, 0.5295680)

# Set low and high starting values for the bisection searches

rhatlow=.001;

rhathigh=20;

shatlow=.001;

shathigh=20;

# Use method of moments for starting values

rhatcurr=mean(xvec)*(mean(xvec)-mean(xvec^2))/(mean(xvec^2)-mean(xvec)^2);

shatcurr=((1-mean(xvec))*(mean(xvec)-mean(xvec^2)))/(mean(xvec^2)-mean(xvec)^2);

#rhatcurr=2.239774

#shatcurr=2.893378
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rhatiters=rhatcurr;

shatiters=shatcurr;

derivrfunc=function(r,s,xvec){

n=length(xvec);

sum(log(xvec))-n*digamma(r)+n*digamma(r+s);

}

derivsfunc=function(s,r,xvec){

n=length(xvec);

sum(log(1-xvec))-n*digamma(s)+n*digamma(r+s);

}

dist=1;

cc=1;

toler=.0001;

while(dist>toler){

rhatnew=uniroot(derivrfunc,c(rhatlow,rhathigh),s=shatcurr,xvec=xvec)$root;

shatnew=uniroot(derivsfunc,c(shatlow,shathigh),r=rhatnew,xvec=xvec)$root;

dist=sqrt((rhatnew-rhatcurr)^2+(shatnew-shatcurr)^2);

rhatcurr=rhatnew;

shatcurr=shatnew;

rhatiters=c(rhatiters,rhatcurr);

shatiters=c(shatiters,shatcurr);

cc=cc+1}

rhatmle=rhatcurr;

shatmle=shatcurr;

#rhatmle=2.401314

#shatmle=3.117656

#cc=21

Example of nonconcave likelihood: Cauchy model. Log likelihood is not concave
and has two local maxima between 0 and 10. There is also a local minimum. The
local maximum (i.e., the solution to the likelihood equation) that the bisection
method finds depends on the interval searched over.

R program to use bisection method

derivloglikfunc=function(theta,x1,x2,x3){

dloglikx1=2*(x1-theta)/(1+(x1-theta)^2);

dloglikx2=2*(x2-theta)/(1+(x2-theta)^2);

dloglikx3=2*(x3-theta)/(1+(x3-theta)^2);

dloglikx1+dloglikx2+dloglikx3;

}

plot(x,derivloglikfunc(x,x1=3,x2=1,x3=10),type="l")

uniroot(derivloglikfunc,interval=c(0,5),x1=3,x2=1,x3=10);

#$root=2.653812

uniroot(derivloglikfunc,interval=c(0,10),x1=3,x2=1,x3=10);

#$root=9.721143
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5.3 Newton’s Method

Newton’s method is a numerical method for approximating solutions to equa-
tions. The method produces a sequence of values that, under ideal conditions,
converges to the MLE . To motivate the method, we expand the derivative of the
log likelihood around θ̂MLE : 0 = l′(θ̂MLE) ≈ l′(θ(j)) + (θ̂MLE − θ(j))l′′(θ(j))

Solving for θ̂MLE gives θ̂MLE = θ(j) − l′(θ(j))/l′′(θ(j)) This suggests the fol-
lowing iterative scheme: θ(j+1) = θ(j) − l′(θ(j))/l′′(θ(j)) Newton’s method can
be extended to more than one dimension (usually called Newton-Raphson)
θ(j+1) = θ(j) − l̈−1(θ(j))/l̇(θ(j)) where l̇ denotes the gradient vector of the like-
lihood and l̈ denotes the Hessian.

Comments on methods for finding the MLE:

1. The bisection method is guaranteed to converge if there is a unique root
in the interval being searched over but is slower than Newton’s method.

2. Newton’s method does not work if l′′(θ(j)) ≈ 0

3. Newton’s method does not always converge.

4. For the coordinate ascent method and Newton’s method, a good choice
of starting values is often the method of moments estimator or plug-in
estimator.
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5. When there are multiple roots to the likelihood equation, the solution
found by the bisection method, the coordinate ascent method and New-
ton’s method depends on the starting value. These algorithms might con-
verge to a local maximum (or a saddlepoint) rather than a global maxi-
mum.

5.4 EM Algorithm

Complete data, incomplete data.
E step: Expectation of complete data log likelihood given incomplete data.
M step: Maximize
Iterate.
This is a famous example from Rao (1973)[Linear Statistical Inference and Its
Applications]. We consider the genetic linkage of 197 animals, in which the
phenotypes are distributed into 4 categories: Y = (y1, y2, y3, y4) = (125, 18,
20, 34) with cell probabilities (1/2 + θ/4, (1− θ)/4, (1− θ)/4, θ/4).
Though it is by no means impossible to maximize this multinomial likelihood
directly, we illustrate how the EM algorithm brings a substantial simplification,
by using the augmentation method. Specifically, we augment the observed data
Y by dividing the first cell into two, with respective cell probabilities 1/2 and
θ/4. This gives an augmented data set X = (x1, x2, x3, x4, x5), where x1 + x2
= y1, and x3 = y2, x4 = y3, x5 = y4.
E-step: E(l) = (E(X2) + x5)log(θ) + (x3 + x4)log(1− θ).
X2 ∼ Bin(y1, θ/(θ + 2))
M-step: θn+1 = (159θn + 68)/(197θn + 144)
The alternation between estimation and maximization is clearly seen in this
iteration formula. Starting with θ0 = 0.5 we obtain the sequence as follows
0.6082, 0.6243, 0.6265, 0.6268, 0.6268.
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