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Abstract

This project attempts to analyse the data given in ‘Aggregated

hedonic dataset with a green index: Busan, South Korea’ by

Sihyun An, Seongeun Bae, Yena Song, Kwangwon Ahn.

The goal of this study is to investigate the association between

hedonic variables and property prices in the Busan Metropoli-

tan City of South Korea, focusing on green index, which is a

measure of the degree of urban street greenness exposed to res-

idents and pedestrians, introduced in the paper. This report

provides a summary of the methods and techniques we used to

complete this project, and an analysis conducted using these

techniques on the data.
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Introduction

In recent years, rapid urban growth has often come at the cost of natural
environments, replaced by built-up infrastructure in cities. However, there
has been a growing focus on developing green cities that emphasize envi-
ronmental well-being. Numerous studies have highlighted the economic
benefits of urban greenery, linking it to increased housing prices due to
factors like enhanced physical activity and reduced pollution.

The paper[5] provides an aggregated dataset for investigating the associa-
tion between hedonic variables, and property prices in the Busan Metropoli-
tan City of South Korea. This dataset offers additional value in exploring
the relationship between green amenities and housing prices, alongside
variables commonly used in housing price assessment models. Hedonic
variables include various factors that include property prices such as prop-
erty characteristics, environmental amenities, local built environments, lo-
cal demographic characteristics, and seasonal controls.

The paper also introduces the green index, which quantifies the degree of
urban street greenness exposed to residents and pedestrians.

We have analysed the relationship between property prices and the hedonic
variables using various techniques. We have employed Factor Analysis to
identify the underlying factor structure of the variables affecting property
prices. We have also conducted regression analysis using the factors ob-
tained previously and using all the variables in an attempt to give a model
to predict property prices using the hedonic variables. Finally we have
done hypothesis testing using the coefficients obtained from regression to
find the relationship between green index and property prices.

1



Chapter 1

Dataset and Descriptive Statistics

1.1 Dataset Structure

The dataset includes 52,644 observations and 28 variables, making it a
valuable resource for benchmarking or exploring urban and real estate
studies. It consists of property prices and various hedonic variables, which
are categorised into five groups, namely, property characteristics, environ-
mental amenities, local built environment, local demographics, and sales
period controls. The green index, introduced in this dataset as a mea-
sure of urban greenness, is classified under environmental amenities. The
dataset uses demographic variables measured at the ’Dong’ level, which is
equivalent to an ’Administrative District’ in India.
Table 1.1 summarises the hedonic variables, including their names, scales,
and details. The variable column presents the column names of the vari-
ables in the hedonic dataset and the denominated names in the descriptive
statistics. Scale stands for the measurement scale, and Detail describes
each variable. Table 1.2 presents the descriptive statistics for the green
index and other hedonic variables.

1.2 Acquisition of Source Dataset

Busan was taken as the study area for the paper because of its diverse
characteristics, including a large population and various environmental
amenities such as waterfronts, seashores, and natural parks. The Ministry
of Land, Infrastructure and Transport (MLIT) provided apartment trans-
action records that include transaction prices, property addresses, and
related characteristics. The condominium was focused on as the represen-
tative housing type because the MLIT supplies geographic coordinates for
transaction points, facilitating spatial analyses, and apartments serve as
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Variable Scale Detail

Property prices Ratio Log-transformed Korean won per square meter (won/m2)
Longitude Ratio Longitude in the Cartesian coordinate system
Latitude Ratio Latitude in the Cartesian coordinate system
Property Characteristics
Size Ratio Unit size aggregated in square meters (m2)
Floor Interval A floor of transacted property
Highest Floor Ratio Highest floor in an apartment complex
Units Ratio Number of households in an apartment complex
Parking Ratio Number of parking spaces divided by the number of house-

holds
Heating Nominal A heating type of each housing: city gas = 0; others = 1
Year Date Year of construction of each apartment complex
Environmental Amenities
Dist. Green Ratio Log-transformed network distance to the nearest park, hill,

or mountain in meters
Dist. Water Ratio Log-transformed network distance to the nearest river,

stream, pond, or seashore in meters
Green Index Ratio Degree of street greenness exposed to pedestrians
Local Built Environment
Dist. Subway Ratio Log-transformed network distance to the nearest subway

station in meters
Bus Stop Ratio Number of bus stops within a 400-meter radius of a prop-

erty
Dist. CBD Ratio Network distance to the city hall in meters
Top Univ. Ratio Number of Seoul National University entrants from high

schools within a 5-km radius of properties
High School Ratio Number of high schools within a 5-km radius of a property
Local Demographics
Sex Ratio Ratio Percentage of the number of men divided by the number of

women
Population Ratio Number of people in a neighborhood
Pop. Density Ratio Number of people per square kilometer (km2)
Higher Degree Ratio Percentage of people with higher degrees divided by people

aged 15+ years
Young Population Ratio Percentage of people aged less than 15 years divided by

total population
Median Age Ratio Percentage of people aged 15 to 65 years divided by total

population
Old Population Ratio Percentage of people aged 65+ years divided by total pop-

ulation
Seasonality Control
Spring Nominal Seasonal dummy indicating transaction occurred in March,

April, or May
Fall Nominal Seasonal dummy indicating transaction occurred in

September, October, or November
Winter Nominal Seasonal dummy indicating transaction occurred in Decem-

ber, January, or February

Table 1.1: Delineation of hedonic variables

the predominant housing type in South Korea[7, 2].
Raw data for the dataset has been collected from all apartment transac-
tion records in Busan for the years 2018 and 2019. After excluding missing
values and outliers through exploratory data analysis (EDA) and descrip-
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Mean Std. Min. Max.

Property prices 10.187 0.568 6.908 12.934

Property Characteristics: Unit-related
Size 77.820 28.916 12.488 269.680
Floor 11.819 8.201 -1.000 77.000

Property Characteristics: Complex-related
Units 937.087 885.506 4.000 5239.000
Buildings 9.227 8.910 1.000 77.000
Year 2003.496 10.153 1969.000 2019.000
Heating 0.093 0.291 0.000 1.000
Parking 1.101 0.619 0.000 77.000
Highest Floor 23.249 10.347 2.000 84.000

Environmental Amenities
Dist. Green 7.277 2.222 0.808 10.714
Dist. Water 6.268 1.181 -0.170 8.601
Green Index 10.733 2.098 4.163 18.927

Local Built Environment
Dist. Subway 6.892 1.016 3.366 9.978
Bus Stop 18.105 10.840 0.000 63.000
Dist. CBD 237737.312 192493.328 243.860 398856.132
Top Univ. 11.179 6.442 0.000 27.000
High school 14.274 7.295 0.000 30.000

Local Demographics
Population 25888.373 14125.007 1208.000 83116.000
Pop. Density 13220.993 10687.626 1.003 118181.818
Higher Degree 30.303 9.847 10.356 61.289
Young Population 12.120 4.121 3.151 26.285
Old Population 16.325 4.455 5.712 33.292
Medium Age 42.603 3.637 32.700 55.400
Sex Ratio 95.750 4.656 81.024 124.508

Sales Period Control
Spring 0.215 0.411 0.000 1.000
Fall 0.343 0.475 0.000 1.000
Winter 0.243 0.429 0.000 1.000

Table 1.2: Descriptive statistics of variables

tive statistics analysis, the aggregated hedonic dataset consists of a total
of 52,644 observations, including property prices and other hedonic vari-
ables. For the green index, Google Street View (GSV) images were used,
which have proven to be a reliable and promising source to examine urban
areas, especially when compared to less developed or rural regions.
GSV images are particularly valuable owing to their comprehensive panoramic
landscape information. For the dataset in the paper, 409,390 GSV images
from within Busan’s administrative boundary were retreived, all gener-
ated in 2017 and 2018. During the image collection, location tokens with
geographical information, such as latitude and longitude were included,
to facilitate the spatial interpolation based on geographic coordinates.
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Subsequently, images with artificial greenness, such as those depicting
playgrounds or tunnels painted green, were been filtered out, resulting
in 306,425 cleaned GSV images. This cleaning procedure was essential to
accurately assess the impact of natural greenness.
Image processing was performed by converting the images to the hue, sat-
uration, and value (HSV) colour space and setting upper and lower bound-
aries to identify natural greenness. Images were gray scaled to determine
whether each pixel fell within these boundaries. Then Green Index was
individually calculated for each image. Finally, spatial interpolation was
conducted to address missing values and calculated green indices were in-
tegrated into the aggregated hedonic dataset. In summary, a four-step
approach (Figure 1.1) was used in the paper to construct the green index
data: GSV image collection, colour space conversion and masking, green
index calculation, and spatial interpolation.

Figure 1.1: Flowchart illustrating the procedure for constructing the hedonic dataset.

In addition to GSV images, property data for the years 2018 and 2019 were
also aggregated and cleaned. The resulting dataset encompasses transac-
tion records and other hedonic variables sourced from public data reposi-
tories, including the Korea Transport Database, Statistics Korea, MLIT,
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Figure 1.2: Spatial distribution of street images and property units

and the Spatial Geographic Information Service. Supplementary property
information was also obtained from the websites of three private real estate
companies: kbland.kr, land.naver.com, and realty.daum.net. During
the data collection process, each transaction record was treated as an indi-
vidual observation. The compiled transaction records included geographic
coordinates and property-specific variables such as the property price, ad-
dress, year built, floor, floor area, and transaction date. Next, data on
environmental amenities, local built environment, and local demographic
variables for each property was collected. Specifically, distance variables
were calculated based on road network distances from each housing unit to
the nearest environmental amenity or subway station. The highly skewed
variables were transformed into a logarithmic scale to be close to a normal
distribution. Additionally, the variable for bus stops was calculated to
reflect the number of bus stops within a 400-m radius buffer around each
housing unit using the ArcMap.

1.3 Calculation of the green index

The green index, as quantified through the previous steps, uses GSV im-
ages captured from a three-dimensional perspective. This approach allows

6
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us to assess the degree of natural greenness visible to pedestrians.

Figure 1.3: Four-step process for quantifying the green index.

After collecting street view images, each of the GSV images were trans-
formed from a red, green, and blue colour space to the HSV colour space
to improve image clarity[24]. Next, the upper and lower boundaries were
set to capture natural greenness based on the HSV colour space, based on
which all images were scrutinised according to whether or not each of the
pixels falls between boundaries, as described before. If a pixel value fell
out of boundaries, then that pixel was masked by assigning a value of zero.

Figure 1.4: Original (left) and converted (right) images with masked pixels
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Therefore, the green index of each GSV image was calculated as follows:

Green indexi =
pixelnon-zero
pixeltotal

× 100 (1.1)

where pixelnon-zero denotes the number of non-zero pixels and pixeltotal rep-
resents the total number of pixels in an image.

1.4 Spatial interpolation

Notably, less GSV images are taken of city outskirts, because natural bar-
riers, such as mountains, rivers, and forests, frequently determine adminis-
trative boundaries, such that city outskirts tend to have a smaller number
of street images. This scenario indicates that the use of GSV images can
potentially suffer from uneven spatial distribution, which leads to a biased
quantification of the green index.
To address this issue, spatial interpolation was used in the paper to trans-
form point data into areal information[9]. This relies solely on longitude
and latitude information, making it accessible for spatial analysis and ur-
ban studies. The spatial interpolation assumes that adjacent properties
are likely to exhibit similar levels of street greenness.

Figure 1.5: Graphical description of spatial interpolation
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The implementation of spatial interpolation involves two major steps: cal-
culating the haversine distance and averaging the green index. First,
longitude and latitude information was been used to calculate the dis-
tances between target properties and all green indices using the haversine
formula[1]. This formula is commonly used to calculate the distance be-
tween two points based on their longitude and latitude coordinates. The
mathematical expression for the haversine formula is as follows:

dhaversine = 2R arcsin

(√
sin2

(
∆lat

2

)
+ cos(latp) cos(latg) sin

2

(
∆lng

2

))
(1.2)

where R is the Earth’s radius, set at 6,371 km; ∆lat is the difference be-
tween the latitude of the target property (latp) and the latitude of the
green index (latg); and ∆lng is the difference in longitudes between the
target property and the green index. Next, the calculated haversine dis-
tances were arranged in ascending order and the mean values of the green
indices were assigned to each property unit by aggregating the values of a
specific number of the nearest green indices. At the averaging stage, the
number of nearest green indices can be adjusted as a parameter. After
being experimented with different numbers of nearest images, specifically
50, 100, and 150, given data paper focused on using 50 nearest images to
explore the relationship between urban greenness and property prices.

1.5 Descriptive Statistics

In this section some preliminary analysis of the given data has been done
to visualize the data roughly. However, in the next chapters analysis of the
data has been done at length using factor analysis and regression. Here
analysis of some basic expected and observed nature of the data has been
shown.

1.5.1 Normality of Property Price and Green Index

In the given paper the two most important variables are ”Property Prices”
and ”Green Index”. It was necessary to check the normality of these
variables. The histograms were approximately normal and qq plots were
more or less over the fixed lines except for some outliers (Figure 1.6).
Hence it can be concluded that these variables are approximately normal.
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Figure 1.6: Histogram and QQ plot of property prices and green index

1.5.2 Relation between Property Prices and Green Index

The paper claimed that Green Index is a robust measure of urban green-
ness. So, it was expected that ”Property Prices” will be significantly af-
fected by the Green Index. It was also expected that properties having
higher green index would be more in demand and thus would have higher
price compared to low green index properties. This might not be true in
every instance, but as we have a very large sample, this trend was expected.
But the scatterplot (Figure 1.7) between Green Index and Property Prices
didn’t show any particular pattern. Also, the correlation between green
index and property price was observed to be -0.13, which was very weak
and also negative. It was also observed how property price varies across
different green index levels, using boxplots (Figure 1.8). This too didn’t
reveal any pattern, although some observations were made. There were
a lot of outliers for medium and high green index levels, the price varied
more when the green index was very high and the median property price
was almost same over all levels.
These observations seem to contradict the hypothesis that property price
is heavily affected by green index and property price increases with in-
crease in green index.

10



Figure 1.7: Scatterplot Between green index and property prices

Figure 1.8: Box plot of property prices across levels of green index
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1.5.3 Spatial variability in Green Index and Property Prices

The property prices and green index were also expected to vary over lati-
tude and longitude. Normally, the price of property would be higher nearer
to the centre of the city and lower further out. Similarly, more greenery
is expected in the suburbs than in the main city. Thus, heatmaps were
made of both, but we couldn’t find any legible patterns.

Figure 1.9: Property Prices vs Location

Figure 1.10: Green Index vs Location
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This could be because Busan has evenly distributed greenery, even in the
city centre and the property prices are also evenly distributed.

1.5.4 Relation Between Property Price and Year

Normally, the older the property, lower is its expected price. So, we ex-
pected an increasing relation in the scatterplot between Year and Property
Price.

Figure 1.11: Scatterplot between property prices and year

It was observed that the variation in property price is higher in recent
buildings. The correlation between the two was 0.27. Although, it was
not significant, it hints at an increasing relationship like we claimed.

We were unable to find any clear relationships between the variables using
graphical methods. So, we proceeded with factor analysis to explain the
correlations between the variables.
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Chapter 2

Factor Analysis

Factor analysis is a statistical method used to describe variability among
observed, correlated variables in terms of a potentially lower number of
unobserved variables called factors[15]. It aims to interpret the factors in
subject-matter terms and provide estimates of the individual values of the
factors to be used in further analysis.
For example, it is possible that variations in six observed variables mainly
reflect the variations in two unobserved variables. The aim of factor anal-
ysis is to find these factors and the extent to which the variables are
related to a given factor to ultimately reduce the number of variables in
the dataset.
We’ve used a technique within factor analysis called Exploratory Factor
Analysis (EFA). This is used when there is no a priori hypothesis about
factors or patterns of measured variables[20]. EFA is based on the com-
mon factor model. In this model, observed variables are expressed as a
function of common factors, unique factors, and errors of measurement.
Each unique factor influences only one observed variable, and does not ex-
plain correlations between observed variables. Common factors influence
more than one observed variable and ”factor loadings” are measures of the
influence of a common factor on a observed variable.

2.1 Model[12]

Let there be p observed variables X1, · · · , Xp and m underlying factors
F1, · · · , Fm. We assume that the variables have zero mean and one vari-

14



ance, beforehand. The Factor Analysis model is defined as -

X1 = λ11F1 + λ12F2 + · · ·+ λ1mFm + ϵ1

X2 = λ21F1 + λ22F2 + · · ·+ λ2mFm + ϵ2
...

Xp = λp1F1 + λp2F2 + · · ·+ λpmFm + ϵp (2.1)

Here λij are called factor loadings and ϵi are the unique error terms. This
can be written compactly as -

X = ΛF + ε (2.2)

Here X is the p × 1 vector of observed variables, Λ = [λij] is the p × m
matrix of factor loadings, F is the m×1 vector of factors and ε is the p×1
vector of error terms.
The assumptions in this model are -

1. E(ϵi) = 0, E(Fj) = 0 and V ar(Fj) = 1.

2. ε and F are uncorrelated among themselves and with each other i.e.
Cov(Fi, Fj) = Cov(Fi, ϵj) = Cov(ϵi, ϵj) = 0.

3. The covariance matrix Ψ of the residuals is diagonal, with diagonal
elements ψi = V ar(ϵi).

From the assumptions, it is clear that

V ar(Xi) = λ2i1 + λ2i2 + · · ·+ λ2im + ψi

= h2i + ψi (2.3)

where i = 1, . . . , p and h2i is called communality. It denotes the amount
of variance in the variable, that is explained by the factors. ψi is called
the uniqueness variance and represents the variance unexplained by the
factors.
We also can calculate from the assumptions that

Cov(Xi, Xk) = λi1λk1 + λi2λk2 + · · ·+ λimλkm (2.4)

Using equations (2.3) and (2.4), we can write

Σ = ΛΛT +Ψ (2.5)

where Σ is the covariance matrix of the variables.

15



Hence, the p(p+1)
2 non-redundant elements of Σ can be reproduced exactly

by the pm factor loadings and the p unique variances. This is very useful
when p is comparatively much larger than m, as p(p+1)

2 is much greater
than pm+ p in those cases.

2.2 Preparation of Data

It was assumed in the model that observed variables have zero mean and
one variance. So, z-score standardization should be performed to transform
the variables to zero mean and one variance.

Zj =
Xj −Xj

sj
(2.6)

It is also needed to be ensured that no variables are highly correlated
(|r| > 0.9). This is because highly correlated variables can lead to unstable
and difficult to interpret factor loadings.
It is undesirable to have high multicollinearity in the data. To check for
this we have a measure called Variance Inflation Factor (VIF).

2.2.1 Variance Inflation Factor (VIF)

It is the ratio of the variance of a parameter estimate when fitting a full
model that includes other parameters to the variance of the parameter
estimate if the model is fit with only the parameter on its own[18]. The VIF
provides an index that measures how much the variance of an estimated
regression coefficient is increased because of collinearity.

V IFj =
1

1−R2
j

(2.7)

where Rj is the coefficient of determination from regressing Xj against
all other observed variables. VIF value greater than 5 indicates multi-
collinearity.

2.3 Assessing Suitability of Data

2.3.1 Kaiser–Meyer–Olkin Test

It is a statistical measure to determine how suited data is for factor anal-
ysis. The test measures sampling adequacy for each variable in the model

16



and the complete model. The statistic is a measure of the proportion of
variance among variables that might be common variance[22]. The higher
the proportion, the higher the KMO value, the more suited the data is to
factor analysis.
In this test, at first the Measure of Sampling Adequacy (MSA) is calculated
for each variable-

MSAj =

∑
k ̸=j

r2jk∑
k ̸=j

r2jk +
∑
k ̸=j

p2jk
(2.8)

Here rjk is the correlation between the variable in question and another,
and pjk is the partial correlation.
The Kaiser–Meyer–Olkin criterion is given by-

KMO =

∑
j ̸=k

∑
r2jk∑

j ̸=k

∑
r2jk +

∑
j ̸=k

∑
p2jk

(2.9)

Both MSAj and KMO returns values between 0 and 1. KMO > 0.6
indicates that the data is suitable factor analysis, while MSAj > 0.6
indicates that the variable is not problematic.

2.3.2 Bartlett’s Test of Sphericity

This tests whether a matrix is significantly different from an identity
matrix[3]. If the correlation matrix is equal to an identity matrix, we
cannot proceed with EFA, since there is no correlation between variables.

Ho : Variables not correlated i.e. the correlation matrix is identity.

Ha : Variables are significantly correlated i.e. the correlation matrix is
significantly different from identity.

The test statistic is-

T = log

[
detR

(
n− 1− 2p+ 5

6

)]
∼ χ2

p(p−1)
2

(2.10)

Here R is the correlation matrix of the dataset, n is the number of sample
elements and p is the number of variables.
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2.4 Determining number of Factors

The choice of number of underlying factors to be used in exploratory factor
analysis depends on various considerations. Choosing too few factors can
lead to underfitting, where important structures in the data are missed,
while selecting too many can result in overfitting, capturing noise instead
of meaningful patterns. There are three ways to determine the appropriate
number of factors.

2.4.1 Kaiser’s Criterion

The eigenvalues of the correlation matrix is calculated in this method and
the number of eigenvalues greater than 1 gives the number of factors to
include in the model.

2.4.2 Scree Plot

The eigenvalues of the correlation matrix are plotted from largest to small-
est. The graph is examined to determine the last substantial drop in the
magnitude of eigenvalues. The number of plotted points before the last
drop is the number of factors to include in the model.

2.4.3 Parallel Analysis

Parallel analysis[21] is regarded as one of the more accurate methods for de-
termining the number of factors or components to retain. The eigenvalues
are plotted from largest to smallest along with a set of random eigenval-
ues. The number of eigenvalues before the intersection point indicates how
many factors to include in the model.

None of these methods are entirely foolproof. The Kaiser criterion, for
example, tends to overestimate the number of factors, especially in large
datasets. Scree plots rely on visual interpretation, which can be sub-
jective. Parallel analysis is more robust but still depends on simulation
assumptions that may not perfectly align with the data structure. Be-
cause these methods can yield different results, and none are universally
reliable, it’s essential to supplement them with theoretical reasoning and
domain knowledge. Ultimately, determining the number of factors is both
a statistical and conceptual decision, requiring a balance between empirical
indicators and interpretability of the factor model.

18



2.5 Factor Extraction

In this step the matrix Λ of factor loadings is estimated using various
methods. The result, called the initial factor solution, is often not easily
interpretable. There are several methods to extract factors like Princi-
pal Component Method (PC), Principal Axis Factoring (PAF), Maximum
Likelihood Estimate (MLE) and Weighted Least Squares (WLS). The esti-
mate of the factor loading matrix Λ thus obtained is then used to interpret
the factors.
When factor analysis is performed, it is expected that each variable will
depend highly on exactly one factor and each factor will have atleast one
variable depending highly on it. Such a solution is easily interpretable
because all the variables can be grouped under the factors without any
overlaps or omissions.
Ease of interpretation is obtained in a solution that exhibits a ”simple
structure”. A ”simple structure” is characteristic of the following pattern
of factor loadings-

1. Each observed variable loads highly on a single factor and has small
loadings on the remaining.

2. For each factor there is atleast one variable saliently loading on it.

As a rule of thumb, we can consider a loading to be prominent if it is larger
than 0.3. This is because λij > 0.3 =⇒ λ2ij > 0.09 and recall that

V ar(Xi) = λ2i1 + λ2i2 + · · ·+ λ2im + ψi = 1

by assumption. Hence, the factor Fj explains atleast close to 10% of the
variance of Xi. If a factor loads prominently on multiple factors, it is
known as a cross-loading.

2.6 Factor Rotation

The initial factor solution obtained from factor extraction step is not
unique. Let T be an invertible m × m matrix. Then, we can write the
model as-

X = ΛF + ε = ΛT−1TF + ε = Λ∗F ∗ + ε (2.11)

where Λ∗ is another possible loading matrix. In factor rotation, we choose
this matrix T in such way that the factor loadings are more interpretable.
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The resulting Λ∗ is called the rotated factor loading matrix. Notice that ε
is unchanged in this transformation and thus rotation does not change the
total variance explained by the model, it just redistributes the variance
across factors.
Recall that the factors obtained, in previous step, are uncorrelated, by
construction. There are two types of rotation based on the correlation
between resulting factors.

1. Orthogonal Rotation: The resulting factors are still uncorrelated.

2. Oblique Rotation: The resulting factors are allowed to be corre-
lated.

A popular type of orthogonal rotation is Varimax. Based on Varimax, we
can do an oblique rotation called Promax[6].

2.6.1 Kaiser’s Varimax Criterion

This criterion[13] is based on a measure, denoted V , of closeness to sim-
ple structure, which needs to be maximized across all possible orthogonal
rotations.

V = Sum of variances of squared scaled loadings on factors

=
1

p

m∑
j=1

 p∑
i=1

(
λij
hi

)4

− 1

p

[
p∑

i=1

(
λij
hi

)2
]2 (2.12)

This maximization has the tendency to polarize the factor loadings so that
they are either high or low, thereupon making the loading matrix more
interpretable. The result of this rotation is the creation of groups of large
and of negligible loadings in any column of the factor loading matrix Λ.

2.7 Estimating Factor Scores

Once we carry out factor extraction, we actually furnish estimates of the
factor loading matrix Λ and the error covariance matrix Ψ. In order to
obtain factor scores, we may consider these matrices as known. With this
in mind

X = ΛF + ε

is just the general linear model. Then, we can use ordinary least squares
regression to obtain an estimate of F .
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2.8 Goodness of Fit Indices

2.8.1 Chi-Square Test

The model implied covariance matrix is given by

Σ̂ = Λ̂Λ̂T + Ψ̂ (2.13)

where Λ̂ is the estimated factor loading matrix and Ψ̂ is the estimated
unique variance matrix. Let S be the observed covariance matrix, then
the test statistic[8] is

χ2 = n
[
log |Σ̂| − log |S|+ tr(SΣ̂−1)− p

]
(2.14)

If n is large, χ2 follows a chi-square distribution with

df =
p(p− 1)

2
− pm+

m(m− 1)

2
(2.15)

The hypotheses of this test are-
Ho : Σ̂ = S i.e. the observed covariance matrix is not significantly different
from the model-implied covariance matrix and thus the model fits the data
well.
Ha : Σ̂ ̸= S i.e. the observed covariance matrix is significantly different
from the model-implied covariance matrix and the model isn’t a good fit.

The model fits well if p-value> 0.05, as we don’t reject Ho in this case.
But, this test is highly sensitive to sample size and often fails for large
samples.

2.8.2 Root Mean Squared Error of Approximation (RMSEA)

This avoids issues of sample size by analysing the discrepancy between the
hypothesized model, with optimally chosen parameter estimates, and the
population covariance matrix.

RMSEA =

√
max

(
χ2/df − 1

n− 1
, 0

)
(2.16)

The RMSEA[23] ranges from 0 to 1, with smaller values indicating better
model fit. A value of 0.05 or less is indicative of good model fit and a value
less than 0.08 is considered acceptable.
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2.8.3 Standardized Root Mean Squared Residual (SRMR)

This is the square root of the discrepancy between the sample covari-
ance matrix and the model implied covariance matrix. The SRMR[23] also
ranges from 0 to 1. A value of 0.05 or less is indicative of good model fit.

SRMR =

√√√√2
∑p

i=1

∑i
j=1

(
Sij−Σ̂ij

SiiSjj

)2
p(p+ 1)

(2.17)

where Sij are the elements of observed covariance matrix and Σ̂ij are the
elements of the model implied covariance matrix.

2.8.4 Tucker-Lewis Index (TLI)

It is a relative measure of the difference between the chi-squared value of
the hypothesized model and the chi-squared value of the null model, which
assumes that all observed variables are uncorrelated with each other[23].

TLI =

(
χ2
null

dfnull

)
−
(

χ2
model

dfmodel

)
(

χ2
null

dfnull

)
− 1

(2.18)

where the χ2
null and dfnull are the test statistic and degrees of freedom for

the null model.

2.8.5 Bayesian Information Criterion (BIC)

This is a model selection criterion that balances model fit and model com-
plexity. It penalizes overly complex models to avoid overfitting.

BIC = χ2 − df log n (2.19)

Lower BIC implies better fit.

2.9 Implementation on our dataset

Our dataset contains 27 variables that influence property prices. To un-
cover the latent structure among these variables, we employed factor anal-
ysis. This allowed us to reduce dimensionality and identify underlying
factors. We then used regression analysis to examine how these extracted
factors impact property prices.
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2.9.1 Preparation of Data

At first, all the variables were standardized to their z-scores. Then vari-
ables having |r| > 0.9 with some other variable and having VIF greater
than 5 were removed, as these indicated high collinearity.
In our data, we found that the variables ”Dist. Green” and ”Dist. CBD”
have correlation -0.9433992 and both have VIF greater than 5. We calcu-
lated VIF using vif() from car library in R (Table 2.1). We decided to
remove the variable ”Dist. CBD” as the variable ”Dist. Green” had lower
VIF and seemed more important as we focus more on effect of environ-
mental amenities on property price.

Variable VIF Variable VIF

Longitude 1.6716 Latitude 1.5106
Size 1.3233 Floor 1.4452
Highest floor 2.1226 Units 1.3122
Parking 1.2611 Heating 1.2632
Year 1.3533 Dist. Green 9.7760
Dist. Water 1.1866 Green Index 1.0849
Dist. Subway 1.3071 Bus Stop 1.3235
Dist. CBD 11.2446 Top Univ. 3.1226
High School 3.1882 Sex Ratio 1.4670
Population 1.9396 Pop. Density 1.1886
Higher Degree 1.6227 Young Population 3.1493
Median Age 2.1227 Old Population 3.1433
Spring 1.6482 Fall 1.8308
Winter 1.6874

Table 2.1: VIF values of all variables

We generated the heatmap of correlation matrix shown in Figure 2.1 using
ggcorrplot() from ggcorrplot library of R.

2.9.2 Assessing Suitability of Data

Kaiser–Meyer–Olkin Test

KMO > 0.6 indicates that the data is suitable factor analysis. We calcu-
lated KMO using KMO() from psych library of R. The overall KMO value
of our dataset came out to be 0.61, which was adequate for factor analy-
sis. But when MSA was calculated for each of the variables (Table 2.2), it
was discovered that MSA was below 0.5 for the variables ”Year”, ”Fall”,
”Spring”, ”Winter” and ”Latitude”.
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Figure 2.1: Heatmap of correlation matrix of all variables

We tried removing various combinations of variables to improve MSA
of each variable. The best results were obtained on removing ”Fall”,
”Spring”, ”Winter”, ”Latitude”, ”Longitude” and ”Sex Ratio”. In this
case, the KMO came out to be 0.68 and MSA improved to greater than
0.5 for each of the remaining variables (Table 2.3).

Bartlett’s Test of Sphericity

This test was performed on the remaining 20 variables. This was done
in R using cortest.bartlett() from psych package. The output is shown in
Figure 2.2. The p-value came out to be very close to zero, so the hypothesis
was rejected at 5% level. Hence, it was deduced that the variables were
sufficiently correlated for factor analysis.
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Variable MSA Variable MSA

Longitude 0.52 Latitude 0.49
Size 0.76 Floor 0.72
Highest floor 0.61 Units 0.56
Parking 0.80 Heating 0.70
Year 0.49 Dist. Green 0.54
Dist. Water 0.62 Green Index 0.59
Dist. Subway 0.65 Bus Stop 0.86
Top Univ. 0.64 High School 0.65
Sex Ratio 0.56 Population 0.82
Pop. Density 0.75 Higher Degree 0.57
Young Population 0.71 Median Age 0.54
Old Population 0.67 Spring 0.31
Fall 0.37 Winter 0.29

Table 2.2: MSA of all variables

Variable MSA Variable MSA

Size 0.74 Floor 0.70
Highest floor 0.63 Units 0.63
Parking 0.80 Heating 0.79
Year 0.54 Dist. Green 0.50
Dist. Water 0.68 Green Index 0.59
Dist. Subway 0.66 Bus Stop 0.85
Top Univ. 0.65 High School 0.65
Population 0.85 Pop. Density 0.80
Higher Degree 0.65 Young Population 0.70
Median Age 0.51 Old Population 0.69

Table 2.3: MSA of remaining variables

Figure 2.2: Result of Bartlett’s test
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2.9.3 Determining number of Factors

parallel() from nFactor library of R was used to perform parallel analy-
sis. nScree was used to check the number of factors found via other two
methods and decide the optimal number. plotnScree was used to create
the scree and parallel analysis plot (Figure 2.3).
The optimal number of factors is given to be 4, but we’ve used 7 fac-
tors which is recommended by parallel analysis, because 4 factors caused
underfitting and gave uninterpretable solutions.

Figure 2.3: Scree plot

2.9.4 Factor Extraction and Rotation

In R, the factor extraction and rotation can be done using fa() from
psych library. WLS method was used for factor extraction. The library
GPArotation was needed for calculating the rotated loading matrix. In
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this case, it was expected that the factors would be correlated. This was
because the variables were expected to be roughly grouped under fac-
tors like ”Property Characteristics”, ”Demographics” and ”Environmental
Amenities”, which are logically related. So, Promax oblique rotation was
used. Hence, factor analysis was performed on the dataset of 20 variables
with 7 factors, using WLS to extract factors and Promax to rotate the
loading matrix.
The R code used to perform factor analysis and view estimated loading
matrix was-

efa_results <- fa(new_data, nfactors = 7, rotate =

"promax", fm = "wls", scores = "regression")

print(efa_results$loadings, cutoff = 0.3)

We have printed the estimated factor loading matrix (Figure 2.4) with
blanks at places where loading is less than 0.3. Note that the factors are
written as WLS1,..., WLS7 in the code output.

Figure 2.4: Factor loadings using 7 factors
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2.9.5 Factor Interpretation

The key observations from the result were-

1. ”Population”, ”Young Population” and ”Old Population” had high
loadings on factor 1.

2. ”Size”, ”Floor”, ”Highest Floor”, ”Units”, ”Parking” and ”Year” had
high loadings on factor 2.

3. ”Bus Stop”, ”Top Univ.” and ”High School” had high loadings on
factor 3.

4. ”Dist. Green” and ”Median Age” had high loadings on factor 4.

5. ”Green Index”, ”Pop. Density” and ”Dist. Water” had high loadings
on factor 5, 6 and 7, respectively.

6. This model explained 56.4% of the total variance of the variables.

The problems encountered were-

1. ”Heating”, ”Dist. Subway” and ”Higher Degree” had negligible load-
ings on all factors.

2. Factor 4 couldn’t be interpreted as any real world construct.

3. 56.4% explained variance could not be considered as very significant.

A possible solution in this case was to increase number of factors as some
variables loaded highly on none of the existing ones and two unrelated
variables loaded highly on the same factor. On increasing the number
of factors to 8, we got 60.9% explained variance, although the other two
problems persisted. The results worsened on increasing the number of
factors beyond 8 or decreasing them below 7. Thus, 8 was the optimal
number of factors (Figure 2.5) in this model. We also tried rerunning the
EFA by removing the variables, which were creating problems, but in each
case we encountered further issues like other variables loading negligibly,
cross-loadings for some variables and explained variance reducing further.

The observations from the improved result were-

1. ”Population”, ”Young Population” and ”Old Population” had high
loadings on factor 1.
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Figure 2.5: Factor loadings using 8 factors

2. ”Size”, ”Floor”, ”Highest Floor”, ”Units” and ”Parking” had high
loadings on factor 2.

3. ”Bus Stop”, ”Top Univ.” and ”High School” had high loadings on
factor 3.

4. ”Dist. Green” and ”Median Age” had high loadings on factor 4.

5. ”Green Index”, ”Dist. Water”, ”Year” and ”Pop. Density” had high
loadings on factor 5, 6, 7 and 8, respectively.

6. This model explained 60.9% of the total variance of the variables.

It was not possible to improve this result further by tweaking the dataset
or changing the number of factors. Hence, we proceeded with goodness of
fit tests for our model.

2.9.6 Goodness of Fit Tests

The fit indices are calculated automatically when we do fa() and can be
seen by summary(efa results). In chi-square test, the test statistic was
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χ2 = 24187.17 for the 7 factor model and χ2 = 16833.42 for the 8 factor
model. The p-value is zero in both cases, but this could be because our
sample size is very high. The value of the other fit indices for the two
models are given below (Table 2.4). It was observed that our model was

Fit Index EFA(7 factors) EFA(8 factors) Accepted Region

RMSEA 0.0803 0.0741 < 0.08 (Acceptable)
SRMR 0.0351 0.0265 < 0.05 (Good Fit)
TLI 0.773 0.806 > 0.90 (Good Fit)
BIC 23415.3 16202.88 Lower is better
Variance Explained 56.4% 60.9% > 60%

Table 2.4: Fit indices for 7 factor and 8 factor models

an acceptable fit in 2 out of the 3 fit indices and the 8 factor model was
better according to BIC and also by total variance explained. Hence, it
was concluded that the 8 factor model was an acceptable fit for the data.

2.9.7 Estimating Factor Scores

In R, factor scores are also estimated by fa(), using the parameter scores
= "regression". The factor matrix can be extracted by efa results$scores.
The estimated factor scores were used for regressing the variable ”Prop-
erty Prices” against the latent factors. This has been discussed in detail
in Chapter 3.

2.9.8 Results

Although the final model had two issues, it explained more than 60% vari-
ance and the goodness of fit indices suggested that it was an acceptable
fit. Hence, we conclude that the factor structure found by us (Table 2.5)
explains the data well.
Figure 2.6 depicts the factor loadings of the variables diagrammatically.
The circles are the factors while the squares are the variables. The thick-
ness of the lines indicate the strength of loading. Red indicates negative
loading while green indicates positive loading.
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Figure 2.6: Factor loadings diagram

Factor Variable Factor Loading Variance Explained

Demographics (WLS1)
Population 0.694

12.6%Young Population 1.002
Old Population -0.894

Property Characteristics (WLS2)

Size 0.517

8.8%
Floor 0.534
Highest Floor 0.876
Units 0.439
Parking 0.452

Access to Education (WLS3)
Bus Stop 0.548

11.4%Top Univ. 0.958
High School 0.953

WLS4
Median Age 0.820

6.8%
Dist. Green 0.823

Green Index (WLS5) Green Index 1.031 5.6%

Dist. Water (WLS6) Dist. Water 1.052 5.9%

Building Age (WLS7) Year 0.830 4.7%

Population Density (WLS8) Pop. Density 0.992 5.1%

Table 2.5: Factor structure of data
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Chapter 3

Multiple Linear Regression

In statistics, regression analysis is a set of statistical processes for esti-
mating the relationship between a dependent variable and independent
variables[4]. We consider the problem of regression when the study vari-
able depends on more than one explanatory or independent variables. It
is called a multiple linear regression[14] model, if the relation between the
variables is assumed to be linear.

3.1 Model[10]

Let y be a variable depending on n independent variables, x1, x2, . . . , xn.
y can be written as,

y = b0 + x1b1 + x2b2 + · · ·+ xnbn + ϵ (3.1)

The parameters b0, b1, · · · , bn are the regression coefficients associated with
x1, x2, · · · , xn respectively and ϵ is the random error component reflecting
the difference between the observed and fitted linear relationship.

Let there be m set of values of y with respect to n observed variables. The
m-tuples of observations are also assumed to follow the same model. Thus
they satisfy,

y1 = b0 + x11b1 + x12b2 + · · ·+ x1nbn + ϵ1

y2 = b0 + x12b2 + x22b2 + · · ·+ x2nbn + ϵ2
...

ym = b0 + xm1b1 + xm2b2 + · · ·+ xmnbm + ϵn (3.2)
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This can also be written in matrix form as,
y1
y2
...
ym

 =


1 x11 x12 · · · x1n
1 x21 x22 · · · x2n
... . . . ...
1 xm1 xm2 · · · xmn



b0
b1
b2
...
bn

+


ϵ1
ϵ2
...
ϵm

 (3.3)

in short Y = Xβ + ϵ where,

Y =


y1
y2
...
ym

 , X =


1 x11 x12 · · · x1n
1 x21 x22 · · · x2n
... . . . ...
1 xm1 xm2 · · · xmn

 , β =


b0
b1
b2
...
bn

 , ϵ =

ϵ1
ϵ2
...
ϵm

 (3.4)

In this model, assumptions are,

1. E(ϵ) = 0

2. E(ϵϵT ) = σ2I, where I is identity matrix of order m.

3. Rank(X) = n+ 1

4. ϵ ∼ N (0, σ2I)

3.1.1 Estimation of β

We will estimate β by using ordinary least squares (OLS). We have to find
β̂ from the set of all β such that the sum of squared residuals

S(β) = ∥Y −Xβ∥2 = (Y −Xβ)T (Y −Xβ) = ϵT ϵ =
m∑
i=1

ϵ2i (3.5)

is minimized. To minimize S(β), we take the derivative with respect to β
and set it to zero:

∂S

∂β
= −2XT (Y −Xβ) = 0

⇒ XTY = XTXβ̂

⇒ β̂ = (XTX)−1XTY
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Thus, the estimated coefficients β̂ in multiple linear regression are obtained
using the formula:

β̂ = (XTX)−1XTY (3.6)

We define the estimation of Y ,

Ŷ = Xβ̂ (3.7)

and the residual

ϵ̂ = Y − Ŷ (3.8)

3.1.2 Distribution of β̂

From the previous calculations,

β̂ = (XTX)−1XTY

β̂ = (XTX)−1XT (βX + ϵ) = β + (XTX)−1XT ϵ

β̂ − β = (XTX)−1XT ϵ⇒ E(β̂) = E(β)

(3.9)

V ar(β̂) = E((β̂ − β)(β̂ − β)T )

= E(((XTX)−1XT (ϵ))((XTX)−1XT (ϵ)))

= σ2(XTX)−1 (3.10)

Hence, E(β̂j) = E(βj) and V ar(β̂j) = σ2(XTX)−1
jj .

As the β̂ follows multivariate normal, the β̂ii follows normal. And we have
previously derived mean and variance of β̂ii. Hence,

β̂i ∼ N (βi, σ
2(XTX)−1

ii ) (3.11)

3.1.3 Distribution of Sum of Squared Residuals (SSR)

The SSR is defined as:

SSR = ϵ̂T ϵ̂ = ∥ϵ̂∥2 =
m∑
i=1

ϵ̂2i (3.12)
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Here,

ϵ̂ = Y −Xβ̂

= Y −X(XTX)−1XTY

= (Im −X(XTX)−1XT )Y (3.13)

Let

P = X(XTX)−1XT (3.14)

So,

ϵ̂T ϵ̂ = Y T (Im − P )2Y = Y T (Im − P )Y (3.15)

As ϵ ∼ N (0, σ2Im) and Y = Xβ + ϵ we get that,

Y ∼ N (Xβ, σ2Im) (3.16)

Note that P = P T and P = P 2. Hence, P is an orthogonal projector[11]

into column space of P along column space of Im − P which is the same
as the null space of P . So, Rm = C(P )⊕ C(Im − P ), where C(P ) denotes
the column space of P . Thus, rank of Im−P is m− (n+1), as rank(P ) =
rank(X) = n + 1. Also Im − P is symmetric and idempotent, it follows
that,

SSR

σ2
=
Y T (Im − P )Y

σ2
∼ χ2

m−(n+1)

This result follows from the theory of quadratic forms of multivariate nor-
mal distributions, If z ∼ N (0, σ2I) and A is symmetric, idempotent, and
of rank r, then,

zTAz

σ2
∼ χ2

r (3.17)

Therefore, the sum of squared residuals divided by the variance follows a
chi-squared distribution,

SSR

σ2
∼ χ2

m−n−1 (3.18)
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3.1.4 Confidence Interval of βi

Previously, we have discussed that,

β̂i ∼ N(βi, σ
2(XTX)−1

ii )

and
SSR

σ2
=

(m− (n+ 1))s2

σ2
∼ χ2

m−(n+1)

where

s2 =
m∑
i=1

ϵ̂2i
m− (n+ 1)

=
m∑
i=1

(yi − ŷi)
2

m− (n+ 1)
(3.19)

Note that s2 is an unbiased estimator of σ2. Consequently,

β̂i − βi√
s2(XTX)−1

ii

∼ tm−(n+1) (3.20)

Based on this result, 1− α confidence interval for βi is,(
β̂i − stα/2,m−(n+1)

√
(XTX)−1

ii , β̂i + stα/2,m−(n+1)

√
(XTX)−1

ii

)
(3.21)

Here tα/2,m−(n+1) refers to the α/2 quantile of a t-distribution with m −
(n+ 1) degrees of freedom.

The summarised results are-

1. OLS estimator of β is β̂ = (XTX)−1XTY .

2. β̂i ∼ N (βi, σ
2(XTX)−1

ii )

3. Confidence interval of βi is(
β̂i − stα/2,m−(n+1)

√
(XTX)−1

ii , β̂i + stα/2,m−(n+1)

√
(XTX)−1

ii

)
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3.2 Diagnostics

3.2.1 Multiple R-squared

If y is the dependent variable estimated by ŷ, then the multiple coefficients
of determination[16] R2 is given by,

R2 = 1− SSR

SSyy
= 1−

∑m
i=1(yi − ŷi)

2∑m
i=1(yi − ȳi)2

(3.22)

This represents the proportion of the total sample variation in y that can
be explained by the multiple regression model.

3.2.2 Adjusted R-squared

The use of an adjusted R2 is an attempt to account for the phenomenon
of the R2 automatically increasing when extra explanatory variables are
added to the model. There are many different ways of adjusting. This is
by far the most used one. We will denote it by R̄2.

R̄2 = 1− (1−R2)
m− 1

m− n− 1
(3.23)

3.2.3 Leverage

The leverage[19] score for the ith independent observation xi is given as:

hii = XT
i (X

TX)−1Xi =
∂ŷi
∂yi

(3.24)

Here, Xi is the ith column of X. It can be interpreted as the degree by
which the ith dependent value influences the ith fitted (predicted) value.
High leverage points have a stronger capacity to shift the regression line
and can be influential, causing the outcome and accuracy to be distorted.
A common rule to identify high leverage is to check whether it is greater
than 2

n

∑n
i=1 hii.

3.2.4 Cook’s Distance

Data points with large residuals and/or high leverage may distort the
outcome and accuracy of a regression. Cook’s distance[17] measures the
effect of deleting a given observation. Cook’s distance of ith observation
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is defined as,

Di =
1

(n+ 1)s2

m∑
j=1

(ŷj − ŷj(i))
2 =

e2i
(n+ 1)s2

[
hii

(1− h2ii)

]
(3.25)

where ŷj(i) is the estimated value of yj deleting the ith observation from
the initial data. If Cook’s distance of large number of variable Xi’s are
high (generally greater than 1), then this situation is problematic.

3.2.5 Diagnostic plots

1. Residual vs Fitted plot
It is a scatter plot of residuals on the y axis and fitted values (es-
timated responses) on the x axis. The plot is used to detect non-
linearity, unequal error variances, and outliers. In an ideal residual vs.
fitted plot, points should be randomly scattered around zero, without
any discernible patterns or trends, suggesting a good fit of the model
and adherence to the assumptions of linearity and homoscedasticity.

2. Normal QQ-plot of Residuals
This is a scatter plot with theoretical normal quantiles on the x-axis
and quantiles of residues in y-axis. This plot diagnoses if the residuals
are normally distributed. Ideally, the points in the plot should fall
along a specific straight line, which indicates that the residuals follow
a normal distribution.

3. Scale location plot
The standardised residual is given by yi−ŷi√

ŷi
. The intensity of the dis-

crepancy between actual and predicted values is measured by the
standardised residual. A scale-location plot is a scatter plot that
shows the square root of the absolute value of standardised residuals
against fitted values. If residuals are spread uniformly across predic-
tor ranges, then our assumption of homoscedasticity is valid. This is
how we may test the equal variance assumption graphically.

4. Residuals vs Leverage Plot
This is a scatterplot of standardized residulas against leverage. In-
fluential data points that might distort the outcome and accuracy of
a regression can be detected using this plot. The values on the top
right or bottom right corners outside the Cook’s distance curve are
considered problematic.
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3.3 Regresssion using Factor Scores

The factor scores obtained from factor analysis were used to do regression
against ”Property Prices”. We previously obtained the m×n matrix F of
factor scores, where m was the number of factors and n was the number
of data points in sample. So, our model for linear regression is

Y = F ′β + ϵ (3.26)

where Y is the n × 1 vector of property prices and F ′ is the n × (m + 1)
matrix defined by F ′ = [1|F T ].

Figure 3.1: Result of regression using factor scores

Regression was performed using lm() from stats library in R. The out-
put is shown in Figure 3.1. It was observed that the variance explained
(Multiple R-squared) was 44.5% which indicated a poor fit of the linear
model.

3.3.1 Diagnostic Plots

The diagnostic plots of the regression model are given in Figure 3.2. The
key observations are-

1. In the residuals vs fitted plot, there is some linearity towards the end.

2. The QQ-plot indicates that the residuals are approximately normal.
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3. In the scale location, the points are not spread randomly. We can see
a wave like pattern.

4. None of the points cross the Cook’s distance line.

5. Point 6114 is an outlier, as it significantly disrupts the pattern in each
graph.

Figure 3.2: Diagnostic plots of regression using factor scores

It is apparent that the model isn’t a good fit to the data as there exists
significant linearity and heteroscedasticity, along with high unexplained
variance. Thus, the model doesn’t explain the data well.

3.4 Regression using All Variables

We failed to find an acceptable linear model to predict ”Property Prices”
through EFA. Hence, we attempted to do regression on all the variables
directly. This improved the explained variance to 73.5%, which indicates
a satisfactory fit. The results are given in Figure 3.3.
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Figure 3.3: Result of regression using all variables

3.4.1 Diagnostic Plots

The diagnostic plots of the new regression model are given in Figure 3.4.
The key observations are-

1. The residuals vs fitted plot has improved, but still shows significant
linearity.

2. More points are on the line. Thus, the residuals are closer to normal.
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3. The scale-location plot too has improved but heteroscedasticity is still
present.

4. The point 6114 is beyond the Cook’s distance line and thus influences
the regression severely.

Figure 3.4: Diagnostic plots of regression using all variables

Hence, direct regression gives a slightly better fit than regression after EFA
in our case. But, there still are significant issues in the diagnostics that
indicate a poor fit of the linear model.

3.5 Hypothesis Test

A statistical hypothesis test is a method of statistical inference used to
decide whether the data provide sufficient evidence to reject a particular
hypothesis. A statistical hypothesis test typically involves a calculation
of a test statistic. Then a decision is made, either by comparing the test
statistic to a critical value or equivalently by evaluating a p-value computed
from the test statistic.

We have tested the sign of the coefficient of Green Index in our regression
model using all variables. The claim was that the coefficient would be
positive.
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Let the coefficient in question be βg.

Ho : βg ≥ 0
Ha : βg < 0

The test statistic is

T =
β̂g − βg√
s2(XTX)−1

gg

∼ tn−(m+1).

Using R the p-value is obtained as 2.01 × 10−8 < 0.05. Hence, we reject
the hypothesis at 5% level.

Hence, property price decreases linearly with green index if all other vari-
ables are fixed.
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Chapter 4

Conclusions

The aim of this project was to analyse a hedonic dataset presented in the
given data paper[5], which investigated the relationship between property
prices and various factors, with a particular focus on urban greenness. The
dataset comprised property prices and 27 associated variables, including
a newly proposed green index intended to quantify urban vegetation and
green amenities.
Our analysis began with an exploratory factor analysis (EFA) to uncover
the latent structure underlying the 27 variables. A well-fitting factor struc-
ture was identified suggesting the presence of interpretable underlying con-
structs among the hedonic variables.
Subsequently, we performed a multiple regression analysis using the fac-
tor scores obtained from the EFA. However, this model did not exhibit a
strong fit, indicating that the factor scores may not sufficiently capture
the variability in property prices. In contrast, a full regression model us-
ing all 27 variables as predictors resulted in a better fit, but diagnostic
plots revealed violations of key assumptions. These issues call for cautious
interpretation and perhaps the use of more robust or non-linear modeling
techniques in future work.
A key component of our investigation involved testing the hypothesis —
that an increase in the green index leads to higher property prices. Log-
ically we’d be inclined to believe that this was true, as people prefer to
live in green areas of the city. Contrary to this, our hypothesis test for the
regression coefficient of the green index revealed that its effect on property
price is negative and statistically significant. Furthermore, the correlation
between the green index and property prices was found to be negative,
providing additional evidence against the original claim.
These findings highlight the importance of validating empirical claims us-
ing robust statistical techniques. While urban greenness is often associ-
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ated with positive environmental and health outcomes, its economic valu-
ation—particularly in real estate contexts—can be complex and context-
dependent. Future research could benefit from incorporating non-linear
models or spatial effects to better understand these relationships.
In summary, our project was able to find an underlying factor structure
of the hedonic variables affecting property prices in Busan, South Korea
and also found evidence to challenge the conclusion that urban greenness
increases property prices in the area. Through the use of factor analysis,
regression modeling, and hypothesis testing, we have demonstrated how
rigorous statistical methodology can offer deeper insights into real-world
data and question surface-level interpretations.

4.1 Limitations

While the analysis in this project offers several insights, it is not without
its limitations:

• Model Assumptions: The multiple linear regression model using
all 27 variables violated key assumptions. These violations suggest
that the linear model may not be the most appropriate for capturing
the complex relationships present in the data.

• Factor Interpretability: Though exploratory factor analysis helped
reduce dimensionality, the interpretability of some factors was lim-
ited. In certain cases, the loadings did not suggest a clear thematic
connection, making practical interpretation difficult.

• Outliers and Influential Observations: The dataset contained
several outliers and influential points, which may have skewed the
regression results. While some diagnostics were performed, a more
thorough treatment (e.g., robust regression) was not implemented.

• Green Index Validity: The green index used in the dataset, al-
though novel, may not be a comprehensive representation of urban
greenness. It is constructed based on google street view and may not
fully capture accessibility, usability, or perceived value of green spaces
by residents.

• Geographic and Temporal Scope: The dataset is limited to a
single city (Busan, South Korea) and a single time frame. Thus, the
findings may not generalize to other urban contexts or time periods.
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4.2 Future Scope

This study opens several avenues for further research and methodological
improvement:

• Robust and Nonlinear Modeling: Future analyses could explore
nonlinear models (e.g., generalized additive models) or robust regres-
sion methods that are less sensitive to outliers and assumption viola-
tions.

• Confirmatory Factor Analysis (CFA): While EFA is exploratory,
follow-up work could involve CFA to test specific hypothesized factor
structures and validate measurement models.

• Spatial Analysis: Given the geographic nature of the data, incorpo-
rating spatial regression models or geographically weighted regression
could yield more location-aware insights.

• Broader and Longitudinal Data: Expanding the dataset to in-
clude other cities and multiple years could help test the robustness
and generalizability of the findings across different urban environ-
ments and over time.

• Alternative Measures of Greenness: Developing or incorporating
more nuanced indicators of green space—such as accessibility, main-
tenance, or user perception—could lead to more accurate valuation
of environmental amenities.
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