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1 If F is discrete, then show that Fn ⇒ F iff for each x in the support of F , P (Xn =

x)→ P (X = x). [15]

2 Let Xn ⇒ X and Yn
P→ c where c is a constant. Show that Xn + Yn ⇒ X + c. [15]

3 Let Xi, i = 1, 2, · · · , n be independent Uniform(0, 2θ). Find the asymptotic distri-

bution of (Qp + Q1−p)/2 where Qp is the p-th quantile. For what value of p is the

asymptotic variance minimized? [15]

4 Suppose that X1, · · · , Xn are iid with Cauchy distribution

fθ(x) =
θ

π

1

(x2 + θ2)
, −∞ < x <∞.

Prove that the likelihood equation has a unique solution θ̂n and that this solution

maximizes the likelihood function. Find the asymptotic distribution of θ̂n [15]

5 LetXi, i = 1, 2, · · · , n be independent Exponential( 1
λ
) random variables with density

function

fX(x) =
1

λ
e−

x
λ 0 < x <∞

Find the large sample distribution of
√
n
(

1
X̄n
− 1

λ

)
. [10]

6 X1, X2, · · · , Xn are iid Bernoulli(p). The parameter of interest is the population va-

riance. Find the asymptotic distribution of the unbiased estimator s2 in the following

cases [15]

(a) when p 6= 1/2

(b) when p = 1/2

7 Suppose that X1, · · · , Xn are iid with density fθ0(x) for θ0 in an open interval Ω ⊂ R,

the model is identifiable and the support does not depend on θ. Suppose that θ̃n is

any
√
n-consistent estimator of θ0. We set

δn = θ̃n −
l′(θ̃n)

l′′(θ̃n)



where l(θ) is the loglikelihood function. Show that

√
n(δn − θ0)⇒ N (0,

1

I(θ0)
)

under certain regularity conditions on l(θ) and its derivatives. State the conditions

explicitly. [15]

8 F is logistic: F (x) = (1 + exp(−x))−1,−∞ < x < ∞. Show that the limiting

distribution of the maximum is Gumbel, that is, P (Xnn − log n < t) → e−e
−t

as n → ∞ where Xkn is the k-th order statistic in a sample of size n from the

distribution F . [10]
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