Lectures 1-5

1 Introduction and Definitions

e The basic inference problem: Population, Sample, Probability model, Pa-
rameters.

e Goal is to infer aspects of population from information in sample.
e Types of inference: Estimation, Hypothesis testing

e Sample space Q. X = (Xi,---,X,) be a random vector defined on
the sample space. The outcome of the experiment is a realization x =
(z1,-+ ,x,) of the random vector X. We call x the data.

e Typical model:X has distribution f(xi,---,2,|0). This distribution is
known except for the parameter 6. Given the data x, the goal is to infer
the unknown parameter 6.

e F represents the set of all possible probability distributions for X. We’ll
call F the model(or probability model) for the experiment.

e Often the elements of F are indexed by one or more parameters. We'll
often denote a vector of parameters by 6 and let © be the collection of all
possible values of 6. © is called the parameter space.

e If F can be expressed as a collection of distributions indexed by finite
dimensional vectors © = (fy,--- ,0;), where © is a subset of R¥, then F
will be called a parametric family. If F cannot be so expressed, it will be
called nonparametric.

e Suppose § = (01,63). If 61 is the only parameter of interest, then 65 is
called a nuisance parameter.

e A model is said to be identifiable if Fy, = Fp, whenever 6, = 6.

e Let T be a real-valued or vector-valued function whose domain contains
the range of X. If T does not depend on the unknown parameter 6, then
T =T(X) is called a statistic. The probability distribution of T" is called
its sampling distribution.

Example 1 Have a population of N items, possibly a shipment of manufactured
goods. An unknown number M of the N items are defective. A random sample
of size n is drawn without replacement and inspected. Let X be the number of
defectives in the sample.

Example 2 There are unknown number N number of fish in a pond. You catch
M of them, tag them and let them go. Allow them to mingle for a while. Then
you catch n fish and note the number of tagged ones among them. Let X be the
number of tagged fish in the recaptured sample.



Example 3 Experimenter makes n independent determinations of the value of
a physical constant p and measurements are subject to error. Xq,---, X, are

id.d. N(p,0?).

Example 4 Let F= family of all continuous distributions that are symmetric
about 0. Then F is a nonparametric family.

2 Sufficiency for data reduction

[CB6.2, BD 1.5]

2.1 Sufficiency

Definition 1 A statistic T(X) is a sufficient statistic if the conditional distri-
bution of X given T'(X) =t does not depend on 0, regardless of what t is.

Example 5 Suppose X1,---,X,, are i.i.d. Poisson with mean 6. Then X =
% Yo, X, is a sufficient statistic.

e Basic idea of sufficiency: Given data X = (X1, -+, X,,), can we find a
statistic T'(X) of smaller dimension than n that contains as much infor-
mation about 6 as X does? If a statistic exists, we can reduce (perhaps
greatly) the amount of data without throwing away information. The
search for good estimation and testing procedures can be narrowed.

e We can think of a partition of the sample space where each set A; in the
partition is such that T'(x) =t for each x € A;. All x € A; are equivalent
in that each one contains the same information about 6 as the others.

e If 77 and T; are any two statistics such that Ty (z) = T (y) if and only if
T>(x) = Ta(y), then Ty and T5 are said to be equivalent.

e Sufficiency Principle: Consider sample X from model F, and let T(X)
be a sufficient statistic. Suppose experimenter 1 observes X = z while
experimenter 2 observesX = y. If T'(z) = T(y), then experimenters 1 and
2 should make the same inference about 6.

Theorem 1 (Fisher-Neyman Factorization Theorem): Let f(x|0) denote the
joint pdf or pmf of the data X. A statistic T(X) is sufficient if and only if
there exist functions g(t|0) and h(x)(where h does not depend on 0) such that
f(x]0) = g(T'(x)|0)h(x) for all x and all parameter values 6.

Example 6 FEstimating the Size of a Population: Consider a population with
N members labeled consecutively from I to N. The population is sampled with
replacement and n members of the population are observed and their labels
X, Xy are recorded. Then X () is indeed sufficient.



Example 3 (revisited): Xy,---, X, are i.i.d. N(u,0?) and 0 = (u,0?).
T(X)= (> X;, >, X?) is jointly sufficient for 6.

Qn: Is the dimension of a sufficient statistic the always same to the dimension
of the parameters?

HW: Eg 1.5.5 of BD: Linear Regression

Let fx(x|0) be the joint pdf or pmf of X and ¢(¢|0) be the pdf or pmf of T'(X).
Then T is a sufficient statistic for 6, iff, for every z, the ratio fx (z|0)/q(T(x)|0)
is constant as a function of 6.

Example 7 Suppose we observe X = (X1,---,X,,), where
Xi=pXi 1+ Z;, i=23,---,n

The quantity p is an unknown parameter such that |p| < 1. Zo, -+, Z, are i.i.d.
N(0,0%), where 02 is another unknown parameter. X, ~ N(0,0%/(1—p?)) and
X1, 25,y Zn are mutually independent.

The parameter space is © = (p,a?) : |p| < 1,02 > 0.

This model is called an autoregressive model and is used in time series analysis.

F(x|p, o) = (2m02) 21— prel =5 EO-P)FE s (@impri)”)}

Ti(X) = S X2, T (X) = S0, Xo Xy and Ta(X) = X7 + X2 are jointly
sufficient statzstzcs

Proposition 1 Let T(X) = (T1(X), -+, Tx(X)) be a sufficient statistic and r
be a 1-1 function, not depending on 6 and with domain equal to the range of
T(X). Then r(T(X)) is a sufficient statistic.

2.2 Minimal Sufficiency

Definition 2 : A statistic T(X) is a minimal sufficient statistic if it is a func-
tion of every other sufficient statistic.

Theorem 2 Let f(x|0) be the pdf or pmf of X. Suppose there exists a statistic
T(X) such that, for any two points x andy, the ratio f(x|0)/f(y|0) is constant
as a function of 0 iff T(x) = T(y). Then T(X) is a minimal sufficient statistic.

Example 8 Xi,---, X, 4d Unif(0,04+1). Then T'(X) = (X1, X(n)) is mini-
mal sufficient.

Proposition 2 If T(X) is a minimal sufficient statistic for 6, then its one-to-
one function is also a minimal sufficient statistic for 6.

Proposition 3 There is always a one-to-one function between any two minimal
sufficient statistics.

Example 3 (revisited): T1(X)=(X,S?) is minimal sufficient.

HW: For X;,---,X, iid from cauchy distn, show that the minimal sufficient
statistics is the order statistics. Does the order-statistics provide any data re-
duction?



2.3 Ancillarity

Definition 3 A statistic S(X) is an ancillary statistic if its distribution does
not depend on 6.

Example 8 continued: The range is ancillary.

Definition 4 Let f(x) be any pdf. Then for any p € R and any o > 0 the
family of pdfs g(x) = f((x — p)/o) /o, indexed by the parameter (u,c) is called
the location-scale family with standard pdf f(x), and p is called the location
parameter and o is called the scale parameter for the family.

HW: In the above definition ¢ is indeed a pdf.

HW: X is a random variable with pdf f if and only if there exists a random
variable Z with pdf g and X =07 + p.

HW: Let Xi,---, X, be iid from a location family. Show that the range is an
ancillary statistic. Can you think of another ancillary statistic?

HW: Let X1, ---, X, beiid from a scale family. Show that the following statistic
T(X) is ancillary. T(X) = (X1/ X0, , Xn-1/Xn).

2.4 Completeness

Definition 5 Let fr(t|0) be a family of pdfs or pmfs for a statistic T(X). The
family of probability distributions is called complete if E[g(T)|0] = 0 for all 6
implies Pr[g(T) = 0[0] =1 for all 0. equivalently T is a complete statistic.

Example 5 revisited: In the Poisson eg, restrict © = {1,2}. Then g(0) =
2,9(2) = 2,9(1) = —2 and 0 otherwise is a function that has expectation zero
for all 8. Thus the family is not complete. When © = R*, then the family is
complete.

Proposition 4 For a statistic T(X), if a non-constant function of T, say r(T)
is ancillary, then T(X) cannot be complete.

Proposition 5 If T(X) is a complete statistic, then a function of T, say T* =
r(T) is also complete.

Proposition 6 If a complete sufficient statistic exists, then a minimal suffi-
cient statistic is complete.

Theorem 3 (Basu 1955) If T(X) is complete and minimal sufficient statistic,
then T(X) is independent of every ancillary statistic.

HW: For exponential distribution, find E(X,/(X1 + -+ X»))



