Lectures 1-5

1 Introduction and Definitions

- The basic inference problem: Population, Sample, Probability model, Parameters.
- Goal is to infer aspects of population from information in sample.
- Types of inference: Estimation, Hypothesis testing
- Sample space Ω . $\mathbf{X} = (X_1, \dots, X_n)$ be a random vector defined on the sample space. The outcome of the experiment is a realization $\mathbf{x} = (x_1, \dots, x_n)$ of the random vector \mathbf{X} . We call \mathbf{x} the data.
- Typical model: **X** has distribution $f(x_1, \dots, x_n | \theta)$. This distribution is known except for the parameter θ . Given the data **x**, the goal is to infer the unknown parameter θ .
- \mathcal{F} represents the set of all possible probability distributions for **X**. We'll call \mathcal{F} the model(or probability model) for the experiment.
- Often the elements of \mathcal{F} are indexed by one or more parameters. We'll often denote a vector of parameters by θ and let Θ be the collection of all possible values of θ . Θ is called the parameter space.
- If \mathcal{F} can be expressed as a collection of distributions indexed by finite dimensional vectors $\Theta = (\theta_1, \dots, \theta_k)$, where Θ is a subset of \mathbb{R}^k , then \mathcal{F} will be called a parametric family. If \mathcal{F} cannot be so expressed, it will be called nonparametric.
- Suppose $\theta = (\theta_1, \theta_2)$. If θ_1 is the only parameter of interest, then θ_2 is called a nuisance parameter.
- A model is said to be identifiable if $F_{\theta_1} = F_{\theta_2}$ whenever $\theta_1 = \theta_2$.
- Let T be a real-valued or vector-valued function whose domain contains the range of **X**. If T does not depend on the unknown parameter θ , then $T = T(\mathbf{X})$ is called a statistic. The probability distribution of T is called its sampling distribution.

Example 1 Have a population of N items, possibly a shipment of manufactured goods. An unknown number M of the N items are defective. A random sample of size n is drawn without replacement and inspected. Let X be the number of defectives in the sample.

Example 2 There are unknown number N number of fish in a pond. You catch M of them, tag them and let them go. Allow them to mingle for a while. Then you catch n fish and note the number of tagged ones among them. Let X be the number of tagged fish in the recaptured sample.

Example 3 Experimenter makes n independent determinations of the value of a physical constant μ and measurements are subject to error. X_1, \dots, X_n are *i.i.d.* $\mathcal{N}(\mu, \sigma^2)$.

Example 4 Let $\mathcal{F} = family$ of all continuous distributions that are symmetric about 0. Then \mathcal{F} is a nonparametric family.

2 Sufficiency for data reduction

[CB6.2, BD 1.5]

2.1 Sufficiency

Definition 1 A statistic $T(\mathbf{X})$ is a sufficient statistic if the conditional distribution of \mathbf{X} given $T(\mathbf{X}) = t$ does not depend on θ , regardless of what t is.

Example 5 Suppose X_1, \dots, X_n are *i.i.d.* Poisson with mean θ . Then $\bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$ is a sufficient statistic.

- Basic idea of sufficiency: Given data $\mathbf{X} = (X_1, \dots, X_n)$, can we find a statistic T(X) of smaller dimension than n that contains as much information about θ as \mathbf{X} does? If a statistic exists, we can reduce (perhaps greatly) the amount of data without throwing away information. The search for good estimation and testing procedures can be narrowed.
- We can think of a partition of the sample space where each set A_t in the partition is such that $T(\mathbf{x}) = t$ for each $\mathbf{x} \in A_t$. All $\mathbf{x} \in A_t$ are equivalent in that each one contains the same information about θ as the others.
- If T_1 and T_2 are any two statistics such that $T_1(x) = T_1(y)$ if and only if $T_2(x) = T_2(y)$, then T_1 and T_2 are said to be equivalent.
- Sufficiency Principle: Consider sample **X** from model \mathcal{F} , and let $T(\mathbf{X})$ be a sufficient statistic. Suppose experimenter 1 observes $\mathbf{X} = x$ while experimenter 2 observes $\mathbf{X} = y$. If T(x) = T(y), then experimenters 1 and 2 should make the same inference about θ .

Theorem 1 (Fisher-Neyman Factorization Theorem): Let $f(\mathbf{x}|\theta)$ denote the joint pdf or pmf of the data \mathbf{X} . A statistic $T(\mathbf{X})$ is sufficient if and only if there exist functions $g(t|\theta)$ and $h(\mathbf{x})$ (where h does not depend on θ) such that $f(\mathbf{x}|\theta) = g(T(\mathbf{x})|\theta)h(\mathbf{x})$ for all \mathbf{x} and all parameter values θ .

Example 6 Estimating the Size of a Population: Consider a population with N members labeled consecutively from I to N. The population is sampled with replacement and n members of the population are observed and their labels X_1, \dots, X_n are recorded. Then $X_{(n)}$ is indeed sufficient.

Example 3 (revisited): X_1, \dots, X_n are i.i.d. $\mathcal{N}(\mu, \sigma^2)$ and $\theta = (\mu, \sigma^2)$. $T(X) = (\sum X_i, \sum X_i^2)$ is jointly sufficient for θ .

Qn: Is the dimension of a sufficient statistic the always same to the dimension of the parameters?

HW: Eg 1.5.5 of BD: Linear Regression

Let $f_X(x|\theta)$ be the joint pdf or pmf of **X** and $q(t|\theta)$ be the pdf or pmf of $T(\mathbf{X})$. Then T is a sufficient statistic for θ , iff, for every x, the ratio $f_X(x|\theta)/q(T(x)|\theta)$ is constant as a function of θ .

Example 7 Suppose we observe $\mathbf{X} = (X_1, \dots, X_n)$, where

$$X_i = \rho X_{i-1} + Z_i, \quad i = 2, 3, \cdots, n.$$

The quantity ρ is an unknown parameter such that $|\rho| < 1$. Z_2, \dots, Z_n are i.i.d. $\mathcal{N}(0, \sigma^2)$, where σ^2 is another unknown parameter. $X_1 \sim \mathcal{N}(0, \sigma^2/(1-\rho^2))$ and X_1, Z_2, \dots, Z_n are mutually independent.

The parameter space is $\Theta = (\rho, \sigma^2) : |\rho| < 1, \sigma^2 > 0.$

This model is called an autoregressive model and is used in time series analysis.

$$f(\mathbf{x}|\rho,\sigma) = (2\pi\sigma^2)^{-n/2}\sqrt{1-\rho^2}e^{\left\{-\frac{1}{2\sigma^2}(x_1^2(1-\rho^2)+\sum_{i=2}^n(x_i-\rho x_{i-1})^2)\right\}}$$

 $T_1(\mathbf{X}) = \sum_{i=2}^{n-1} X_i^2, T_2(\mathbf{X}) = \sum_{i=2}^n X_i X_{i-1}$ and $T_3(\mathbf{X}) = X_1^2 + X_n^2$ are jointly sufficient statistics.

Proposition 1 Let $T(\mathbf{X}) = (T_1(\mathbf{X}), \dots, T_k(\mathbf{X}))$ be a sufficient statistic and r be a 1-1 function, not depending on θ and with domain equal to the range of $T(\mathbf{X})$. Then $r(T(\mathbf{X}))$ is a sufficient statistic.

2.2 Minimal Sufficiency

Definition 2 : A statistic $T(\mathbf{X})$ is a minimal sufficient statistic if it is a function of every other sufficient statistic.

Theorem 2 Let $f(\mathbf{x}|\theta)$ be the pdf or pmf of \mathbf{X} . Suppose there exists a statistic $T(\mathbf{X})$ such that, for any two points \mathbf{x} and \mathbf{y} , the ratio $f(\mathbf{x}|\theta)/f(\mathbf{y}|\theta)$ is constant as a function of θ iff $T(\mathbf{x}) = T(\mathbf{y})$. Then $T(\mathbf{X})$ is a minimal sufficient statistic.

Example 8 X_1, \dots, X_n iid $Unif(\theta, \theta + 1)$. Then $T(\mathbf{X}) = (X_{(1)}, X_{(n)})$ is minimal sufficient.

Proposition 2 If T(X) is a minimal sufficient statistic for θ , then its one-toone function is also a minimal sufficient statistic for θ .

Proposition 3 There is always a one-to-one function between any two minimal sufficient statistics.

Example 3 (revisited): $T_1(\mathbf{X}) = (\bar{X}, S^2)$ is minimal sufficient.

HW: For X_1, \dots, X_n iid from cauchy distn, show that the minimal sufficient statistics is the order statistics. Does the order-statistics provide any data reduction?

2.3 Ancillarity

Definition 3 A statistic $S(\mathbf{X})$ is an ancillary statistic if its distribution does not depend on θ .

Example 8 continued: The range is ancillary.

Definition 4 Let f(x) be any pdf. Then for any $\mu \in \mathbb{R}$ and any $\sigma > 0$ the family of pdfs $g(x) = f((x - \mu)/\sigma)/\sigma$, indexed by the parameter (μ, σ) is called the location-scale family with standard pdf f(x), and μ is called the location parameter and σ is called the scale parameter for the family.

HW: In the above definition g is indeed a pdf.

HW: X is a random variable with pdf f if and only if there exists a random variable Z with pdf g and $X = \sigma Z + \mu$.

HW: Let X_1, \dots, X_n be iid from a location family. Show that the range is an ancillary statistic. Can you think of another ancillary statistic?

HW: Let X_1, \dots, X_n be iid from a scale family. Show that the following statistic $T(\mathbf{X})$ is ancillary. $T(\mathbf{X}) = (X_1/X_n, \dots, X_{n-1}/X_n)$.

2.4 Completeness

Definition 5 Let $f_T(t|\theta)$ be a family of pdfs or pmfs for a statistic $T(\mathbf{X})$. The family of probability distributions is called complete if $E[g(T)|\theta] = 0$ for all θ implies $Pr[g(T) = 0|\theta] = 1$ for all θ . equivalently T is a complete statistic.

Example 5 revisited: In the Poisson eg, restrict $\Theta = \{1, 2\}$. Then g(0) = 2, g(2) = 2, g(1) = -2 and 0 otherwise is a function that has expectation zero for all θ . Thus the family is not complete. When $\Theta = \mathbb{R}^+$, then the family is complete.

Proposition 4 For a statistic T(X), if a non-constant function of T, say r(T) is ancillary, then T(X) cannot be complete.

Proposition 5 If T(X) is a complete statistic, then a function of T, say $T^* = r(T)$ is also complete.

Proposition 6 If a complete sufficient statistic exists, then a minimal sufficient statistic is complete.

Theorem 3 (Basu 1955) If T(X) is complete and minimal sufficient statistic, then T(X) is independent of every ancillary statistic.

HW: For exponential distribution, find $E(X_1/(X_1 + \cdots + X_n))$