
Lectures 1-5

1 Introduction and Definitions

• The basic inference problem: Population, Sample, Probability model, Pa-
rameters.

• Goal is to infer aspects of population from information in sample.

• Types of inference: Estimation, Hypothesis testing

• Sample space Ω. X = (X1, · · · , Xn) be a random vector defined on
the sample space. The outcome of the experiment is a realization x =
(x1, · · · , xn) of the random vector X. We call x the data.

• Typical model:X has distribution f(x1, · · · , xn|θ). This distribution is
known except for the parameter θ. Given the data x, the goal is to infer
the unknown parameter θ.

• F represents the set of all possible probability distributions for X. We’ll
call F the model(or probability model) for the experiment.

• Often the elements of F are indexed by one or more parameters. We’ll
often denote a vector of parameters by θ and let Θ be the collection of all
possible values of θ. Θ is called the parameter space.

• If F can be expressed as a collection of distributions indexed by finite
dimensional vectors Θ = (θ1, · · · , θk), where Θ is a subset of Rk, then F
will be called a parametric family. If F cannot be so expressed, it will be
called nonparametric.

• Suppose θ = (θ1, θ2). If θ1 is the only parameter of interest, then θ2 is
called a nuisance parameter.

• A model is said to be identifiable if Fθ1 = Fθ2 whenever θ1 = θ2.

• Let T be a real-valued or vector-valued function whose domain contains
the range of X. If T does not depend on the unknown parameter θ, then
T = T (X) is called a statistic. The probability distribution of T is called
its sampling distribution.

Example 1 Have a population of N items, possibly a shipment of manufactured
goods. An unknown number M of the N items are defective. A random sample
of size n is drawn without replacement and inspected. Let X be the number of
defectives in the sample.

Example 2 There are unknown number N number of fish in a pond. You catch
M of them, tag them and let them go. Allow them to mingle for a while. Then
you catch n fish and note the number of tagged ones among them. Let X be the
number of tagged fish in the recaptured sample.
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Example 3 Experimenter makes n independent determinations of the value of
a physical constant µ and measurements are subject to error. X1, · · · , Xn are
i.i.d. N (µ, σ2).

Example 4 Let F= family of all continuous distributions that are symmetric
about 0. Then F is a nonparametric family.

2 Sufficiency for data reduction

[CB6.2, BD 1.5]

2.1 Sufficiency

Definition 1 A statistic T (X) is a sufficient statistic if the conditional distri-
bution of X given T (X) = t does not depend on θ, regardless of what t is.

Example 5 Suppose X1, · · · , Xn are i.i.d. Poisson with mean θ. Then X̄ =
1
n

∑n
i=1Xi is a sufficient statistic.

• Basic idea of sufficiency: Given data X = (X1, · · · , Xn), can we find a
statistic T (X) of smaller dimension than n that contains as much infor-
mation about θ as X does? If a statistic exists, we can reduce (perhaps
greatly) the amount of data without throwing away information. The
search for good estimation and testing procedures can be narrowed.

• We can think of a partition of the sample space where each set At in the
partition is such that T (x) = t for each x ∈ At. All x ∈ At are equivalent
in that each one contains the same information about θ as the others.

• If T1 and T2 are any two statistics such that T1(x) = T1(y) if and only if
T2(x) = T2(y), then T1 and T2 are said to be equivalent.

• Sufficiency Principle: Consider sample X from model F , and let T (X)
be a sufficient statistic. Suppose experimenter 1 observes X = x while
experimenter 2 observesX = y. If T (x) = T (y), then experimenters 1 and
2 should make the same inference about θ.

Theorem 1 (Fisher-Neyman Factorization Theorem): Let f(x|θ) denote the
joint pdf or pmf of the data X. A statistic T (X) is sufficient if and only if
there exist functions g(t|θ) and h(x)(where h does not depend on θ) such that
f(x|θ) = g(T (x)|θ)h(x) for all x and all parameter values θ.

Example 6 Estimating the Size of a Population: Consider a population with
N members labeled consecutively from I to N . The population is sampled with
replacement and n members of the population are observed and their labels
Xl, · · · , Xn are recorded. Then X(n) is indeed sufficient.
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Example 3 (revisited): X1, · · · , Xn are i.i.d. N (µ, σ2) and θ = (µ, σ2).
T (X) = (

∑
Xi,

∑
X2
i ) is jointly sufficient for θ.

Qn: Is the dimension of a sufficient statistic the always same to the dimension
of the parameters?
HW: Eg 1.5.5 of BD: Linear Regression
Let fX(x|θ) be the joint pdf or pmf of X and q(t|θ) be the pdf or pmf of T (X).
Then T is a sufficient statistic for θ, iff, for every x, the ratio fX(x|θ)/q(T (x)|θ)
is constant as a function of θ.

Example 7 Suppose we observe X = (X1, · · · , Xn), where

Xi = ρXi−1 + Zi, i = 2, 3, · · · , n.

The quantity ρ is an unknown parameter such that |ρ| < 1. Z2, · · · , Zn are i.i.d.
N (0, σ2), where σ2 is another unknown parameter. X1 ∼ N (0, σ2/(1−ρ2)) and
X1, Z2, · · · , Zn are mutually independent.
The parameter space is Θ = (ρ, σ2) : |ρ| < 1, σ2 > 0.
This model is called an autoregressive model and is used in time series analysis.

f(x|ρ, σ) = (2πσ2)−n/2
√

1− ρ2e{−
1

2σ2
(x2

1(1−ρ
2)+

∑n
i=2(xi−ρxi−1)

2)}.

T1(X) =
∑n−1
i=2 X

2
i , T2(X) =

∑n
i=2XiXi−1 and T3(X) = X2

1 + X2
n are jointly

sufficient statistics.

Proposition 1 Let T (X) = (T1(X), · · · , Tk(X)) be a sufficient statistic and r
be a 1-1 function, not depending on θ and with domain equal to the range of
T (X). Then r(T (X)) is a sufficient statistic.

2.2 Minimal Sufficiency

Definition 2 : A statistic T (X) is a minimal sufficient statistic if it is a func-
tion of every other sufficient statistic.

Theorem 2 Let f(x|θ) be the pdf or pmf of X. Suppose there exists a statistic
T (X) such that, for any two points x and y, the ratio f(x|θ)/f(y|θ) is constant
as a function of θ iff T (x) = T (y). Then T (X) is a minimal sufficient statistic.

Example 8 X1, · · · , Xn iid Unif(θ, θ+ 1). Then T (X) = (X(1), X(n)) is mini-
mal sufficient.

Proposition 2 If T (X) is a minimal sufficient statistic for θ, then its one-to-
one function is also a minimal sufficient statistic for θ.

Proposition 3 There is always a one-to-one function between any two minimal
sufficient statistics.

Example 3 (revisited): T1(X)=(X̄, S2) is minimal sufficient.
HW: For X1, · · · , Xn iid from cauchy distn, show that the minimal sufficient
statistics is the order statistics. Does the order-statistics provide any data re-
duction?
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2.3 Ancillarity

Definition 3 A statistic S(X) is an ancillary statistic if its distribution does
not depend on θ.

Example 8 continued: The range is ancillary.

Definition 4 Let f(x) be any pdf. Then for any µ ∈ R and any σ > 0 the
family of pdfs g(x) = f((x− µ)/σ)/σ, indexed by the parameter (µ, σ) is called
the location-scale family with standard pdf f(x), and µ is called the location
parameter and σ is called the scale parameter for the family.

HW: In the above definition g is indeed a pdf.
HW: X is a random variable with pdf f if and only if there exists a random
variable Z with pdf g and X = σZ + µ.
HW: Let X1, · · · , Xn be iid from a location family. Show that the range is an
ancillary statistic. Can you think of another ancillary statistic?
HW: Let X1, · · · , Xn be iid from a scale family. Show that the following statistic
T (X) is ancillary. T (X) = (X1/Xn, · · · , Xn−1/Xn).

2.4 Completeness

Definition 5 Let fT (t|θ) be a family of pdfs or pmfs for a statistic T (X). The
family of probability distributions is called complete if E[g(T )|θ] = 0 for all θ
implies Pr[g(T ) = 0|θ] = 1 for all θ. equivalently T is a complete statistic.

Example 5 revisited: In the Poisson eg, restrict Θ = {1, 2}. Then g(0) =
2, g(2) = 2, g(1) = −2 and 0 otherwise is a function that has expectation zero
for all θ. Thus the family is not complete. When Θ = R+, then the family is
complete.

Proposition 4 For a statistic T(X), if a non-constant function of T, say r(T)
is ancillary, then T(X) cannot be complete.

Proposition 5 If T(X) is a complete statistic, then a function of T, say T ∗ =
r(T ) is also complete.

Proposition 6 If a complete sufficient statistic exists, then a minimal suffi-
cient statistic is complete.

Theorem 3 (Basu 1955) If T(X) is complete and minimal sufficient statistic,
then T(X) is independent of every ancillary statistic.

HW: For exponential distribution, find E(X1/(X1 + · · ·+Xn))
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