
Large Sample Statistical Methods

July 31, 2020

General instructions

• The textbook is Serfling: Approximation Theorems in Mathematical Statistics.

• Go to the library and consult other books on Asymptotics.

• Try working out problems from the reference books.

• For a better understanding, you should all discuss among yourselves.

• You should not only workout the problems but also write down your solutions.
This will help you learn how to communicate your argument.

• Grading Final will be cumulative. Homework will not be graded thoroughly.
10% of homework score is on class involvement including attendance.

• My email is rsen@isichennai.res.in and phone no is 9176620249. Please email
me unless it is a very urgent situation.

• You are encouraged to meet Arnab on Wednesdays between 5pm and 6pm for
further discussions.
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Syllabus

1. Review of various modes of convergence of random variables and central limit
theorems. Continuous mapping theorem. Cramer-Wold device and multivari-
ate central limit theorem. Scheffe’s theorem. Polya’s theorem. Slutsky’s theo-
rem. Law of iterated logarithm (statement only).

2. Asymptotic distribution of transformed statistics. Delta method. Derivation of
the variance stabilizing formula. Asymptotic distribution of functions of sample
moments like sample correlation coefficient, coefficient of variation, measures
of skewness and kurtosis.

3. Asymptotic distribution of order statistics including extreme order statistics.
Asymptotic representation of sample quantiles.

4. Large sample properties of maximum likelihood estimates and the method of
scoring.

5. Large sample properties of parameter estimates in linear models.

6. Pearson’s chi-square statistic. Chi-square and likelihood ratio test statistics for
simple hypotheses related to contingency tables. Heuristic proof for composite
hypothesis with contingency tables as examples.

7. Large sample nonparametric inference (e.g., asymptotics of U-statistics and
related rank based statistics).

8. Brief introduction to asymptotic efficiency of estimators.

9. (if time permits) Edgeworth expansions.

References
RJ Serfling, Approximation Theorems in Mathematical Statistics
CR Rao Linear, Statistical Inference and its Applications
AW van der Vaart, Asymptotic Statistics
EL Lehmann, Elements of Large Sample Theory
TS Ferguson, A Course in Large Sample Theory.
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Review of basic concepts

0.1 Preliminary notations and definitions

Read Serfling 1.1, particularly 1.1.2, definition of quantile function and the accom-
panying Lemma in 1.1.4.

0.2 Expectation

1. Suppose X is a random variable. Define 2 new rvs as follows:

X+(ω) = X(ω) if X(ω) > 0

= 0 otherwise

X−(ω) = −X(ω) if X(ω) < 0

= 0 otherwise

X = X+ −X−

We will define expectation of non-negative random variables. For a random
variable X, we define E(X) = E(X+)− E(X−). when both are finite. Other-
wise, E(X) is not defined.

2. If X is a non-negative simple random variable, that is, it takes countably many
values x1, x2, · · · with probabilities p1, p2, · · · , define E(X) =

∑
i xipi

3. For a general non-negative random variable X, define a sequence of random
variables Xn as follows

Xn(ω) =
k

2n
if
k

2n
< X(ω) <

k + 1

2n
(1)

Xn(ω) ↑ X(ω) for each ω and Xn is a non-negative simple random variable.
(Exercise) Now we define E(X) = limn→∞E(Xn)

In case of a discrete random variable, the new definition of expectation coincides
with our old definition.
If X is a random variable with density f , then it follows from the above definition
that E(X) =

∫
xf(x)dx.(Exercise)

0.3 Multiple Random Variables

Properties of multivariate cdf FX1,X2,··· ,Xm = F

1. limxj→−∞ F (x1, · · · , xm) = 0 ∀j ∈ 1, · · · ,m
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2. limx1→∞,··· ,xm→∞ F (x1, · · · , xm) = 1

3. F (x1, · · · , xm) is increasing in each argument.

4. (Rectangle inequality)For all (a1, · · · , am), (b1, · · · , bm) with ai < bi∀i ∈ 1, · · · ,m,

2∑

i1=1

· · ·
2∑

im=1

(−1)i1+···+imF (x1i1 , · · · , xmim) ≥ 0

where xj1 = aj and xj2 = bj for all j ∈ 1, · · ·m.

0.4 Change of variables formula

Suppose y = g(x) is a differentiable and either increasing or decreasing function of
x for all values in the support of the random variable X having density fX(.). Con-
sider the inverse transform x = h(y). Then the density of Y exists and is given by
fY (y) = f(h(y))h′(y).

Multivariate version: Suppose X has density fX(x) and Y = g(X), where g :
Rk → Rk is differentiable and has a well-defined inverse. We are interested in
determining the density of Y . Note that ˙ġ(x) is a k× k matrix, namely, the matrix
of partial derivatives ∂gi(x)/∂xj . This square matrix is called the Jacobian matrix.
We will use the term | Jacobian | to refer to the determinant of this matrix. Note
that the Jacobian of g(x) is a real-valued function of x. We denote this function

Jg : Rk → R. Thus, Jg(x)
def
= Det{ġ(x)}.

Suppose now that h(y) denotes the inverse of g(x), so that h ◦ g(x) = x for all x
and g ◦ h(y) = y for all y.

Then we may write the density function for Y in terms of the density function
for X as follows:

fY (y) =| Jh(y) | fX ◦ h(y) (2)

It is important to note, that the Jacobian referred to is the Jacobian of the inverse
transformation, not the transformation itself.

0.5 Sums of independent random variables

• Convolution formula (pg 56 Ross)

fX+Y (a) =

∫ ∞

−∞
fX(a− y)fY (y)dy

• Through MGF
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0.6 Exercises

(Submission on Jan 14th)

1. Prove Lemma 1.1.4 of Serfling

2. Show that when X is a continuous random variable with density f , then the
new definition of expectation in section 1.4 of notes coincides with the old
definition E(X) =

∫
sf(x)dx.

3. Prove the properties of monotonicity, subadditivity and continuity, starting
from the definition of probability.

4. For any n events, A1, · · · , An, show that P (
⋃
Ai) = S1−S2+S3−· · ·±Sn. where

S1 =
∑
P (Ai), S2 =

∑
i<j P (Ai

⋂
Aj) etc. This is known as Poincare’s theorem

or the inclusion-exclusion principle. (Jules Henri Poincare was a French Mathe-
matician/Mathemetical Physicist/Philosopher; one of the greatest Mathemati-
cians; 1854 - 1912).

5. Show that

(a) If f(x) = o(g(x)) then f(x) = O(g(x));

(b) If f(x) = O(g(x)) then O(f(x)) +O(g(x)) = O(g(x));

(c) If f(x) = O(g(x)) then o(f(x)) + o(g(x)) = o(g(x));

(d) O(f(x))O(g(x)) = O(f(x)g(x));

(e) o(f(x))O(g(x)) = o(f(x)g(x));

6. Show that any function with the properties

(a) F is non-decreasing

(b) F is right-continuous

(c) limx→∞ F (x) = 1

(d) limx→−∞ F (x) = 0

is the cdf of some random variable.

7. Using the definition F (b) = P (X ≤ b), show that F need not be left-continuous.
Can you think of an alternate definition that will make F left-continuous. Is
the new function right continuous?

8. Suppose that f and g are densities on an interval. Show that f + g can not be
a density. Show that for any number 0 ≤ c ≤ 1, cf + (1− c)g is a density.

9. For a non-negative continuous rv X show that E(X) =
∫

(1− F (x))dx
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10. If X is a random variable that takes only non-negative values, then for any
a > 0, P (X ≥ a) ≤ E(X)/a. Show this for a continuous rv. This is known as
Markov inequality.

11. If X is a random variable with mean µ and variance σ2, then for any value of
k > 0, P (| X − µ |≥ k) ≤ σ2/k2. Prove this using Markov inequality. This is
known as Chebyshev’s inequality.

12. Show that (E(XY ))2 ≤ E(X2)E(Y 2). [Hint: Start with E(tX + Y )2.] This
is known as the Cauchy-Schwartz inequality and is useful in statistics to show
things like correlation coefficient is less than 1 in absolute value.

13. If g is a convex function then E(g(X)) ≥ g(E(X)) provided the expectations
exist and are finite. This is called Jensen’s inequality.[Hint: use Taylor’s series
expansion]

14. X ∼ N(0, 1), Y = X2, then use the change of variables formula to show that
Y ∼ χ2

1

15. X is a continuous random variable with cdf F and Y = F (X), then what is
the distribution of Y ?

16. An urn contains nr balls numbered 1, 2, · · · , n where each number i, 1 ≤ i ≤ n,
appears on r balls. From the urn, N balls are drawn without replacement. Find
the expectation and variance of the number of distinct symbols that appear in
the sample.

17. Suppose that F1, · · · , Fk are k distribution functions each of one variable. De-
fine F : Rk 7→ R by F (a) =

∏
Fi(ai) where a = (a1, · · · , ak). Show that F is

a distribution function.

18. Let X1, X2, X3 be independent with common exponential distribution. Find
the joint density of (X2 −X1, X3 −X1) .

19. Suppose that X1, X2, · · · , Xk have joint pdf of the form g(x′Ax) where A is a
symmetric positive definite matrix. Let Y = X ′AX. Show that Y has pdf

πk/2√
| A |γ(k/2)

yk/2−1g(y) for y > 0

20. Suppose that X is a random variable with mgf M(t) finite for all t. Show
that P (X ≥ x) ≤ e−txM(t) for all t ≥ 0. Hence deduce that P (X ≥ x) ≤
mint≥0e

−txM(t). In particular if X ∼ Γ(α, λ), then show that P (X ≥ 2α/λ) ≤
(2/e)α
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21. Use the polar coordinate transformation to show that bivariate normal(0, I) is
a density.
The distribution of the distance from the origin is called the Raleigh density
and is useful in electrical engineering.

22. Suppose that φ1 and φ2 are bivariate normal densities with means zero, vari-
ances 1 and different correlation coefficients. Show that their mixture 1

2
(φ1+φ2)

is a nonnormal bivariate density with normal marginals.

23. Let X1, · · · , Xn be iid uniform (0, 1) and Sn is their sum. Show that its density
is given by

fn(x) =
1

(n− 1)!

[
xn−1 −

(
n
1

)
(x− 1)n−1

+ +

(
n
2

)
(x− 2)n−1

+ − · · ·
]

for 0 < x < n. Here a+ denotes a or 0 according as a > 0 or not. f1 is
discontinuous at some points. f2 is continuous but not differentiable at some
points. f3 is differentiable at all points but second derivative does not exist at
some points.
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1 Concepts of convergence of a sequence of r.v.s.

1.1 Topics covered

1. Different modes of convergence: definition

2. Relationships: implications and counterexamples

(a) Convergence in probability does not imply convergence with probability
one. Counterexample

(b) OP and oP (1.2.5). Convergence in distribution implies bounded in prob-
ability.

(c) Sum and product of sequences of RV’s converging with probability one.

(d) Convergence in probability implies convergence in distribution.

(e) Sum and product of sequences of RV’s converging in probability.

(f) Sum and product of sequences of RV’s converging in r-th moment. Minkowski
inequality.

(g) Convergence in probability does not imply convergence in r-th moment.
Counterexample

(h) Convergence in distribution does not imply convergence in probability.
Counterexample

(i) Almost sure convergence in union intersection notation

(j) Convergence with probability one implies convergence in probability.

(k) Convergence in r-th moment implies convergence in probability.

(l) Continuous function of sequence of RV’s converging in probability.

(m) MCT, DCT, Fatou, Levy

3. Scheffe 1.5.1C

4. Cramer-Wold device 1.5.2

5. Polya 1.5.3

6. Slutsky 1.5.4

7. LLN 1.8

8. Continuous mapping theorem 1.7 (iii) [needs Skorohod 1.6.3 and countable
discontinuities of F−1 1.5.6].

9. CLT (univariate and multivariate) 1.9

10. Law of iterated logarithms 1.10
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1.2 Exercises

(Submission on Jan 21st)

1. Read 1.5.5 and 1.15 of textbook.

2. If for each ε > 0,
∑
P (|Xn − X| > ε) < ∞, then show that Xn → X a.e. If∑

E|Xn −X|2 <∞, then show that Xn → X a.e.

3. If Xn → X in probability and E(Xn − Yn)2 → 0 then show that Yn → X in
probability.

4. If Xn → X in probability and Xn → Y in probability, then show that P (X =
Y ) = 1.

5. Let Pn put mass 1/n at each of the points 0, 1/n, · · · , (n−1)/n. Show Pn ⇒ U ,
the Uniform (0,1) probability. What if Pn puts mass 1/(n + 1) at each of the
points 0, 1/n, · · · , n/n.

6. Suppose Pn puts mass 2k/n(n + 1) at the point k/n for k = 1, 2, · · · , n. Does
this sequence of probabilities converge?

7. If F is discrete, then show that Fn ⇒ F iff for each x in the support of F ,
P (Xn = x)→ P (X = x).

8. Xn ⇒ X. Show by examples that each Xn may be integrable but X may not
be. X may be integrable but NONE of the Xn is integrable.

9. Give an example of a sequence of densities that converge point-wise to a func-
tion that is NOT a density.

2 Asymptotic Distribution of Transformed Statis-

tics

2.1 Delta method

(pp 240-245 Casella & Berger;pp 58-59 Lehmann & Casella) In the simplest form of
the central limit theorem, we consider a sequence X1, X2, ...Xn of independent and
identically distributed (univariate) random variables with mean µ and finite variance
σ2. In this case, the central limit theorem states that

√
n(X̄n − µ)⇒ N (0, σ2) (3)

In this section, we wish to consider the asymptotic distribution of, say, some function
of X̄n. In the simplest case, the answer depends on results already known: Consider
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a linear function h(t) = at+b for some known constants a and b. Clearly E(h(X̄n)) =
aµ+b = h(µ) by the linearity of the expectation operator. Therefore, it is reasonable
to ask whether

√
n(h(X̄n) − h(µ)) tends to some distribution as n → ∞. But the

linearity of h(t) allows one to write

√
n(h(X̄n)− h(µ)) = a

√
n(X̄n − µ) (4)

We conclude that √
n(h(X̄n)− h(µ))⇒ N (0, a2σ2) (5)

None of the preceding development is especially deep; one might even say that it is
obvious that a linear transformation of the random variable Tn alters its asymptotic
distribution by a constant multiple. Yet what if the function h(t) is nonlinear? It is
in this nonlinear case that a strong understanding of the argument above, as simple
as it may be, pays real dividends. For if Tn is consistent for θ (say), then we know
that, roughly speaking, Tn will be very close to θ for large n. Therefore, the only
meaningful aspect of the behavior of h(t) is its behavior in a small neighborhood of
θ. And in a small neighborhood of θ, h(θ) may be considered to be roughly a linear
function. Formally we use the Taylor expansion to obtain the following result:

Theorem 1 (First Order Delta Method). If

√
n(Tn − θ)⇒ N (0, τ 2) (6)

then √
n(h(Tn)− h(θ))⇒ N (0, τ 2(h′(θ))2) (7)

provided h′(θ) exists and is not zero.

Proof. Step 1: It follows from equation (6) that Tn → θ in probability.
For a fixed ε > 0, P (| Tn − θ |> ε) = P (| Xn |>

√
nε) where Xn =

√
n(Tn − θ).

From equation (6), Xn ⇒ X where X ∼ N (0, τ 2).
For given δ, one can find N1, so that for n > N1,

P (| Xn |>
√
nε) < P (| X |> √nε) + δ/2

One can find N2 > N1 so that for n > N2, P (| X |> √nε) < δ/2.
Hence for n > N2, P (| Tn − θ |> ε) < δ.
Step 2: Consider the Taylor expansion of h around θ.

h(x) = h(θ) + (x− θ)(h′(θ) + r) (8)

where r → 0 as x→ θ.
Define Rn as the remainder in

h(Tn) = h(θ) + (Tn − θ)(h′(θ) +Rn) (9)
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By step 1, Tn → θ in probability.
Hence Rn → 0 in probability.
This implies h′(θ) +Rn → h′(θ) in probability.

Step 3: The result follows by applying Slutsky’s theorem to
√
n(h(Tn)− h(θ)).√

n(h(Tn)− h(θ)) =
√
n(Tn − θ)× (h′(θ) +Rn).

Let Yn = (h′(θ) +Rn) and Xn =
√
n(Tn − θ) as above.

Xn ⇒ X and Yn → c in probability where c = h′(θ), X ∼ N (0, τ 2).
By Slutsky’s theorem,

√
n(h(Tn)− h(θ)) = YnXn ⇒ cX.

The distribution of cX is N (0, τ 2(h′(θ))2).

Example 1(Estimating the odds) Let Xi, i = 1, 2, · · · , n be independent
Bernoulli(p) random variables and let Tn = 1

n

∑n
i=1 Xi. A popular parameter is

the odds p
1−p . For example, if the data represent the outcomes of a medical treat-

ment with p = 2/3, then a person has odds 2:1 of getting better. We consider the
estimate Tn

1−Tn for the parameter h(p) = p
1−p . Since h′(p) = 1

(1−p)2 , it follows from
Theorem 1 that

√
n

[
Tn

1− Tn
− p

1− p

]
⇒ N (0,

(
1

(1− p)2

)2

p(1− p) =
p

(1− p)3
) (10)

Example 2(Exponential Rate) LetXi, i = 1, 2, · · · , n be independent Exponential(λ)
random variables and let Tn = 1

n

∑n
i=1Xi. Then by CLT,

√
n(Tn − λ)⇒ N (0, λ2) (11)

Suppose we are now interested in the large sample behavior of the estimate 1
Tn

of the

rate h(λ) = 1
λ
.

Since h′(λ) = − 1
λ2

, it follows from Theorem 1 that

√
n(

1

Tn
− 1

λ
)⇒ N (0,

(
− 1

λ2

)
λ2 =

1

λ2
) (12)

Example 3 (Binomial Variance) LetXi, i = 1, 2, · · · , n be independent Bernoulli
random variables and let Tn = 1

n

∑n
i=1Xi. Then by CLT,

√
n(Tn − p)⇒ N (0, p(1− p)) (13)

Suppose we are now interested in the large sample behavior of the estimate Tn(1−Tn)
of the variance h(p) = p(1− p).
Since h′(p) = 1− 2p, it follows from Theorem 1, when p 6= 1/2, that

√
n(Tn(1− Tn)− p(1− p))⇒ N (0, (1− 2p)2p(1− p)) (14)

What happens when h′(θ) = 0?
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Theorem 2 (Second Order Delta Method). If

√
n(Tn − θ)⇒ N (0, τ 2) and h′(θ) = 0 (15)

then

n(h(Tn)− h(θ))⇒ 1

2
τ 2h′′(θ)χ2

1 (16)

Proof. Consider the Taylor expansion of h(Tn) around h(θ) upto the second term.

h(Tn) = h(θ) + (Tn − θ)h′(θ) +
1

2
(Tn − θ)2(h′′(θ) +Rn) (17)

where Rn → 0 as Tn → θ.
Step 1: It follows from equation (15) that Tn → θ in probability.

Hence Rn → 0 in probability. This implies h′′(θ) +Rn → h′′(θ) in probability.
Step 2: 1

τ2
n(Tn − θ)2 ⇒ χ2

1.
This follows from equation (15) after dividing by τ and squaring a standard normal
random variable.

Step 3: The result follows by applying Slutsky’s theorem to n(h(Tn)− h(θ)).
n(h(Tn)− h(θ)) = n(Tn − θ)2 × (h′′(θ) +Rn) since h′(θ) = 0.
Let Yn = τ 2(h′′(θ) +Rn) and Xn = 1

τ2
n(Tn − θ)2.

Xn ⇒ X and Yn → c in probability where c = τ 2h′′(θ), X ∼ χ2
1.

By Slutsky’s theorem, n(h(Tn)− h(θ)) = YnXn ⇒ cX.
The distribution of cX is τ 2h′′(θ)χ2

1.

Example 3’(Binomial Variance at p = 1/2) For h(p) = p(1− p), we have at
p = 1/2, h′(1/2) = 0 and h′′(1/2) = −2. Hence from theorem 2, at p = 1/2,

n

[
Tn(1− Tn)− 1

4

]
⇒ −1

4
χ2

1 (18)

Although the equation (18) might appear strange, note that Tn(1 − Tn) ≤ 1/4, so
the left side is always negative. An equivalent form is

4n

[
1

4
− Tn(1− Tn)

]
⇒ χ2

1 (19)

Corollary 1 (Bias of h(θ)). The asymptotic bias of h(Tn) is

h′(θ)ABias(Tn) +
h′′(θ)

2
AMSE(Tn) (20)

where ABias and AMSE are the asymptotic bias and MSE respectively.
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Proof. It follows from equation (17) that

Bias(h(Tn)) = h′(θ)Bias(Tn) +
1

2
h′′(θ)MSE(Tn) +

1

2
E{Rn(Tn − θ)2} (21)

The result follows from this intuitively. A rigorous proof would require uniform
integrability conditions and we refrain from that in this course.

One implication is that even if Tn is unbiased, h(Tn) is not: taking a non-linear
function typically introduces a bias of the order of AMSE. For eg, for Tn = X̄, for
iid observations, bias=0, variance=σ2

n
. So the AMSE of Tn, hence bias of h(Tn) is

order of 1
n
.

We now present a result on multivariate Delta method without proof. The proof
relies on Wold device. The interested reader can find more details in Lehmann and
Casella (Sec 1.8).

Theorem 3 (Multivariate Delta Method). Let (X1ν , · · · , Xsν), , ν = 1, · · · , n be n
independent s-tuples of random variables with E(Xiν) = ξi and Cov(Xiν , Xjν) = σij.
Let X̄i =

∑n
ν=1 Xiν/n, and suppose that h is a real valued function of s arguments

with continuous first partial derivatives. Then

√
n
[
h(X̄1, · · · , X̄s)− h(ξ1, · · · , ξs)

]
⇒ N (0, υ2), where υ2 =

s∑

i=1

s∑

j=1

σij
∂h

∂ξi

∂h

∂ξj

(22)

Corollary 2 (Multi-dimensional Delta method). Assume the conditions of Theorem
3, but now h is a k-dimensional function. Let Dhk×s = ((∂hi

∂ξj
))i,j be the matrix of par-

tial derivatives of h and Σs×s = ((σij))i,j be the covariance matrix of (X1ν , · · · , Xsν).
It follows from Theorem 3 that

√
n
[
h(X̄1, · · · , X̄s)− h(ξ1, · · · , ξs)

]
⇒ Nk(0, υ2), where υ2 = DhΣDhT (23)

Example 4 (Variance of Variance estimator) Suppose X1, · · · , Xn are iid
random variables with mean µ and variance σ2. We are interested in the joint
distribution of (X̄, s2 = 1

n

∑
(Xi − X̄)2), the estimator of (µ, σ2). Denoting E(Xk)

by mk, we have

E(X̄) = m1

E(X̄2) = m2

Cov(X̄, X̄2) = (m3 −m1m2)/n

Var(X̄) = (m2 −m2
1)/n

Var(X̄2) = (m4 −m2
2)/n
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The parameter of interest is (µ, σ2) = h(m1,m2) = (m1,m2 −m2
1). The derivatives

of h are ∂h
∂m1

= (1,−2m1) and ∂h
∂m2

= (0, 1).

√
n
[
h(X̄, X̄2)− h(m1,m2)

]
⇒ N (0, υ2), where (24)

υ2 = DhΣDhT =

(
1 0

−2m1 1

)(
m2 −m2

1 m3 −m1m2

m3 −m1m2 m4 −m2
2

)(
1 −2m1

0 1

)

=

(
m2 −m2

1 2m3
1 +m3 − 3m1m2

2m3
1 +m3 − 3m1m2 −4m4

1 + 8m2
1m2 +m4 −m2

2 − 4m1m3

)

2.2 Transformations and variance stabilizing formula

(Rao 6g; pp 76 Lehmann & Casella; pp87 Lehmann)
Usual Assumption in ANOVA and Regression is that the variance of each obser-

vation is the same. In many cases, the variance is not constant, but is related to the
mean. For example,

• Poisson Data (Counts of events): E(X) = Var(X) = µ

• Binomial Data (and Percents): E(X) = np, Var(X) = np(1− p)

• Power relationship: E(X) = µ, Var(X) = σ2 = α2µ2β

• General Case: E(X) = θ, Var(X) = σ2(θ)

Random variable X has mean θ and variance σ(θ). We want a transformation h(X)
that has constant (does not depend on θ) variance. In the general case above, writing
out a first-order Taylor series expansion:

h(X) ≈ h(θ) + (X − θ)h′(θ)
⇒ h(X)− h(θ) ≈ (X − θ)h′(θ)
⇒ [h(X)− h(θ)]2 ≈ (X − θ)2(h′(θ))2

Now taking expectations on both sides, we get Var[h(X)] ≈ Var(X)[h′(θ)]2 =
σ2(θ)[h′(θ)]2. Now, let

h(θ) = c

∫
1

σ(θ)
dθ. (25)

⇒ Var[h(X)] = σ2(θ)c2[ d
dθ

∫
1

σ(θ)
dθ]2 = c2. Thus, taking this transformation on X

gives a random variable with an approximately constant variance.

In particular, if one has asymptotic normality, that is
√
n(Tn−θ)⇒ N (0, σ2(θ)),

then from the Delta method,
√
n(h(Tn) − h(θ)) ⇒ N (0, (h′(θ))2σ2(θ)). Same argu-

ment above implies taking h(.) given by equation (25) will yield
√
n(h(Tn)−h(θ))⇒

N (0, c2).
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The extensive literature on variance-stabilizing transformations and transforma-
tions to approximate normality is reviewed in Hoyle(International Statistical Review,
1973). Two later references are Efron(Annals of Statistics, 1982) and Bar-Lev and
Enis (Statistics and Probability Letters, 1990).

Example 5 (Power Relationship) Suppose σ2(θ) = α2θ2β.
Case 1: β 6= 1
h(θ) =

∫
1

σ(θ)
dθ =

∫
1
αθβ

dθ = 1
α
θ−β+1

−β+1
= cθ1−β

Case 2: β = 1
h(θ) =

∫
1

σ(θ)
dθ =

∫
1
αθ
dθ = 1

α
log(θ) = clog(θ)

Note This family of transformations are known as the Box-Cox family of
power transformations and play an important role in applied statistics. For more
details and interesting discussions, see Bickel and Doksum, Box and Cox 1982, Hink-
ley and Runger 1984. To estimate β:

σ = αθβ,⇒ log(σ) = log(α) + βlog(θ)

Thus, we can estimate β by regressing log(si) on log(X̄i). See example in Kuehl (p.
137), for this, where the logarithmic transformation is suggested. ( β̂ = 0.99).

Example 6 (Poisson data)Xi ∼ Poisson(λ), Tn = X̄n. Then θ = λ, σ(θ) =
√
λ.

Then (25) implies

h(θ) = c

∫
1

σ(θ)
dθ = c

∫
1√
θ
dθ = 2c

√
θ

Thus h(Tn) = 2c
√
Tn. Putting c = 1, we have

2
√
n(
√
X̄ −

√
λ)⇒ N (0, 1)

Example 6’ (Poisson Confidence Intervals) It follows from Example 2 that
for any λ,

P (|
√
X̄−
√
λ |< zα/2

2
√
n

)→ 1−α, as n→∞ where z denotes the Normal quantile.

This provides the following approximate (the results are asymptotic, so for any finite
n they are approximate) confidence intervals for

√
λ:

√
X̄ − zα/2

2
√
n
<
√
λ <

√
X̄ +

zα/2
2
√
n

The lower end point can be negative since X̄ can be arbitrarily close to zero. However,

for any positive λ we have X̄
P→ λ and

zα/2
2
√
n
→ 0. So the probability of a negative

end-point tends to 0 as n→∞. When this does occur one would replace the left end
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point by 0. From this modified interval, one can obtain the corresponding interval
for λ at the same level by squaring. This leads to the approximate level α confidence
interval λ < λ < λ where

λ =

{ (√
X̄ − zα/2

2
√
n

)2

if
√
X̄ − zα/2

2
√
n
> 0

0 otherwise
and λ =

(√
X̄ +

zα/2
2
√
n

)2

Example 7 (Binomial data) Xi ∼ Bernoulli(p), Tn = X̄n. Then θ = p, σ(θ) =√
p(1− p). Then (25) implies

h(θ) = c

∫
1

σ(θ)
dθ = c

∫
1√

θ(1− θ)
dθ = c arcsin

√
θ

Thus h(Tn) = c arcsin(
√
Tn).

Example 8 (Chi-squared data) Let Yi = X2
i where Xi ∼ N (0, σ2) and Tn =

Ȳn. Then θ = σ2, σ(θ) = Var(Yi) = E(X4
i )− (E(X2

i ))2 = 3θ2 − θ2 = 2θ2. Then (25)
implies

h(θ) = c

∫
1

σ(θ)
dθ = c

∫
1√
2θ
dθ =

c√
2

log(θ)

Thus h(Tn) = c√
2

log(Tn). Putting c = 1, we have

√
n

2
(log(Ȳ )− log σ2)⇒ N (0, 1)

2.3 Asymptotic distributions of functions of sample moments

The weak law of large numbers tells us that if X1, X2, · · · , Xn are independent and
identically distributed with E | X1 |k< 1, then

1

n

n∑

i=1

Xk
i

P→ EXk
1 . (26)

That is, sample moments are (weakly) consistent. For example, the sample variance,
which we define as

s2
n =

1

n

n∑

i=1

(Xi − X̄n)2 =
1

n

n∑

i=1

X2
i − (X̄n)2 (27)

is consistent for Var(Xi) = EX2
i − (E(Xi))

2. However, consistency is not the end of
the story. The central limit theorem and the delta method will prove very useful in
deriving asymptotic distribution results about sample moments.
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Example 9 (Distribution of sample T statistic) Suppose X1, X2, · · · , Xn

are iid with E(Xi) = µ and Var(Xi) = σ2 < ∞. Define s2
n as in Equation (27), and

let

Tn =

√
n(X̄n − µ)

sn
. (28)

Letting An =
√
n(X̄n−µ)

σ
and Bn = σ/sn, we obtain Tn = AnBn. Therefore, since

An ⇒ N(0, 1) by the central limit theorem and Bn
P→ 1 by the weak law of large

numbers, Slutsky’s theorem implies that Tn ⇒ N (0, 1). In other words, T statistics
are asymptotically normal under the null hypothesis.

Example 10 (Sample Correlation) Suppose that (X1, Y1), (X2, Y2), · · · , (Xn, Yn)
are iid vectors with E(X4

i ) <∞ and E(Y 4
i ) <∞. For the sake of simplicity, we will

assume without loss of generality that E(Xi) = E(Yi) = 0 (alternatively, we could
base all of the following derivations on the centered versions of the random variables).
We wish to find the asymptotic distribution of the sample correlation coefficient, r.
If we let 



mx

my

mxx

myy

mxy




=
1

n




∑n
i=1Xi∑n
i=1 Yi∑n
i=1X

2
i∑n

i=1 Y
2
i∑n

i=1 XiYi




(29)

and s2
x = mxx −m2

x, s
2
y = myy −m2

y, and sxy = mxy −mxmy. Then r = sxy/(sxsy).
According to the central limit theorem,

√
n







mx

my

mxx

myy

mxy



−




0
0
σ2
x

σ2
y

σxy






⇒ N5







0
0
0
0
0



,




Cov(X1, X1) · · · Cov(X1, X1Y1)
Cov(Y1, X1) · · · Cov(Y1, X1Y1)

...
. . .

...
Cov(X1Y1, X1) · · · Cov(X1Y1, X1Y1)







(30)
Let Σ denote the covariance matrix in expression (30). Define a function h : R5 → R3

such that h applied to the vector of moments in Equation (29) yields the vector
(s2
x, s

2
y, sxy). Then

Dh




a
b
c
d
e




=




−2a 0 −b
0 −2b −a
1 0 0
0 1 0
0 0 1




T

(31)
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Therefore, if we let

Σ∗ =



Dh




0
0
σ2
x

σ2
y

σxy







Σ



Dh




0
0
σ2
x

σ2
y

σxy







T

=




Cov(X2, X2) Cov(X2, Y 2) Cov(X2, XY )
Cov(Y 2, X2) Cov(Y 2, Y 2) Cov(Y 2, X1Y1)
Cov(XY,X2) Cov(XY, Y 2) Cov(XY,XY )




(32)
then by the delta method,

√
n






s2
x

s2
y

sxy


−




σ2
x

σ2
y

σxy




⇒ N3(0,Σ∗) (33)

Next, define the function g(a, b, c) = c/
√
ab, so that we have g(s2

x, s
2
y, sxy) = r. Then

[Dg(a, b, c)] =
1

2
(
−c√
a3b

,
−c√
ab3

,
2√
ab

) (34)

so that

A := [Dg(σ2
x, σ

2
y , σxy)] = (

−σxy
2σ3

xσy
,
−σxy
2σxσ3

y

,
1

σxσy
) = (

−ρ
2σ2

x

,
−ρ
2σ2

y

,
1

σxσy
) (35)

Therefore, using the delta method once again yields
√
n(r − ρ)⇒ N (0, AΣ∗AT ). (36)

Example 4 Consider the special case of bivariate normal (Xi, Yi). In this case,
we may derive

Σ∗ =




2σ4
x 2ρ2σ2

xσ
2
y 2ρσ3

xσy
2ρ2σ2

xσ
2
y 2σ4

y 2ρσxσ
3
y

2ρσ3
xσy 2ρσxσ

3
y (1 + ρ2)σ2

xσ
2y


 (37)

In this case, AΣ∗AT = (1− ρ2)2, which implies that
√
n(r − ρ)⇒ N (0, (1− ρ2)2) (38)

In the normal case, we may derive a variance-stabilizing transformation. According
to Equation (36), we should find a function f(x) satisfying f ′(x) = (1−x2)−1. Since

1

1− x2
=

1

2(1− x)
+

1

2(1 + x)
,

we integrate to obtain

f(x) =
1

2
log

1 + x

1− x.
This is called Fisher’s transformation; we conclude that

√
n(

1

2
log

1 + r

1− r −
1

2
log

1 + ρ

1− ρ)⇒ N (0, 1)
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Exercises

1. Ratio Estimator Suppose X and Y are random variables with nonzero means
µX and µY respectively. The function to be estimated is h(µX , µY ) = µX

µY
and

we have random samples X1, · · · , Xn and Y1, · · · , Yn. Conclude from theorem
3

√
n
[
h(X̄, Ȳ )− h(µX , µY )

]
⇒ N (0, υ2),

where υ2 = Var(X)
1

µ2
Y

+ Var(Y )
µ2
X

µ4
Y

− 2Cov(X, Y )
µX
µ3
Y

2. k-th order Delta Method If

√
n(Tn − θ)⇒ N (0, τ 2) and h′(θ) = h′′(θ) = · · · = h(k−1)(θ) = 0 (39)

then

nk/2(h(Tn)− h(θ))⇒ 1

k!
τ kh(k)(θ) [N (0, 1)]k (40)

3. Direct Evaluation of Example 2’ In the setting of example 2’, denote Yn =
Tn−1/2. Show that 2

√
nYn ⇒ N (0, 1). Show that 4n

[
1
4
− Tn(1− Tn)

]
= 4nY 2

n

and hence has asymptotic χ2
1 distribution.

4. Suppose that X1, X2, · · · , Xn are iid N (0, σ2) random variables.
(a) Based on the result of Example 4, give an approximate test at α = 0.05 for
H0 : σ2 = σ2

0 vs. Ha : σ2 6= σ2
0.

(Hint: For N (0, σ2) random variable m1 = 0,m2 = σ2,m3 = 0,m4 = 3σ4.)
(b) For n = 25, estimate the true level of the test in part (a) for σ2

0 = 1 by
simulating 5000 samples of size n = 25 from the null distribution. Report the
proportion of cases in which you reject the null hypothesis according to your
test (ideally, this proportion will be about .05).

5. Verify expressions (37) and (38).

6. Derive the asymptotic distribution of the coefficient of variation, sample skew-
ness and sample kurtosis.

7. Assume (X1, Y1), · · · , (Xn, Yn) are iid from some bivariate normal distribution.
Let ρ denote the population correlation coefficient and r the sample correlation
coefficient.
(a) Describe a test of H0 : ρ = 0 against Ha : ρ 6= 0 based on the fact that√
n[f(r) − f(ρ)] ⇒ N (0, 1), where f(x) is Fisher’s transformation f(x) =

(1/2)log[(1 + x)/(1− x)]. Use α = .05.
(b) Based on 5000 repetitions each, estimate the actual level for this test in
the case when E(Xi) = E(Yi) = 0,Var(Xi) = Var(Yi) = 1, and n ∈ 3, 5, 10, 20.
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8. Suppose that X and Y are jointly distributed such that X and Y are Bernoulli
(1/2) random variables with P(XY = 1) = θ for θ ∈ (0, 1/2).
Let (X1, Y1), (X2, Y2), · · · , (Xn, Yn) be iid with (Xi, Yi) distributed as (X, Y ).
(a) Find the asymptotic distribution of

√
n[(Xn, Yn)− (1/2, 1/2)].

(b) If rn is the sample correlation coefficient for a sample of size n, find the
asymptotic distribution of

√
n(rn − ρ).

(c) Find a variance stabilizing transformation for rn.
(d) Based on your answer to part (c), construct a 95% confidence interval for
ρ.
(e) For each combination of n ∈ 5, 20 and ρ ∈ .05, .25, .45, estimate the true
coverage probability of the confidence interval in part (d) by simulating 5000
samples and the corresponding confidence intervals. One problem you will
face is that in some samples, the sample correlation coefficient is undefined
because with positive probability each of the Xi or Yi will be the same. In such
cases, consider the confidence interval to be undefined and the true parameter
therefore not contained therein.
Hint: To generate a sample of (X, Y ), first simulate the X’s from their marginal
distribution, then simulate the Y ’s according to the conditional distribution
of Y given X. To obtain this conditional distribution, find P(Y = 1|X = 1)
and P(Y = 1|X = 0).

20



3 Asymptotic properties of sample quantiles and

Order statistics

Let F be a distribution function. For 0 < p < 1, the p-th quantile is defined as

ξp = inf{x : F (x) ≥ p} (41)

and is alternately denoted by F−1(p). Note that ξp satistfies

F (ξp−) ≤ p ≤ F (ξp) (42)

Corresponding to a sample {X1, · · · , Xn} of observations from F , the sample p-th
quantile ξ̂p is defined as the p-th quantile of the sample distribution function Fn,
that is

ξ̂p = F−1
n (p). (43)

Note that, Fn(x) := ]Xi ≤ x/n.
Example 1 Suppose X1, · · · , Xn+1 are iid standard exponential random vari-

ables. For j = 1, · · · , n define

Yj =

∑j
i=1Xi∑n+1
i=1 Xi

We derive the joint density of (Y1, · · · , Yn) as follows. First, we observe that the joint
density of (X1, · · · , Xn+1) is

fX(x) = exp

{
−

n+1∑

i=1

xi

}
I{x1 > 0, · · · , xn+1 > 0}

As an intermediate step, define Zj =
∑j

i=1Xi for j = 1, · · · , n+ 1. Then the Xi may
be expressed in terms of the Zi as

Xi =

{
Zi if i = 1
Zi − Zi − 1 if i > 1

(44)

The Jacobian is clearly 1 for this transformation, since the Jacobian matrix is lower
triangular with ones on the diagonal. Therefore, we obtain FZ(z) = exp{−zn+1}I{0 <
z1 < z2 < · · · < zn+1} as the density of Z. If we define Yn+1 = Zn+1, then we may
express the Zi in terms of the Yi as

Zi =

{
Yn+1Yi if i < n+ 1
Yn+1 if i = n+ 1

(45)

The Jacobian matrix of the transformation in equation (45) is upper triangular, with
yn+1 along the diagonal except for a 1 in the lower right corner. Thus, the Jacobian
equals ynn+1, so the density of Y is

fY (y) = ynn+1 exp{−yn+1}I{yn+1 > 0}I{0 < y1 < · · · < yn < 1}. (46)
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Thus, (Y1, · · · , Yn) is independent of Yn+1 and the density of (Y1, · · · , Yn) is pro-
portional to I{0 < y1 < · · · < yn < 1}. Note that Yn+1 may be seen to have a
Gamma(n + 1, 1) density, which is also evident when we consider that Yn+1 is the
sum of n+ 1 iid standard exponential random variables.

Since the joint density of the order statistics from a sample of size n from Uni-
form(0,1) is n!I{0 < u1 < · · · < un < 1}, Example 1 proves the following lemma.

Lemma 1. The joint distribution of the order statistics from a sample of size n from
Uniform(0,1) is the same as the joint distribution of

X1∑n+1
i=1 Xi

,
X1 +X2∑n+1

i=1 Xi

, · · · ,
∑n

i=1Xi∑n+1
i=1 Xi

(47)

where X1, · · · , Xn+1 are iid standard exponential random variables. Furthermore, the
joint distribution of expression is independent of

∑n+1
i=1 Xi.

We now use Lemma 1 to achieve a powerful result, namely deriving the joint
asymptotic distribution of a set of sample quantiles. Take 0 < p1 < p2 < 1 and
define an = dnp1e and bn = dnp2e, where dxe denotes the smallest integer greater
than or equal to x. Then for an iid sample U1, · · · , Un, the anth and bnth order
statistics U(an) and U(bn) are the p1 and p2 sample quantiles, respectively, as per
definition (43).

Suppose that the Ui are Uniform(0,1). Then by Lemma 1, (U(an), U(bn)) has the
same distribution as (∑an

i=1Xi∑n+1
i=1 Xi

,

∑bn
i=1Xi∑n+1
i=1 Xi

)
(48)

whereX1, · · · , Xn+1 are iid standard exponential random variables. LetA =
∑an

i=1 Xi, B =∑bn
i=an+1Xi, and C =

∑n+1
i=bn+1 Xi. Then the joint asymptotic distribution of (U(an), U(bn))

is the same as that of

g(A,B,C)
def
=

(
A

A+B + C
,

A+B

A+B + C

)
(49)

This joint asymptotic distribution may be easily determined using the delta method
if we can determine the joint asymptotic distribution of (A,B,C). But this is easy,
since A,B, and C are by definition sums of iid random variables and they are in-
dependent of one another. Consider, for example, the fact that a bit of algebra
gives

√
n

(
A

n
− p1

)
=

√
an
n

√
an

(
A

an
− np1

an

)
=

√
an
n

{√
an

(
A

an
− 1

)
+
√
n

(
1− np1

an

)}

(50)
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By the central limit theorem,
√
an(A/an − 1) ⇒ N (0, 1) because a standard expo-

nential variable has mean 1 and variance 1. Furthermore, an was defined so that

√
n

(
1− np1

an

)
→ 0,

which of course also implies that an/n→ p1. Therefore, Slutsky’s theorem gives

√
n

(
A

n
− p1

)
⇒ N (0, p1)

Similar arguments applied to B and to C, along with the fact that A,B, and C are
independent, gives

√
n








A/n
B/n
C/n


−




p1

p2 − p1

1− p2





⇒ N3



0,




p1 0 0
0 p2 − p1 0
0 0 1− p2







by Theorem 15.3. Now recall the definition of g(A,B,C) in equation (49). For this
g : R3 → R2, we obtain ġ(p1, p2 − p1, 1− p2) so the delta method gives

√
n

{(
U(an)

U(bn)

)
−
(
p1

p2

)}
⇒ N2

{
0,

(
p1(1− p1) p1(1− p2)
p1(1− p2) p2(1− p2)

)}
(51)

The method used above to derive the joint distribution (51) of two sample quantiles
may be easily extended to any number of quantiles. We may thus state the following
theorem that relies on a generalization of the above argument:

Theorem 4. Suppose that for given constants p1, · · · , pk with 0 < p1 < · · · < pk < 1,
there exist sequences {a1n}, · · · , {akn} such that for all 1 ≤ i ≤ k,

√
n

(
1− npi

ain

)
→ 0. (52)

Then if U1, · · · , Un is a sample from Uniform(0,1),

√
n








U(a1n)
...

U(akn)


−




p1
...
pk







⇒ Nk





0,




p1(1− p1) · · · p1(1− pk)
...

. . .
...

p1(1− pk) · · · pk(1− pk)








(53)

Note that in the covariance matrix in the above theorem, the (i, j) entry is either
pi(1− pj) or pj(1− pi), depending on whether i ≤ j or j ≤ i. As a corollary, we may
restate Theorem 5.4.5 on page 314 of Lehmann:
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Corollary 3. Suppose that there exists a cdf F and points ξ1 < · · · < ξk such that
F ′(ξi) exists and is positive for all i. Let pi = F (ξi) for 1 ≤ i ≤ k. If equation (51)
is satisfied for sequences {a1n}, · · · , {akn} and X1, · · · , Xn is an iid sample from F ,
then

√
n








X(a1n)
...

X(akn)


−




ξ1
...
ξk







⇒ Nk





0,




p1(1−p1)
F ′(ξ1)2

· · · p1(1−pk)
F ′(ξ1)F ′(ξk)

...
. . .

...
p1(1−pk)

F ′(ξ1)F ′(ξk)
· · · pk(1−pk)

F ′(ξk)2








(54)

The corollary is proved by a simple application of the delta method, since the
hypotheses imply that F (t) is continuous and strictly increasing in a neighborhood
of each ξi. Thus, F−1(u) is well-defined in a neighborhood of each pi. Defining
h(u1, · · · , uk) = (F−1(u1), · · · , F−1(uk)), the matrix ḣ(u1, · · · , uk) is a diagonal ma-
trix with i-th element

∂F−1(ui)

∂ui
=

1

F ′ ◦ F−1(ui)

• Read Lehmann Thm 5.4.5, Example 5.4.2 and references therein.

• Read Serfling Sections 2.3.4, 2.3.5, 2.3.6, 2.5.2, 2.5.3

• The last 2 problems of this section are on Asymptotic relative efficiency of
estimators covered previously. Refer to Serfling 1.15 or Chapter 6 of Lehmann
and Casella.

• Problems 1,2,3,5,6 of last chapter and 1,2,4,5,6 of this chapter are to be pre-
sented in class roll-number-wise on Monday Sept 1st.

• The other problems need to be submitted by each student separately by Wednes-
day Sept 3rd.
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Exercises

1. Give a detailed proof of 51 and 54

2. Suppose X1, · · · , Xn is an iid sample with P (Xi ≤ x) = F (x− θ), where F (x)
is symmetric about zero. We wish to estimate θ by (Qp + Q1−p)/2, where Qp

and Q1−p are the p and 1− p sample quantiles, respectively. Find the smallest
possible asymptotic variance for the estimator and the p for which it is achieved
for each of the following forms of F (x):

(a) Standard Cauchy

(b) Standard normal

(c) Standard double exponential

Hint: If you cannot solve a problem analytically, try attacking it numerically.
Part (c) is a bit of a trick question.

3. When we use a boxplot to assess the symmetry of a distribution, one of the
main things we do is visually compare the lengths of Q3 − Q2 and Q2 − Q1,
where Qi denotes the i-th sample quartile.

(a) If we have a random sample of size n from N (0, 1), find the asymptotic

distribution of (Q
(n)
3 −Q(n)

2 )− (Q
(n)
2 −Q(n)

1 ).

(b) Repeat part (a) if the sample comes from a standard logistic distribution.

(c) Using 1000 simulations from each distribution, use graphs to assess the
accuracy of each of the asymptotic approximations above for n = 5 and
n = 13. (For a sample of size 4n + 1, define Qi to be the in + 1 order
statistic.) For each value of n and each distribution, plot the empirical
distribution function against the theoretical limiting cdf.

Hint: In parts (a) and (b), use Theorem 5.4.5 on p. 314 of Lehmann. If you
are using R for part (c), the function cdf.compare is a very useful function for
comparing an empirical cdf with another cdf. For example, to compare the
empirical cdf of a vector x with a standard normal distribution function, type
cdf.compare(x,dist=”normal”)

4. Let X1, · · · , Xn be a random sample from Uniform(0, 2θ). Find the asymptotic
distributions of the median, the midquartile range, and 2

3
Q3. (The midquartile

range is the mean of the 1st and 3rd quartiles.) Compare these three estimates
of θ.

5. Problem 6.6.14 of Lehmann and Casella, pg 510.

6. Problem 6.6.15 of Lehmann and Casella, pg 510.
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4 Non-parametrics

4.1 Introduction to Nonparametrics

Any statistical inference problem has the following basic structure. We have some
random data having joint distribution F which is not entirely known. We want to
make inference about the unknown aspects of F based on observed data. The infer-
ence is typically either an estimation problem or a testing problem. The difference
between nonparametric and parametric problems has to do with how much we al-
ready assume known about F .

Example 1: (Parametric problem) Suppose X1, · · · , Xn are iid N(µ, σ2). We
want to estimate µ and σ2. This is a typical problem from parametric statistics.
Here we assume that the distribution of the X’s is completely known except for only
two unknown numbers µ and σ2.

Definition 1. If the distribution of the data is completely known except for finitely
many unknown numbers, then the problem is called a parametric problem. Oth-
erwise, we have a nonparametric problem. In a parametric situation each of the
finitely many unknown numbers is called a parameter.

Example 2: (Nonparametric density estimation) Suppose X1, · · · , Xn iid with
continuous density f , which is unknown. We want to estimate f .

This is a non-parametric problem because the number of parameters, ie, values
of f(x) for all values of x on the real line, is infinite.

Example 3: (Nonparametric regression) Think of a nonparametric inference
situation in regression. In the model Y = α+βX+ ε, we may have ε’s iid with some
unknown distribution F . Or, we may have the model Y = f(X) + ε, where f itself
is some unknown continuous function.

Example 4: (Semi-parametric problem) Suppose that we are testing the efficacy
of a sleeping pill. Let X1, · · · , Xn be the amount of sleep of n patients before taking
the pill, and let Y1, · · · , Yn be the corresponding amounts after taking it. We want
to test if the pill really increases one’s amount of sleep. Assuming that the patients
behave independently we may reasonably assume that (X1, Y1), · · · , (Xn, Yn) are in-
dependent, but not necessarily identically distributed. We model the effect of the
drug as follows. There is an unknown number θ denoting the median increase of
sleep, that is, Zi = Yi − Xi have θ as its median. Note that we are not assuming
that Z’s all have the same distribution. We are merely assuming that they have a
common median. We want to test H0 : θ = 0 Vs H1 : θ > 0. In this example we
have not assumed any knowledge about the underlying distribution except for the
existence of a common median θ for the Z’s. Thus our ignorance cannot be summed
up as finitely many unknown numbers. Hence this is a nonparametric statistical
inference problem.
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This is called a semiparametric problem, because here we are interested in
only one unknown number, θ, though θ is not the only unknown quantity.

Why Nonparametric?
While in many situations parametric assumptions are reasonable (e.g. assumption
of Normal distribution for the background noise, Poisson distribution for a photon
counting signal of a nonvariable source), we often have no prior knowledge of the
underlying distributions. In such situations, the use of parametric statistics can
give misleading or even wrong results. We need statistical procedures which are
insensitive to the model assumptions in the sense that the procedures retain their
properties in the neighborhood of the model assumptions.

Insensitivity to model assumptions is called Robustness. Apart from this, we
also need procedures which are robust against the presence of outliers in the data.
Some common parametric procedures that are not robust include

• The sample mean is not robust against the presence of even one outlier in the
data and is not variance robust as well. The sample median is robust against
outliers and is variance robust.

• The t-test does not have t-distribution if the underlined distribution is not
normal and the sample size is small. For large sample size, it is asymptotically
level robust but is not power robust. Also, it is not robust against the presence
of outliers.

The nonparametric tests described here are often called distribution free proce-
dures because their significance levels do not depend on the underlying model as-
sumption i.e., they are level robust. They are also power robust and robust against
outliers.

4.2 Large sample behavior of Kolmogorov-Smirnov statistic

Sec 2.1 of Serfling

27



Exercises

1. Problem 2.3

2. Problem 2.4

3. Problem 2.5

4. Show that, for the class of continuous F ’s, the exact distribution of Dn does
not depend on F .

5. Show that Dn ≥ 1/(2n).

6. (a) Prove/disprove/suitably modify : F � G iff F (x) ≥ G(x) for all x.
(b) Show that D+, D− ≥ 0.
(c) What is the relation between D,D+ and D−?

7. (everybody needs to submit) The file data.txt contains iid data from some
unknown continuous distribution, F . We want to test H0 : F = N (0, 1) Vs.
H1 : F 6= N (0, 1). Perform KS test using the asymptotic distribution. Report
the P-value.

8. Show that nD2
+ is asymptotically distributed as Exponential(2).
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5 Maximum Likelihood Estimator

Reading

• Lehman 7.1, 7.2

• Serfling 4.2

• Rao 5g pp366

If X is a random variable (or vector) with density or mass function fθ(x) that depends
on a parameter θ, then the function fθ(x) viewed as a function of θ is called the like-
lihood function of θ. We often denote this function by L(θ). Note that L(θ) = fθ(x)
is implicitly a function of x, but we suppress this fact in the notation. Let the set of
possible values of θ be the set Ω. If L(θ) has a maximizer in Ω, say θ̂, then θ̂ is called
the maximum likelihood estimator or MLE of θ. Since the logarithm function is a

strictly increasing function, any maximizer of L(θ) also maximizes l(θ)
def
= logL(θ).

It is often much easier to maximize l(θ), called the loglikelihood function, than L(θ).

Example 1 Suppose Ω = (0,∞) and X ∼ Binomial(n, e−θ). Then

l(θ) = log

(
n
x

)
− xθ + (n− x) log(1− e−θ)

so l′(θ) = −x+
n− x

1− e−θ

Thus, setting l′(θ) = 0 yields θ̂ = − log(x/n). It isn’t hard to verify that − log(x/n)
is in fact the maximizer of l(θ).

This can also be derived using the following theorem:

Theorem 5 ((Invariance Property of MLEs)). If θ̂ is the MLE of θ, then for any
function τ(θ), the MLE of τ(θ) is τ(θ̂).

This is Thm 7.2.10 of Casella and Berger. See proof there.
As the preceding example demonstrates, it is not always the case that an MLE

exists, for if X = 0 or X = n, then − log(X/n) is not contained in Ω.
We will show that the maximum likelihood estimator is, in many cases, asymptot-

ically normal. However, this is not always the case; in fact, it is not even necessarily
true that the MLE is consistent, as shown in Exercise 1.

5.1 Consistency of MLE

We begin the discussion of the consistency of the MLE by defining the so-called
Kullback-Liebler information.
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Definition 2. If fθ0(x) and fθ1(x) are two densities, the Kullback-Leibler information

number equals K(fθ0 , fθ1) = Eθ0 log
fθ0 (X)

fθ1 (X)
. If Pθ0 (fθ0(X) > 0 and fθ1(X) = 0) >

0, then K(fθ0 , fθ1) is defined to be 1.

We may show that the Kullback-Leibler information must be nonnegative using
Jensen’s inequality.

Theorem (Jensen’s inequality). If g(t) is a convex function, then for any random
variable X, g(EX) ≤ Eg(X). Furthermore, if g(t) is strictly convex, then Eg(X) =
g(EX) only if P (X = c) = 1 for some constant c.

Considering the Kullback-Leibler information once again, we first note that

Eθ0
fθ1(X)

fθ0(X)
= Eθ1

(
Ifθ0 (X)>0

)
≤ 1.

Therefore, by the strict convexity of the function − log x,

K(fθ0 , fθ1) = Eθ0 − log
fθ1(X)

fθ0(X)
≥ − logEθ0

fθ1(X)

fθ0(X)
≥ 0, (55)

with equality if and only if Pθ0fθ0(X) = fθ1(X) = 1. Inequality (55) is sometimes
called the Shannon- Kolmogorov information inequality.

If X1, · · · , Xn are iid with density fθ0(x), then l(θ) =
∑n

i=1 log fθ0(xi). Thus, the
Shannon-Kolmogorov information inequality may be used to prove the consistency
of the maximum likelihood estimator in the case of a finite parameter space.

Theorem 6 (Consistency of MLE). Suppose Ω is finite and that X1, · · · , Xn are iid
with density fθ0(x). Furthermore, suppose that the model is identifiable, which is to
say that different values of θ lead to different distributions. Then if θ̂n denotes the

maximum likelihood estimator, θ̂n
P→ θ0.

Proof: Notice that

1

n

n∑

i=1

log
fθ(Xi)

fθ0(Xi)

P→ Eθ0 log
fθ(Xi)

fθ0(Xi)
= −K(fθ0 , fθ) (56)

The value of −K(fθ0 , fθ) is strictly negative for θ 6= θ0 by the identifiability of the
model. Therefore, since θ̂n is the maximizer of the left hand side of Equation (56),

P (θ̂n 6= θ0) = P

(
maxθ 6=θ0(

1

n

n∑

i=1

log
fθ(Xi)

fθ0(Xi)
) > 0

)
≤
∑

θ 6=θ0
P

(
1

n

n∑

i=1

log
fθ(Xi)

fθ0(Xi)
> 0

)
→ 0.

(57)
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This implies that θ̂n
P→ θ0. The result of Theorem 6 may be extended in several

ways; however, it is unfortunately not true in general that a maximum likelihood
estimator is consistent, as seen in Exercise 1. We will present the extension given in
Lehmann, but we do so without proof.

If we return to the simple Example 1, we found that the MLE was found by
solving the equation

l′(θ) = 0 (58)

Equation (58) is called the likelihood equation, and naturally a root of the likelihood
equation is a good candidate for a maximum likelihood estimator. However, there
may be no root and there may be more than one. It turns out the probability that
at least one root exists goes to 1 as n→∞. Consider Example 1, in which no MLE
exists whenever X = 0 or X = n. In that case, both P (X = 0) = (1 − e−θ)n and
P (X = n) = e−nθ go to zero as n → ∞. In the case of multiple roots, one of these
roots is typically consistent for θ0, as stated in the following theorem.

Theorem 7. Suppose that X1, · · · , Xn are iid with density fθ0(x) for θ0 in an open
interval Ω ⊂ R, where the model is identifiable (i.e., different values of θ ∈ Ω give
different distributions). Furthermore, suppose that the loglikelihood function l(θ) is
differentiable and that the support {x : fθ(x) > 0} does not depend on θ. Then with
probability approaching 1 as n → ∞, there exists θ̂n = θ̂n(X1, · · · , Xn) such that

l′(θ̂n) = 0 and θ̂n
P→ θ0.

Stated succinctly, Theorem 7 says that under certain regularity conditions, there
is a consistent root of the likelihood equation. It is important to note that there is no
guarantee that this consistent root is the MLE. However, if the likelihood equation
only has a single root, we can be more precise:

Corollary 4. Under the conditions of Theorem 7, if for every n there is a unique
root of the likelihood equation, and this root is a local maximum, then this root is the
MLE and the MLE is consistent.

Proof. The only thing that needs to be proved is the assertion that the unique root
is the MLE. Denote the unique root by θ̂n and suppose there is some other point θ
such that l(θ) ≥ l(θ̂n). Then there must be a local minimum between θ̂n and θ, which
contradicts the assertion that θ̂n is the unique root of the likelihood equation.

5.2 Asymptotic Normality of MLE

As seen in the preceding topic, the MLE is not necessarily even consistent, so the
title of this topic is slightly misleading. However, “Asymptotic normality of the
consistent root of the likelihood equation” is a bit too long!
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It will be necessary to review a few facts regarding Fisher information before we
proceed. For a density (or mass) function fθ(x), we define the Fisher information
function to be

I(θ) = Eθ

{
d

dθ
log fθ(X)

}2

(59)

If η = g(θ) for some invertible and differentiable function g(·), then since

d

dη
=
dθ

dη

d

dθ
=

1

g′(θ)

d

dθ
(60)

by the chain rule, we conclude that

I(η) =
I(θ)

{g′(θ)}2
(61)

Loosely speaking, I(θ) is the amount of information about θ contained in a single
observation from the density fθ(x). However, this interpretation doesn’t always make
sense. For example, it is possible to have I(θ) = 0 for a very informative observation
(see Example 7.2.1 on page 462 of Lehmann). Although we do not dwell on this
fact in this course, expectation may be viewed as integration. Suppose that fθ(x) is
twice differentiable with respect to θ and that the operations of differentiation and
integration may be interchanged in the following sense:

Eθ

{
d

dθ
log fθ(X)

}
= Eθ

{
d
dθ
fθ(X)

fθ(X)

}
=

∫
d

dθ
fθ(X)dx =

d

dθ

∫
fθ(X)dx =

d

dθ
1 = 0

(62)

Eθ

{
d

dθ

d
dθ
fθ(X)

fθ(X)

}
= Eθ

{
d2

dθ2
fθ(X)

fθ(X)

}
−I(θ) =

d2

dθ2

∫
fθ(X)dx−I(θ) = −I(θ) (63)

Equations (62) and (63) give two additional expressions for I(θ). From Equation
(62) follows

I(θ) = Varθ

{
d

dθ
log fθ(X)

}
(64)

and Equation (63) implies

I(θ) = −Eθ
{
d2

dθ2
log fθ(X)

}
. (65)

In many cases, Equation (65) is the easiest form of the information to work with.
Equations (64) and (65) make clear a helpful property of the information, namely
that for independent random variables, the information about θ contained in the joint
sample is simply the sum of the individual information components. In particular, if
we have an iid sample from fθ(x), then the information about θ equals nI(θ). The
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reason that we need the Fisher information is that we will show that under certain
regularity conditions,

√
n(θ̂n − θ0)⇒ N

{
0,

1

I(θ0)

}
, (66)

where θ̂n is the consistent root of the likelihood equation.
Example 1 (Poisson case) Suppose thatX1, · · · , Xn are iid Poisson(θ0) random

variables. Then the likelihood equation has a unique root, namely θ̂n = X̄n, and we
know that by the central limit theorem

√
n(θ̂n−θ0)⇒ N (0, θ0). However, the Fisher

information for a single observation in this case is

−Eθ
{
d2

dθ2
log fθ(X)

}
= Eθ

X

θ2
=

1

θ
(67)

Thus, in this example, equation (66) holds.

Rather than stating all of the regularity conditions necessary to prove Equation
(64), we work backwards, figuring out the conditions as we go through the proof.
The first step is to expand l′(θ̂n) in a power series around θ0:

l′(θ̂n) = l′(θ0) + (θ̂n − θ0)l′′(θ0) +
1

2
(θ̂n − θ0)2l′′′(θ∗n) (68)

for some θ∗n between θ̂n and θ0. Clearly, the validity of Equation (68) hinges on the
existence of a continuous third derivative of l(θ). Rewriting equation (68) gives

√
n(θ̂n − θ0) =

√
n{l′(θ̂n)− l′(θ0)}

l′′(θ0) + 1
2
(θ̂n − θ0)l′′′(θ∗n)

=

1√
n
{l′(θ0)− l′(θ̂n)}

− 1
n

l′′(θ0)− 1
2n

(θ̂n − θ0)l′′′(θ∗n)
(69)

Let’s consider the pieces of Equation (69) individually. If the conditions of Theorem

7 of last section are met, then l′(θ̂n)
P→ 0. If Equation (62) holds and I(θ0) < ∞,

then
1√
n

l′(θ0) =
√
n

(
1

n

n∑

i=1

d

dθ
log fθ0(Xi)

)
⇒ N (0, I(θ0)) (70)

by the central limit theorem and Equation (64). If Equation (63) holds, then

1

n
l′′(θ0) =

1

n

n∑

i=1

d2

dθ2
log fθ0(Xi)

P→ −I(θ0) (71)

by the weak law of large numbers and Equation (65). Finally, we would like to have
the term involving l′′′(θ∗n) disappear, so clearly it is enough to show that 1

n
l′′′(θ) is

bounded in probability in a neighborhood of θ0. Putting all of these facts together
gives a theorem.
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Theorem 8. Suppose that the conditions of Theorem 7 (of last section) are satisfied,
and let θ̂n denote a consistent root of the likelihood equation. Assume also that
l′′′(θ) exists and is continuous, that equations (62) and (63) hold, and that 1

n
l′′′(θ) is

bounded in probability in a neighborhood of θ0. Then if 0 < I(θ0) <∞, (66) holds.

The theorem is proved by noting that under the stated regularity conditions,

l′(θ̂n)
P→ 0 so that the numerator in (69) converges in distribution to N{0, I(θ0)}

by Slutsky’s theorem. Furthermore, the denominator in (69) converges to I(θ0), so
another application of Slutsky’s theorem gives the desired result.

Sometimes, it is not possible to find an exact zero of l′(θ). One way to get a
numerical approximation to a zero of l′(θ) is to use Newton’s method, in which we
start at a point θ0 and then set

θ1 = θ0 −
l′(θ0)

l′′(θ0)
. (72)

Ordinarily, after finding θ1 we would set θ0 equal to θ1 and apply Equation (72)
iteratively. However, we may show that by using a single step of Newton’s method,
starting from a

√
n-consistent estimator of θ0, we may obtain an estimator with the

same asymptotic distribution as θ̂n. The proof of the following theorem is left as an
exercise:

Theorem 9. Suppose that θ̃n is any
√
n-consistent estimator of θ0 (i.e.,

√
n(θ̃n−θ0)

is bounded in probability). Then under the conditions of Theorem 7, if we set

δn = θ̃n −
l′(θ̃n)

l′′(θ̃n)
(73)

then √
n(δn − θ0)⇒ N (0,

1

I(θ0)
) (74)

5.3 Method of scoring

Recall that, under suitable regularity conditions, the maximum likelihood estimate
is the solution to the score equation

S(θ) = s(x; θ) =
∂

∂θ
l(θ) =

∂

∂θ
logL(θ;x) = 0, (75)

where S(θ) = s(X; θ) is the score statistic. Generally the solution to this equation
must be calculated by iterative methods. One of the most common methods is the
Newton-Raphson method and is based on successive approximations to the solution,
using Taylor’s theorem to approximate the equation. Thus, we take an initial value
θ0 and write

0 = S(θ0)− J(θ0)(θ − θ0), (76)
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ignoring the remainder term. Here

J(θ) = J(θ;X) = − ∂

∂θ
S(θ) = − ∂2

∂θ2
l(θ). (77)

Solving this equation for θ then yields a new value θ1

θ1 = θ0 + J(θ0)−1S(θ0) (78)

and we keep repeating this procedure as long as | S(θj) |> ε, i.e. θk+1 = θk +

J(θk)
−1S(θ0). Clearly, θ̂ is a fixed point of this iteration as S(θ̂) = 0 and, conversely,

any fixed point is a solution to the likelihood equation.
Formally the iteration becomes

• Choose an initial value θ and calculate S(θ) and J(θ);

• While | S(θ) |> ε Repeat

1. θ ← θ + J(θ)−1S(θ)

2. Calculate S(θ) and J(θ) go to 1

• Return θ

Other criteria for terminating the iteration can be used. To get a criterion which is in-
sensitive to scaling of the variables, one can instead use the criterion | J(θ)−1S(θ) |>
ε.

If θ̂ is a local maximum for the likelihood function, we must have J(θ̂) = − ∂2

∂θ2
l(θ̂) >

0. The quantity J(θ̂) determines the sharpness of the peak in the likelihood function
around its maximum. It is also known as the observed information. Occasionally
we also use this term for J(θ) where θ is arbitrary but strictly speaking this can be
quite inadequate as J(θ) may well be negative (although positive in expectation).

Recall that the (expected) Fisher information is I(θ) = E{J(θ)} and that for
large i.i.d. samples it holds approximately that θ̂ ∼ N (θ, I(θ)−1). But it is also

approximately true, under the same assumptions that

√
J(θ̂)(θ̂ − θ) ∼ N (0, 1), so

we could write θ̂ ∼ N (θ, J(θ̂)−1). Indeed, as θ̂ is approximately sufficient, J(θ̂) is
approximately ancillary.

Note that, as a by-product of this algorithm, the final value of J(θ) is the observed
information which can be used to assess the uncertainty of θ̂.

If θ0 is chosen sufficiently near θ̂ convergence is very fast. It can be compu-
tationally expensive to evaluate J(θ) a large number of times. This is sometimes
remedied by only changing J every 10 iterations or similar. Another problem with
the Newton-Raphson method is its lack of stability. When the initial value θ0 is far
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from θ it might wildly oscillate and not converge at all. This is sometimes remedied
by making smaller steps as

θ ← θ + γJ(θ)−1S(θ) (79)

where 0 < γ < 1 is a constant.
The iteration has a tendency to be unstable for many reasons, one of them being

that J(θ) may be negative unless θ already is very close to the MLE θ̂. In addition,
J(θ) might sometimes be hard to calculate. R. A. Fisher introduced the method of
scoring which simply replaces the observed second derivative with its expectation to
yield the iteration

θ ← θ + I(θ)−1S(θ). (80)

In many cases, I(θ) is easier to calculate and I(θ) is always positive.
In the case of n independent and identically distributed observations we have

I(θ) = nI1(θ) so
θ ← θ + I1(θ)−1S(θ)/n (81)

where I1(θ) is the Fisher information in a single observation.
Example 1 (Exponential Family:) In a linear canonical one-parameter expo-

nential family
f(x; θ) = b(x) exp{θt(x)− c(θ)} (82)

we get

J(θ) =
∂2

∂θ2
{c(θ)− θt(X)} = c′′(θ) = I(θ). (83)

so for canonical exponential families the method of scoring and the method of
Newton-Raphson coincide. If we let v(θ) = c′′(θ) = I(θ) = V (t(X)) the iteration
becomes

θ ← θ + v(θ)−1S(θ)/n. (84)

The identity of Newton-Raphson and the method of scoring only holds for the
canonical parameter.

If θ = g(µ)

J(µ) =
∂2

∂µ2
{c(g(µ))− g(µ)t(X)}

=
∂

∂µ
[g′(µ)τ{g(µ)} − g′(µ)t(X)]

= v{g(µ)}{g′(µ)}2 + g′′(µ)[τ{g(µ)} − t(X)]

where we have let τ(θ) = c′(θ) = Eθ{t(X)} and v(θ) = c′′(θ) = Vθ{t(X)}. The
method of scoring is simpler because the last term has expectation equal to 0:

I(µ) = EJ(µ) = v{g(µ)}{g′(µ)}2.
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Example 2 (Nonlinear Regression) Consider the case of nonlinear least
squares (least squares is same as maximum likelihood for normally distributed resid-
uals), in which context Fisher scoring has a very long history and is known as the
Gauss-Newton algorithm. The objective function is f(β) =

∑n
i=1[yi − µ(ti, β)]2,

where the yi are observations and µ(., .) is a general function of covariates ti and
the unknown parameter β. Write y for the vector of yi ,µ for the vector of µ(ti, β),
and µ̇ for the derivative vector of µ with respect to β. The Fisher scoring iteration
becomes

βk+1 = βk + (µ̇T µ̇)−1µ̇T (y − µ), (85)

where all terms on the right-hand size are evaluated at βk. The updated estimate is
obtained by adding to βk the coefficients from the regression of the residuals yi − µi
on the derivatives µ̇i. Gauss-Newton therefore solves the nonlinear least squares
problem by way of a series of linear regressions.

Exercises

1. In this problem, we explore an example in which the MLE is not consistent.
Suppose that for θ ∈ (0, 1), X is a continuous random variable with density

fθ(x) = 3(1−θ)
δ3(θ)

[δ2(θ)− (x− θ)2]I{|x− θ| ≤ δ(θ)}+ θ
2
I{|x| ≤ 1} where δ(θ) > 0

for all θ.

(a) Prove that fθ(x) is a legitimate density.

(b) What condition on δ(θ) ensures that {x : fθ(x) > 0} does not depend on
θ?

(c) With δ(θ) = exp{−(1 − θ)/4}, let θ = 0.125. Take samples of sizes n ∈
{50, 250, 500} from fθ(x). In each case, graph the loglikelihood function
and find the MLE. Also, try to identify the consistent root of the likelihood
equation in each case. Hints: To generate a sample from fθ(x), note that
fθ(x) is a mixture density, which means you can start by generating a
standard uniform random variable. If it’s less than θ, generate a uniform
variable on (−1, 1). Otherwise, generate a variable with density 3(δ2 −
x2)/δ3 on (−δ, δ) and then add θ. You should be able to do this by
inverting the cdf. Be very careful when graphing the loglikelihood and
finding the MLE. In particular, make sure you evaluate the loglikelihood
analytically at each of the sample points in (0, 1); if you fail to do this,
you’ll miss the point of the problem and you’ll get the MLE incorrect.
This is because the correct loglikelhood graph will have tall, extremely
narrow spikes.

(d) Prove that the MLE is inconsistent in this situation.

2. Suppose that X1, · · · , Xn are iid with density fθ(x), where θ ∈ (0,∞). For
each of the following forms of fθ(x), prove that the likelihood equation has a
unique solution and that this solution maximizes the likelihood function.
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(a) Weibull: For some constant a > 0, fθ(x) = aθaxa−1 exp{−(θx)a}I{x > 0}
(b) Cauchy: fθ(x) = θ

π
1

π2+θ2

(c) fθ(x) = 3θ2
√

3
2π(x3+θ3)

I{x > 0}

3. Find the MLE and its asymptotic distribution given a random sample of size
n from fθ(x) = (1− θ)θx, x = 0, 1, 2, · · · , θ ∈ (0, 1).

4. Problem 2.1 on p. 553

5. Problem 2.12 on p. 555

6. Prove Theorem 9
Hint: Start with

√
n(δn− θ0) =

√
n(δn− θ̃n) +

√
n(θ̃n− θ0), then expand l′(θ̃n)

in a Taylor series about θ0 and rewrite
√
n(θ̃n − θ0) using this expansion.

7. Suppose that the following is a random sample from a logistic density with cdf
Fθ(x) = (1 + exp{θ − x})−1 (I’ll cheat and tell you that I used θ = 2.)

1.0944 6.4723 3.1180 3.8318 4.1262
1.2853 1.0439 1.7472 4.9483 1.7001
1.0422 0.1690 3.6111 0.9970 2.9438

(a) Evaluate the unique root of the likelihood equation numerically. Then,
taking the sample median as our known

√
n-consistent estimator θ̃n of θ,

evaluate the estimator δn in equation (73) numerically.

(b) Find the asymptotic distributions of
√
n(θ̃n − 2) and

√
n(δn − 2). Then,

simulate 200 samples of size n = 15 from the logistic distribution with
θ = 2. Find the sample variances of the resulting sample medians and
δn-estimators. How well does the asymptotic theory match reality?
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6 Chi-square

6.1 Large sample properties of likelihood ratio test statistic

This is a simplified version of Serfling 4.4. You should know from Serfling Lemma
4.4.2A, Lemma 4.4.4C, Theorem 4.4.3 and Lemma 4.4.4A.

Let X1, · · · , Xn be iid with density f(x, θ). We are interested in testing H0 : θ =
θ0 against H1 : θ 6= θ0 where θ is k× 1 using a likelihood ratio test. To carry out the
test, we need to determine the appropriate critical value c. Recall that c is determined
by the requirement that P (LR > c | H0) = α. In order to determine the critical
value, we thus need to determine the distribution of LR when the null hypothesis is
true. We now develop a large sample approximation to solve this problem.

Let θ̂ = argmaxθL(θ) denote the mle, and write the maximized likelihood ratio
statistic as

LR =
L(θ̂)

L(θ0)
(86)

Define the statistic ξLR = 2 ln(LR) = 2(l(θ̂)− l(θ0)) where l(θ) = lnL(θ). Since ξLR

is a monotonic transformation of LR, the LR test can be implemented by rejecting
the null hypothesis when ξLR is large.

To find the approximate distribution of ξLR under the null hypothesis, write

l(θ0) = l(θ̂) + (θ0 − θ̂)′
∂l(θ̂)

∂θ
+

1

2
(θ0 − θ̂)′

∂2l(θ̃)

∂θ∂θ
(θ0 − θ̂) (87)

where θ̃(ω) is between θ0 and θ̂(ω). Since mle is the root of the likelihood equation,
∂l(θ̂)
∂θ

= 0. We have

ξLR = −(θ0 − θ̂)′
∂2l(θ̃)

∂θ∂θ
(θ0 − θ̂) (88)

=
√
n(θ0 − θ̂)′

(
− 1

n

∂2l(θ̃)

∂θ∂θ

)
√
n(θ0 − θ̂) (89)

Proceeding as in our derivations of the properties of the maximum likelihood esti-
mator,

√
n(θ̂ − θ0) ⇒ N (0, I(θ0)−1) (90)

− 1

n

∂2l(θ̃)

∂θ∂θ′
P→ I(θ0) (91)

so that by Slutsky and the Continuous Mapping Theorem,

ξLR
H0⇒ χ2

k (92)
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An asymptotically justified level 1 − α confidence set based on the LR statistic is
hence of the form

θ∗ | (θ̂ − θ∗)′J(θ̂)(θ̂ − θ∗) < c (93)

where J(θ̂) =
(
−∂2l(θ̂)
∂θ∂θ′

)
and c solves P (χ2

k > c) = α. This confidence set may be

recognized as the interior of an ellipse centered at θ = θ̂. In the one-dimensional
case, we obtain a confidence interval (θ̂ − c∗J(θ̂)−1/2, θ̂ + c∗J(θ̂)−1/2) where c∗ is the
positive number that solves P (N (0, 1) > c∗) = α/2.

6.2 Pearson’s chi-square

(Lehman 5.5, Ferguson 9,10, Rao 6b) LetX1, X2, · · · , Xn be iid from a multinomialk(1, p)
distribution, where p is a k-vector with nonnegative entries that sum to one. That
is,

P (X i = ej) = pj for all 1 ≤ j ≤ k (94)

where ej = the k vector with 1 at the j-th position and 0’s everywhere else.

Note that the multinomial distribution is a generalization of the binomial dis-
tribution to the case in which there are k categories of outcome instead of only 2.
Also note that we ordinarily do not consider a binomial random variable to be a
2-vector, but we could easily do so if the vector contained both the number of suc-
cesses and the number of failures. Equation (94) implies that the random vector X i

has expectation p and covariance matrix

Σ =




p1(1− p1) −p1p2 · · · −p1pk
−p1p2 p2(1− p2) · · · −p2pk

...
...

. . .
...

−p1pk −p2pk · · · pk(1− pk)


 (95)

Using the Cramer-Wold device, the multivariate central limit theorem implies

√
n(X̄n − p)⇒ Nk(0,Σ). (96)

Note that the sum of the j-th column of Σ is pj − pj(p1 + · · ·+ pk) = 0, which is to
say that the sum of the rows of Σ is the zero vector, so Σ is not invertible.

We wish to derive the asymptotic distribution of Pearson’s chi-square statistic

χ2 =
k∑

j=1

(nj − npj)2

npj
, (97)

where nj is the random variable that is the j-th component if nX̄n , the number of
successes in the j-th category for trials 1, · · · , n. We will discuss two different ways
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to do this. One way avoids dealing with the singular matrix Σ, whereas the other
does not.

In the first approach, define for each i, Y i = (X i1, · · · , X ik−1). That is, let Y i be
the k− 1-vector consisting of the first k− 1 components of X i. Then the covariance
matrix of Y i is the upper-left (k − 1) × (k − 1) submatrix of Σ, which we denote
by Σ∗. Similarly, let p∗ denote the vector (p1, · · · , pk−1). First, verify that Σ∗ is
invertible and that

Σ∗−1 =




1
p1

+ 1
pk

1
pk

· · · 1
pk

1
pk

1
p2

+ 1
pk
· · · 1

pk
...

...
. . .

...
1
pk

1
pk

· · · 1
pk−1

+ 1
pk


 (98)

Second, verify that
χ2 = n(Ȳ n − p∗)t(Σ∗)−1(Ȳ n − p∗) (99)

The facts in equations (98) and (99) are checked in exercise 1. If we now define

Zn =
√
n(Σ∗)−1/2(Ȳ n − p∗), (100)

then clearly the central limit theorem implies Zn ⇒ Nk−1(0, I). By definition, the
χ2
k−1 distribution is the distribution of the sum of the squares of k − 1 independent

standard normal random variables. Therefore,

χ2 = (Zn)tZn ⇒ χ2
k−1, (101)

which is the result that leads to the familiar chi-square test.
In a second approach to deriving the limiting distribution (101), we use some

properties of projection matrices.

Definition 3. A matrix P is called a projection matrix if it is idempotent; that is,
if P 2 = P .

The following lemmas, to be proven in exercise 2, give some basic facts about
projection matrices.

Lemma 2. Suppose P is a projection matrix. Then every eigenvalue of P equals
0 or 1. Suppose that r denotes the number of eigenvalues of P equal to 1. Then if
Z ∼ Nk(0, P ), then, ZtZ ∼ χ2

r.

This can be derived from the Fisher-Cochran Theorem.

Lemma 3. The trace of a square matrix equals the sum of its eigenvalues. For
matrices A and B whose sizes allow them to be multiplied in either order, Tr(AB) =
Tr(BA).
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Define Γ = diag(p). Clearly, equation (96) implies

√
nΓ−1/2(X̄n − p)⇒ Nk(0,Γ−1/2ΣΓ−1/2). (102)

Since Σ may be written in the form Γ− ppt,

Γ−1/2ΣΓ−1/2 = I − Γ−1/2pptΓ−1/2 = I −√p
√
pt (103)

clearly has trace k − 1; furthermore, (I − √p√pt)(I − √p√pt) = I − 2
√
p
√
pt +√

p
√
pt
√
p
√
pt = I −√p√pt because

√
pt
√
p = 1, so the covariance matrix (103) is a

projection matrix.
Define ∆n =

√
nΓ−1/2(X̄ − p). Then we may check (exercise 2) that

χ2 = (∆n)t∆n (104)

Therefore, since the covariance matrix (103) is a projection with trace k−1, Lemma
2 and Lemma 3 prove that χ2 ⇒ χ2

k−1 as desired.

6.3 Contingency tables

(Rao 6d pp403, Lehman 7.8) We are interested in testing H0 : X indep of Y Vs
H1 : not indep in a two-way contingency table. Note that this is a composite null
hypothesis in a multinomial setting, as opposed to the simple hypothesis of the
previous section.

Let nij = the frquency in (i, j)-th cell and mij = estimate of E(nij) under H0.

Then the χ2 test rejects H0 for large values of the following test statistic

χ2 =
∑

i

(nij −mij)
2/mij

The asymptotic distribution of this under H0 is a χ2 distribution. We shall not
prove this here. It follows from similar calculations as Pearson’s χ2. The calculations
are more tedious since now the rank of the covariance matrix is (number of classes -
1 - number of free parameters estimated).

There is a second method of deriving the asymptotic distribution. It relies on
the fact that under the regularity conditions the null distribution of -2*log(likelihood
ratio) converges to a χ2 distribution.

If n ≥ 30 and nij,mij ≥ 5 for all i, j, then it is customary to consider the
asymptotic distribution as a good approximation to the exact distribution. We reject
H0 for large values of the test statistic.

If the sample size is small, then one method is to perform Fisher’s exact test,
which finds the exact conditional distribution under H0 given the marginals. This
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conditional is like hypergeometric distribution. It is obtained by conditioning multi-
nomial distribution in the same way as hypergeometric distribution is obtained by
conditioning binomial.

Another solution will be to list all possible tables with the given marginals. These
are equally likely under H0. Compute the test statistic for all these, and get a
histogram. This is the true distribution of the test statistic under H0. Now locate
the test statistic value for the given data in this histogram to find p-value.

Exercises

1. Verify equations (98) and (99).

2. Prove Lemma 2 and Lemma 3; then verify equation (104).

3. The following example comes from genetics. There is a particular characteristic
of human blood (the so-called MN blood group) that has three types: M,
MN, and N. Under idealized circumstances, which we assume to be true for
the purposes of this problem, these three types occur in the population with
probabilities p1 = π2

M , p2 = 2πMπN , and p3 = π2
N , respectively, where πM

is the frequency of the M allele in the population and πN = 1 − πM is the
frequency of the N allele. If the value of πM were known, then the asymptotic
distribution of the Pearson χ2 statistic would be given in the development
earlier in this topic. However, of course we usually don’t know πM . Instead,
we estimate it using the maximum likelihood estimator (2n1 + n2)/2n.

(a) Define Bn =
√
n(X̄ − p̂), where p̂ is the MLE for p. Use the delta method

to derive the asymptotic distribution of Γ−1/2Bn.

(b) Define Γ̂ to be the diagonal matrix with entries p̂1, p̂2, p̂3 along its diagonal.
Derive the asymptotic distribution of Γ̂−1/2Bn.

(c) Derive the asymptotic distribution of the Pearson chi-square statistic

χ2 =
k∑

j=1

(nj − np̂j)2

np̂j
. (105)

4. Take πM = .75 and n = 100 in the situation described in exercise 3. Simulate
500 realizations of the data.

(a) Compute
∑k

j=1
(nj−npj)2

npj
for each of your 500 datasets. Compare the em-

pirical cdf of these statistics with both the χ2
1 and χ2

2 cdf’s. Comment on
what you observe.

(b) Compute the χ2 statistic of equation (105) for each of your 500 datasets.
Compare the empirical cdf of these statistics with both the χ2

1 and χ2
2

cdf’s. Comment on what you observe.
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5. Show that the LR statistic is invariant to reparametrizations of the parameters.

6. Under the alternative θ = θ1, where θ1 is fixed, the power of the LR test
converges to 1. (Hint: Use Chebyshev and the moments)

7. If
√
n(θ̂ − θ0)⇒ N (g, I(θ0)−1), show that ξLR ⇒ χ2

k(δ) where δ is the noncen-
trality parameter and equals g′Ig.

8. Problem 10.31 of Casella and Berger, pg 511.
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7 Nonparametrics Cont

7.1 U-statistic

Ch 5 of Serfling

7.2 Rank procedures

Ch 9 of Serfling

Exercises

1. Show that the kernel h(x1, x2) = 1
2
(x1 − x2)2 leads to the U-statistic s2.

2. Problem 5.P.3 of Serfling

3. Problem 5.P.4 of Serfling

4. Problem 5.P.5 of Serfling

5. Problem 5.P.6 of Serfling

6. Problem 5.P.9 of Serfling

7. Problem 5.P.10 of Serfling

8. Problem 5.P.16 of Serfling

9. Problem 5.P.22 of Serfling using result of Example 5.5.2A

10. Problem 5.P.22 of Serfling using delta method.

11. Problem 5.P.23 of Serfling

12. The Wilcoxon signed rank test is often used to test for symmetry of the distri-
bution about the origin. This test is based on the statistic

W+
n =

n∑

i=1

R+
i I(Zi > 0)

where R+
i is the rank of | Zi | among | Z1 |, | Z2 |, · · · , | Zn |. Although it is

not a U -statistic, show that W+
n is a linear combination of two U -statistics,

W+
n =

∑

i

I(Zi > 0) +
∑

i<j

I(Zi + Zj > 0) = nU (1) +

(
n

2

)
U (2)
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The first U-statistic is based on the kernel, h(z) = I(z > 0). This is the U-
statistic used for the sign test. The second U-statistic is based on the kernel,
h(z1, z2) = I(z1 + z2 > 0). For large n the second term dominates the first,

so asymptotically W+
n behaves like n2U

(2)
n /2. Show that when F is indeed

symmetric,that is P (X < 0) = 1/2 then
√
n(U

(2)
n − 1/2)⇒ N (0, 1/3).

13. Derive the asymptotic distribution of the rank test statistic 9.1.1(ii) under the
null hypothesis using the Wald and Wolfowitz theorem of 9.2.2

14. Derive the asymptotic distribution of the above rank test statistic under the
alternative specified in 9.1.1(ii) using the Chernoff and Savage theorem of 9.2.3

15. Prove lemma 9.2.5

16. Show that the projection of Kendall’s tau on the ranks is Spearmen’s rho upto
a constant.
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8 Bayesian
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A Short Course on Bayesian Inference (based on

An Introduction to Bayesian Analysis: Theory and Methods

by Ghosh, Delampady and Samanta)

Module 2

1 Large Sample Methods in Bayesian Inference

In order to make Bayesian inference about a parameter θ with model f(x|θ), one needs

to choose an appropriate prior π(θ) for θ. Exact or approximate computation of var-

ious features of the posterior π(θ|x) is a major challenge for Bayesians. Under some

regularity conditions, the posterior can be approximated by a normal distribution with

the MLE as the mean (or mode), and inverse of the Fisher information matrix as the

posterior variance-covariance matrix. If more accuracy is needed, one may have to go

for an asymptotic expansion of the posterior. Alternatively, one may sample from the

approximated posterior (or some type of t−distribution) and use importance sampling.

An intuitive rationale behind posterior normality is given below.

How the posterior inference is influenced by a particular prior depends on the relative

magnitude of the amount of information in the data, which for iid observations can be

measured by the sample size n or nI(θ) (I(θ) being the per unit Fisher information) or

observed Fisher information

În = −∂2 log f(x|θ)
∂θ∂θT

|θ=θ̂,

θ̂ being the MLE of θ. As the sample size grows, the influence of the prior diminishes.

Thus, for large samples, a precise formulation of the prior is not necessary. In most

instances when the parameter space is low-dimensional, the prior is washed away by the

data. Another important asymptotic fact is consistency of the posterior which we now

describe below. In general, the limiting results to be discussed provide a frequentist

validation of Bayesian analysis.

Consistency of Posterior Distribution:

Suppose a data sequence X1, . . . , Xn, . . . is generated as iid with a common density

f(x|θ0). Would a Bayesian analyzing this data with a prior π(θ) be able to learn about

θ0? Ideally, the updated knowledge about θ represented by its posterior should become

more and more concentrated near θ0 as the sample size increases. This asymptotic prop-

erty is known as the consistency of the posterior distribution at θ0. Let X1, . . . , Xn be
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iid with joint pdf f(xn|θ), θ ∈ Θ ⊂ Rp. Let π(θ) denote the prior pdf and π(θ|Xn) the

posterior pdf. Let Π(·|Xn) denote the corresponding posterior distribution of θ.

Definition 1. The sequence of posterior distributions Π(·|Xn) of θ is said to be con-

sistent at θ = θ0 ∈ Θ if for every neighborhood U of θ0, Π(U |Xn) → 1 as n → ∞ with

probability 1 wrt to the distribution (of Xn) under θ0.

From the definition of convergence in distribution, it follows that consistency of

Π(·|Xn) at θ0 is equivalent to the fact that Π(·|Xn)
d→ a distribution degenerate at

θ0 with probability 1 under θ0.

Example 1. LetX1, . . . , Xn be iid Bernoulli observations with Pθ(X1 = 1) = θ. Consider

a Beta(α, β) prior density for θ. The posterior density of θ given X1, . . . , Xn is then a

Beta(
∑n

i=1Xi + α, n−∑n
i=1Xi + β) distribution with

E(θ|Xn) =
nX̄n + α

n+ α + β
, Var(θ|Xn) =

(nX̄n + α)(n− nX̄n + β)

(n+ α+ β)2(n+ α + β + 1)
.

Note that X̄n

a.s. (Pθ0
)−→ θ0 as n→∞ by strong law of large numbers. Hence E(θ|Xn)

a.s. (Pθ0
)−→

θ0, Var(θ|Xn)
a.s. (Pθ0

)−→ 0. Then,

P{θ /∈ [θ0 − ε, θ0 + ε]|Xn} = P (|θ − θ0| > ε|Xn)

≤ E[(θ − θ0)
2|Xn]

ε2
=

Var(θ|Xn) + {E(θ|Xn)− θ0}2
ε2

a.s. (Pθ0
)−→ 0 as n→∞.

An important consequence of the consistency of the posterior is the robustness of Bayesian

inference with respect to the choice of prior. Let X1, . . . , Xn be iid and π1 and π2 be two

prior pdf’s positive and continuous at θ0, an interior point of Θ such that Π1(·|Xn) and

Π2(·|Xn) are both consistent at θ0. Then with probability 1 under θ0,
∫

Θ

|π1(θ|Xn)− π2(θ|Xn)|dθ → 0

or equivalently, supA |Π1(A|Xn)−Π2(A|Xn)| → 0 as n→∞. Thus two different choices

of prior density lead approximately to the same posterior distribution.

Asymptotic Normality of the Posterior

Large sample Bayesian methods are primarily based on normal approximation to the

posterior distribution of θ. As the sample size n increases, the posterior distribution

approaches normality under certain regularity conditions and concentrates in the neigh-

borhood of the posterior mode. Suppose θ̃n is the posterior mode and the first-order
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partial derivatives of log π(θ|Xn) vanish at θ̃n. Define

Ĩn = −∂2 log π(θ|Xn)

∂θ∂θT
|θ = θ̃n.

Then a formal Taylor expansion gives

log π(θ|Xn)
.
= log π(θ̃|Xn)−

1

2
(θ − θ̃n)

T [−∂2 log π(θ|Xn)

∂θ∂θT
|θ = θ̃n](θ − θ̃n)

= log π(θ̃|Xn)−
1

2
(θ − θ̃n)

T Ĩn(θ − θ̃n).

Hence

π(θ|Xn)
.
= π(θ̃|Xn) exp[−

1

2
(θ − θ̃n)

T Ĩn(θ − θ̃n)]

∝ exp[−1

2
(θ − θ̃n)

T Ĩn(θ − θ̃n)],

which is the kernel of a Np(θ|θ̃n, Ĩ−1
n ) density (with p being the dimension of θ).

As the posterior density becomes highly concentrated in a neighborhood of the pos-

terior mode where the prior π(θ) is nearly constant (this is true for a diffuse prior), the

posterior is essentially the same as the likelihood f(Xn|θ). Then we may replace, to the

first order of approximation, θ̃n by θ̂n and Ĩn by În where θ̂n is the maximum likelihood

estimator (MLE) of θ.

Remark 1. From the above discussion it follows that for iid X1, . . . , Xn|θ, we have

several ways to approximate the posterior density either by Np(θ̃n, Ĩ
−1
n ) or Np(θ̂n, Î

−1
n )

or Np(θ̂n, I
−1(θ̂n)), where I(θ) is the total Fisher information in Xn. In particular,

under suitable regularity conditions, Î
1/2
n (θ − θ̂n) given Xn converges to Np(0, Ip) with

probability 1 (Pθ). This is comparable with the classical statistical theory where Î
1/2
n (θ−

θ̂n)|θ d→ Np(0, Ip).

A Formal Result on Asymptotic Normality of the Posterior Distribution

LetX1, . . . , Xn|θ be iid with a cdf F (x|θ) and a pdf f(x|θ). For simplicity, let θ be a scalar

with θ ∈ Θ an open subset of R. Fix θ0 ∈ Θ, the “true” value of θ, and all probability

statements will be made under Pθ0 . Let l(θ, x) = log f(x|θ), Ln(θ) =
∑n

i=1 l(θ,Xi) and

h(i) a generic notation for the ith derivative of a function h(X, θ) with respect to θ. The

function h(·) may not involve X explicitly. Assume the following regularity conditions.

I. The set {x : f(x|θ) > 0} is the same for all θ ∈ Θ, i.e., the support does not depend

on the parameter.

II. The function l(θ, x) is thrice differentiable with respect to θ in a neighborhood

(θ0 − δ, θ0 + δ) of θ0 and supθ∈(θ0−δ,θ0+δ) |l(3)(θ, x)| ≤M(x) with Eθ0 [M(X1)] <∞.
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III. Eθ0 [l
(1)(θ0, X)] = 0, 0 < Eθ0 [−l(2)(θ0, X)] = Eθ0 [l

(1)(θ0, X)]2 <∞ .

IV. For any δ > 0, sup|θ−θ0|>δ n
−1[Ln(θ) − Ln(θ0)] < −ε for some ε > 0 and all n

sufficiently large.

Remark 2. Suppose there exists a sequence of estimators {θ∗n} of θ such that θ∗n → θ0
with probability 1 (Pθ0). Then there exists a solution θ̂n of the likelihood equation

L
(1)
n (θ) = 0, i.e., there exists a sequence θ̂n of statistics such that with probability 1

(Pθ0), L
(1)
n (θ̂n) = 0 for sufficiently large n and θ̂n

a.s. (Pθ0
)−→ θ0.

Theorem 1. Suppose assumptions (I)-(IV) hold and θ̂n is a strongly consistent solution

of the likelihood equations. Then for any prior density π(θ) which is continuous and

positive at θ0,

lim
n→∞

∫

R

|π∗
n(t|Xn)−

√
I(θ0)√
2π

e−
1
2
t2I(θ0)|dt = 0 (1)

with Pθ0−probability one, where π∗
n(t|Xn) is the posterior density of Tn =

√
n(θ −

θ̂n) given Xn. Also, under the same assumptions, (1) holds with I(θ0) replaced by

−n−1L
(2)
n (θ̂n).

Proof. Recall that the posterior density of θ, πn(θ|Xn) ∝ [
∏n

i=1 f(Xi|θ)]π(θ) ∝ exp[Ln(θ)−
Ln(θ̂n)]π(θ). Hence, the posterior pdf of Tn =

√
n(θ − θ̂n) is given by

π∗
n(t|Xn) = C−1

n exp[Ln(θ̂n + n− 1
2 t)− Ln(θ̂n)]π(θ̂n + n− 1

2 t), (2)

where Cn =
∫
R
exp[Ln(θ̂n + n− 1

2 t)− Ln(θ̂n)]π(θ̂n + n− 1
2 t)dt. Let

gn(t) = exp[Ln(θ̂n + n− 1
2 t)− Ln(θ̂n)]π(θ̂n + n− 1

2 t)− exp[−1

2
t2I(θ0)]π(θ0). (3)

Suppose we show that
∫
R
|gn(t)|dt→ 0 as n→∞. Then Cn →

∫
R
π(θ0) exp(− t2

2
I(θ0))dt =

π(θ0)(2π)
1/2I−1/2(θ0). Then the integral in (1) is dominated by

C−1
n

∫

R

|gn(t)|dt+
∫

R

|C−1
n π(θ0) exp[−

1

2
t2I(θ0)]−N(t|0, I−1(θ0))|dt→ 0.

In order to prove that
∫
R
|gn(t)|dt→ 0, we write R = A1∪A2, where A1 = {t : |t| > δ0

√
n}

and A2 = Ac
1. First,

∫

A1

|gn(t)|dt ≤
∫

A1

π(θ̂n+n− 1
2 t) exp[Ln(θ̂n+n− 1

2 t)−Ln(θ̂n)]dt+

∫

A1

π(θ0) exp[−
1

2
t2I(θ0)]dt.

(4)

4



Now
∫

A1

π(θ0) exp[−
1

2
t2I(θ0)]dt = π(θ0)

∫

|t|>δ0
√
n

exp[−1

2
t2I(θ0)]dt→ 0 as n→∞. (5)

Moreover, since by (IV) for t ∈ A1, n
−1|Ln(θ̂n + n− 1

2 t)− Ln(θ̂n)| < −ε for all sufficiently

large n,

First term in (4) < exp(−nε)
∫

A1

π(θ̂n + n− 1
2 t)dt→ 0 as n→∞. (6)

Combine (5) and (6) to get (4).

Next to prove
∫
A2
|gn(t)|dt→ 0 as n→∞, first by Taylor expansion, and L

(1)
n (θ̂n) =

0,

Ln(θ̂n + n− 1
2 t)− Ln(θ̂n) = −

t2

2
În +Rn(t), (7)

where Rn(t) = (1/6)(t/
√
n)3L

(3)
n (θ′n), |θ′n − θ̂n| < |t|/

√
n. Now by assumption (II), for

each real t, Rn(t)
a.s. (Pθ0

)−→ 0 as n→∞. So, gn(t)
a.s. (Pθ0

)−→ 0. Next for suitably chosen δ0,

for any t ∈ A2,

|Rn(t)| ≤
1

6
δ0t

2n−1

n∑

i=1

M(Xi) <
1

4
t2În a.s.(Pθ0)

for sufficiently large n so that from (7),

exp[Ln(θ̂n + n− 1
2 t)− Ln(θ̂n)] < exp(−1

4
t2În) < exp[−t2

8
I(θ0)],

a.s. for large n. Hence, for a suitably chosen δ0 > 0, |gn(t)| is dominated by an integrable

function on A2. Applying the dominated convergence theorem,
∫
A2
|gn(t)|dt → 0 as

n→∞.

Remark 3. We assume in the proof that π(θ) is a proper pdf. However, the result

continues to hold even for improper prior π(θ) provided there exists n0 such that the

“posterior” π(θ|X1, . . . , Xn0) is proper a.e.

We next show that if θ̂Bn =
∫
R
θπn(θ|Xn)dθ is finite, then

√
n(θ̂Bn − θ̂n) → 0 with

probability 1 (Pθ0) as n→∞ under some conditions.

Theorem 2. Suppose in addition to (I)-(IV),
∫
θπ(θ)dθ <∞. Then

∫

R

|t||π∗
n(t|Xn)−N(t|0, I−1(θ0))|dt→ 0 with probability 1(Pθ0).
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Remark 4. The above result implies that

∫

R

tπ∗
n(t|Xn)dt→

∫

R

tN(t|0, I−1(θ0))dt = 0.

Hence, θ̂Bn = E(θ|Xn) = E[θ̂n + t√
n
|Xn] = θ̂n + E[ t√

n
|Xn]. Hence,

√
n(θ̂Bn − θ̂n) =∫

R
tπ∗

n(t|Xn)dt→ 0 as n→∞.

Laplace Approximation

Bayesian analysis requires evaluation of integrals of the form
∫
g(θ)f(x|θ)π(θ)dθ. For

example, when g(θ) = 1, the integral reduces to the marginal likelihood of X. The

posterior mean requires evaluation of two integrals
∫
θf(x|θ)π(θ)dθ and

∫
f(x|θ)π(θ)dθ.

Laplace’s method is a technique for approximating integrals when the integrand has a

sharp maximum in the interior of the domain of integration.

Laplaces’s method

Consider an integral of the form I =
∫∞
−∞ q(θ) exp[nu(θ)]dθ where q and u are smooth

functions of θ with u having a unique maximum at θ̂. In applications, nu(θ) =
∑n

i=1 l(Xi, θ),

the log-likelihood function or the logarithm of the unnormalized posterior density f(x|θ)π(θ)
with corresponding θ̂ equal to the posterior mode. The idea is that if u has a unique

sharp maximum at θ̂, the most contribution to the integral I comes from the integral

over a small neighborhood (θ̂− δ, θ̂+ δ) of θ̂. We study the behavior of I as n→∞. As

n→∞,

I ≈ I1 =

∫ θ̂+δ

θ̂−δ

q(θ) exp[nu(θ)]dθ.

Laplace’s method involves Taylor series expansion of q and u about θ̂ which gives

I ≈
∫ θ̂+δ

θ̂−δ

[q(θ̂) + (θ − θ̂)q′(θ̂) +
1

2
(θ − θ̂)2q′′(θ̂) + smaller terms]

× exp[nu(θ̂) + nu′(θ̂)(θ − θ̂) +
n

2
u′′(θ̂)(θ − θ̂)2 + smaller terms]dθ

≈ exp[nu(θ̂)]q(θ̂)

∫ θ̂+δ

θ̂−δ

[1 +
q′(θ̂)

q(θ̂)
(θ − θ̂) +

1

2
(θ − θ̂)2

q′′(θ̂)

q(θ̂)
] exp[

n

2
u′′(θ̂)(θ − θ̂)2]dθ.

Assume that c = −u′′(θ̂) > 0 (e.g., when u(θ) = n−1 log f(x|θ)) and letting t =
√
nc(θ−
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θ̂), we have

I ≈ exp[nu(θ̂)]q(θ̂)
1√
nc

∫ δ
√
nc

−δ
√
nc

[1 +
t√
nc

q′(θ̂)

q(θ̂)
+

t2

2nc

q′′(θ̂)

q(θ̂)
] exp(−t2

2
)dt

≈ exp[nu(θ̂)]q(θ̂)
1√
nc

∫ ∞

−∞
[1 +

t√
nc

q′(θ̂)

q(θ̂)
+

t2

2nc

q′′(θ̂)

q(θ̂)
] exp(−t2

2
)dt

= exp[nu(θ̂)]q(θ̂)

√
2π√
nc

[1 +
q′′(θ̂)

2ncq(θ̂)
] = exp[nu(θ̂)]q(θ̂)

√
2π√
nc

[1 +O(n−1)].

In general, for the case with a p−dimensional parameter vector θ,

I = exp[nu(θ̂)]q(θ̂)
(2π)p/2

np/2
|∆u(θ̂)|−

1
2 [1 +O(n−1)],

where ∆u(θ) = (−∂2u(θ)
∂θi∂θj

)p×p .

The Bayesian Information Criterion (BIC)

Consider a model with a likelihood f(x|θ) and prior π(θ). Letting q(θ) = π(θ) and

nu(θ) =
∑n

i=1 l(Xi, θ), the log-likelihood, one can find an approximation to the marginal∫
f(x|θ)π(θ)dθ. This approximation is

exp[
n∑

i=1

l(Xi, θ̂)]π(θ̂)
(2π)p/2

np/2
|∆u(θ̂)|−

1
2 [1 +O(n−1)].

Its logarithm simplifies to

n∑

i=1

l(Xi, θ̂) + log π(θ̂) +
p

2
log(2π)− 1

2
log |∆u(θ̂)| −

p

2
log n+ log[1 +O(n−1)].

Ignoring all the terms which stay bounded as n→∞, we get

BIC =
n∑

i=1

l(Xi, θ̂)−
p

2
log n.

Laplace Approximation and Posterior Normality

Let X1, . . . , Xn|θ be iid with common pdf f(x|θ). Also, let θ̂ denote the MLE of θ. Write

Tn =
√
n(θ − θ̂). Let π(θ) denote the prior pdf, π(θ|Xn) the posterior pdf and Π(·|Xn)

the posterior distribution. Then for a > 0, Π(−a < Tn < a|Xn) = Π(θ̂ − a√
n
< θ <

θ̂ + a√
n
|Xn) = Jn/In, where

Jn =

∫ θ̂+ a√
n

θ̂− a√
n

exp[nu(θ)]π(θ)dθ, In =

∫
exp[nu(θ)]π(θ)dθ,

7



with u(θ) = n−1
∑n

i=1 log f(Xi|θ). By the Laplace approximation, In ≈ exp[nu(θ̂)]π(θ̂)
√
2π√
nc
,

c = −u′′(θ̂), the observed Fisher information per unit observation.

Next by the Laplace method,

Jn ≈ exp[nu(θ̂)]

∫ θ̂+ a√
n

θ̂− a√
n

[π(θ̂) + (θ − θ̂)π′(θ̂) + smaller terms] exp[−nc

2
(θ − θ̂)2]dθ

≈ exp[nu(θ̂)]π(θ̂)

∫ θ̂+ a√
n

θ̂− a√
n

exp[−nc

2
(θ − θ̂)2]dθ

= exp[nu(θ̂)]π(θ̂)n−1/2

∫ a

−a

exp(−ct2

2
)dt.

Thus, for a > 0,

Π(−a < Tn < a|Xn) ≈
√
c√
2π

∫ a

−a

exp(−ct2

2
)dt

= P (−a < Z < a), Z ∼ N(0, c−1).

Tierney-Kadane-Kass Refinements

Suppose we are interested in finding

Eπ[g(θ)|x] =

∫
g(θ)f(x|θ)πθ)dθ
f(x|θ)π(θ)dθ

=

∫
g(θ) exp[nu(θ)]dθ∫
exp[nu(θ)]dθ

, (8)

where nu(θ) = log f(x|θ) + log π(θ). A simple first order approximation to this moment

is given by g(θ̂)[1 +O(n−1)].

Suppose now g(θ) > 0 for all θ ∈ Θ. Let nu∗(θ) = nu(θ) + log g(θ) = nu(θ) + G(θ),

(say). Now apply Laplace method to both the numerator and the denominator of (8).

Let θ̂∗ denote the mode of u∗(θ),

Σ−1 = − ∂2u

∂θ∂θT
|θ=θ̂ and Σ−1

∗ = − ∂2u∗
∂θ∂θT

|θ=θ̂∗ .

Tierney and Kadane (JASA, 1986) obtained the approximation

Eπ[g(θ)|x] = |Σ∗|1/2 exp[nu∗(θ̂∗)]

|Σ|1/2 exp[nu(θ̂)]
[1 +O(n−2)]. (9)

We will give an informal proof of (9) when θ is a real-valued parameter. To this end, let

uk ≡ uk(θ̂), the kth derivative of u(θ) evaluated at θ̂. Similarly, u∗k ≡ u∗k(θ̂∗), the kth

derivative of u∗(θ) evaluated at θ̂∗. Also, write

σ2 = −{u2}−1, and σ2
∗ = −{u∗2}−1.
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Under the usual regularity conditions, σ, σ∗, uk, u∗k are all O(1). First get
∫

exp[nu(θ)]dθ =

∫
exp[nu(θ̂)− n

2σ2
(θ − θ̂)2 +Rn(θ)]dθ

= exp[nu(θ̂)]
√
2π

σ√
n

∫
exp[Rn(θ)]N(θ|θ̂, σ

2

n
)dθ, (10)

where

Rn(θ) = nu(θ)− nu(θ̂) +
n

2σ2
(θ − θ̂)2

=
n

6
(θ − θ̂)3u3 +

n

24
(θ − θ̂)4u4 +

n

120
(θ − θ̂)5u5 +

n

720
(θ − θ̂)6u6 + . . . (11)

By Taylor expansion,

exp[Rn(θ)] = 1 + {n
6
(θ − θ̂)3u3 +

n

24
(θ − θ̂)4u4 +

n

120
(θ − θ̂)5u5}

+
1

2
{n
6
(θ − θ̂)3u3 +

n

24
(θ − θ̂)4u4}2 +

1

6
{n
6
(θ − θ̂)3u3}3 + . . .

= 1 +
n

6
(θ − θ̂)3u3 + [

n

24
(θ − θ̂)4u4 +

n2(θ − θ̂)6u2
3

72
]

+[
n(θ − θ̂)5u5

120
+

n2(θ − θ̂)7u3u4

144
+

n3(θ − θ̂)9u3
3

1296
] +O(n−2). (12)

On integration,
∫

R

exp[Rn(θ)]N(θ|θ̂, σ
2

n
)dθ = 1 +

u4

24

∫

R

n(θ − θ̂)4N(θ|θ̂, σ
2

n
)dθ

+
u2
3

72

∫

R

n2(θ − θ̂)6N(θ|θ̂, σ
2

n
)dθ +O(n−2)

= 1 +
nu4

24
{3(σ

2

n
)2}+ n2u2

3

72
{15(σ

2

n
)3}+O(n−2)

= 1 +
a

n
+O(n−2), (13)

where a = 1
8
σ4u4 +

5
24
σ6u2

3. Hence,∫
exp[nu(θ)]dθ = exp[nu(θ̂)]

√
2π

σ√
n
[1 +

a

n
+O(n−2)]. (14)

Similarly, ∫
exp[nu∗(θ)]dθ = exp[nu∗(θ̂∗)]

√
2π

σ∗√
n
[1 +

a∗
n

+O(n−2)], (15)

where a∗ =
1
8
σ4
∗u∗4 +

5
24
σ6
∗u

2
∗3. Hence,

Eπ[g(θ)|x] =
σ∗
σ

exp[nu∗(θ̂∗)− nu(θ̂)]
1 + a∗

n
+O(n−2)

1 + a
n
+O(n−2)

=
σ∗
σ

exp[nu∗(θ̂∗)− nu(θ̂)][1 +
a∗ − a

n
+O(n−2)]. (16)
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Next observe that

0 = u∗1(θ̂∗) = u1(θ̂∗) + n−1G′(θ̂∗)

≈ u1(θ̂) + (θ̂∗ − θ̂)u2(θ̂) + n−1G′(θ̂) + n−1(θ̂∗ − θ̂)G′′(θ̂)

= (θ̂∗ − θ̂)[u2(θ̂) + n−1G′′(θ̂)] + n−1G′(θ̂),

implying θ̂∗ − θ̂
.
= −{n−1G′(θ̂)}/[u2(θ̂) + n−1G′′(θ̂)] = O(n−1). Hence, since u∗k(θ̂) =

uk(θ̂) + n−1Gk(θ̂), u∗k(θ̂∗)− uk(θ̂) = O(n−1). So, a∗ − a = O(n−1). This leads to

Eπ[g(θ)|x] = σ∗
σ

exp[nu∗(θ̂∗)− nu(θ̂)][1 +O(n−2)]. (17)

Asymptotic Expansion of the Posterior Distribution

Let Fn(u) = P π[
√
nÎ

1/2
n (θ − θ̂n) ≤ u|Xn] be the posterior distribution function of√

nÎ
1/2
n (θ − θ̂n) given Xn. We showed earlier that under a prior π which is continu-

ous and positive at θ0,

lim
n→∞

sup
u
|Fn(u)− Φ(u)| = 0 a.s. Pθ0

when θ0 is the true value of the parameter, Φ(u) being the standard normal cdf.

Johnson (1970) proved the following result refining the original results of Lindley:

sup
u
|Fn(u)− Φ(u)− φ(u)

k∑

j=1

n−j/2ψj(u,Xn)| ≤Mkn
− 1

2
(k+1) a.s. Pθ0

for some Mk > 0 depending on k, where φ(u) is the standard normal density and

ψj(u,Xn) is a jth degree polynomial in u with coefficients bounded in Xn. Ghosh,

Sinha and Joshi (1982) proved a stronger version of the result.

We now present an informal argument to obtain the expansion for k = 2 without the

formal rigor of Johnson (1970) or Ghosh et al. (1982).

Let t =
√
n(θ − θ̂n) and ai =

1
n
diLn(θ)

dθi
|θ=θ̂n

, i ≥ 1 so that a2 = −În. Then by Taylor

expansion,

π(θ) = π(θ̂n + t/
√
n) = π(θ̂n)[1 +

t√
n

π′(θ̂n)

π(θ̂n)
+

t2

2n

π′′(θ̂n)

π(θ̂n)
] + o(n−1)

and

Ln(θ̂n + t/
√
n)− Ln(θ̂n) =

1

2
t2a2 +

t3

6
√
n
a3 +

t4

24n
a4 + o(n−1).

Hence,

π(θ̂n + t/
√
n) exp[Ln(θ̂n + t/

√
n)− Ln(θ̂n)]

= π(θ̂n) exp(
a2t

2

2
)(1 +

α1√
n
+

α2

n
) + o(n−1), (18)
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where

α1 ≡ α1(t;Xn) =
t3

6
a3 + t

π′(θ̂n)

π(θ̂n)
,

α2 ≡ α2(t;Xn) =
t4

24
a4 +

t6

72
a23 +

t2

2

π′′(θ̂n)

π(θ̂n)
+

t4

6
a3

π′(θ̂n)

π(θ̂n)
.

Then

Cn =

∫
π(θ̂n + t/

√
n) exp[Ln(θ̂n + t/

√
n)− Ln(θ̂n)]dt

= π(θ̂n)

√
2π

−a2
[1 +

a4
8a22
− 5

24

a23
a32
− 1

2a2

π′′(θ̂n)

π(θ̂n)
+

a3
2a22

π′(θ̂n)

π(θ̂n)
] + o(n−1). (19)

Hence the posterior π∗
n of Tn is

π∗
n(t|Xn) = C−1

n π(θ̂n + t/
√
n) exp[Ln(θ̂n + t/

√
n)− Ln(θ̂n)]

= (2π)−
1
2 Î1/2n exp(− Înt

2

2
)[1 +

γ1√
n
+

γ2
n
] + o(n−1), (20)

where

γ1 ≡ γ1(t;Xn) = α1(t;Xn) =
t3

6
a3 + t

π′(θ̂n)

π(θ̂n)
,

and

γ2 ≡ γ2(t;Xn) = α2(t;Xn)−
a4
8a22

+
5

24

a23
a32

+
1

2a2

π′′(θ̂n)

π(θ̂n)
− a3

2a22

π′(θ̂n)

π(θ̂n)
.

Let Sn = Î
1/2
n Tn =

√
nÎ

1/2
n (θ − θ̂n). Then the posterior density of Sn is given by

πn(s|Xn) = φ(s)[1 +
1√
n
{ a3s

3

6Î
3/2
n

+
s

Î
1/2
n

π′(θ̂n)

π(θ̂n)
}

+
1

n
{ a4s

4

24Î2n
− a23s

6

72Î3n
+

s2

2În

π′′(θ̂n)

π(θ̂n)
+

a3s
4

6Î2n

π′(θ̂n)

π(θ̂n)

− a4

8Î2n
+

5a23

24Î3n
− 1

2În

π′′(θ̂n)

π(θ̂n)
− a3

2Î2n

π′(θ̂n)

π(θ̂n)
}] + o(n−1). (21)

The expansion given in (21) will be useful later in deriving probability matching priors.
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9 Optimality

9.1 Asymptotic Relative Efficiency

Already done from Sec 1.15.4 of Serfling

9.2 Asymptotic relative efficiency of estimators

(Casella and Berger 476-477)

Definition 4. A sequence of estimators θ̃n is consistent for θ if θ̃n
P→ θ.

Definition 5. A sequence of estimators θ̃n is
√
n-consistent for θ if

√
n(θ̃n − θ)

is bounded in probability. This will be satisfied in particular by any estimator θ̃n for
which

√
n(θ̃n − θ) tends in law to a non-degenerate limit distribution.

In Chapters 1 and 3 we have considered various cases where the distribution of
estimators converged at rate

√
n to the normal distribution. If there are multiple

estimators of the same parameter with this property, then all of them are
√
n consis-

tent. We can use the asymptotic variance as a means of comparing such estimators.
This is the idea of asymptotic relative efficiency.

Definition 6. If two estimators Wn and Vn satisfy

√
n[Vn − θ]⇒ N (0, σ2

V )√
n[Wn − θ]⇒ N (0, σ2

W )

The asymptotic relative efficiency(ARE) of Vn with respect to Wn is

ARE(Vn,Wn) =
σ2
W

σ2
V

(106)

Example 1(ARE of Poisson Estimators) SupposeX1, · · · , Xn are iid Poisson(λ),
and we are interested in estimating τ = Pλ(X1 = 0) = exp(−λ). For example num-
ber of customers who come into a bank in a given time period is modeled as a Poisson
random variable and we are interested in the probability that no one will enter the
bank in one time period. A natural (but somewhat naive) estimator comes from
defining Yi = I(Xi = 0). The Yis are iid Bernoulli(exp(−λ)) and hence it follows
that √

n(Ȳn − exp(−λ))⇒ N (0, exp(−λ)(1− exp(−λ)))

Additionally,the MLE of exp(−λ) is τ̂ = exp(−λ̂) where λ̂ = X̄n is the MLE of λ.
Using the Delta method, we have

√
n(τ̂ − τ)⇒ N (0, λ exp(−2λ))
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The ARE of Ȳn wrt the MLE is

ARE(Ȳ , exp(−X̄)) =
λ exp(−2λ)

exp(−λ)(1− exp(−λ))
=

λ exp(−λ)

(1− exp(−λ))

Examination of this function shows that it is strictly decreasing with a maximum of
1 at λ = 0 and tailing off rapidly (< 0.1 when λ = 4) to 0 as λ → ∞ . So in this
case the MLE is better in terms of ARE.

Example 2 (Mean vs Median of a symmetric distribution) Consider a
distribution function F with density function f symmetric about an unknown point
θ to be estimated. For X1, · · · , Xn a sample from F , put X̄n = 1

n

∑n
i=1Xi and

Medn = median{X1, · · · , Xn}. Each of X̄n and Medn is a consistent estimator of θ.
For X̄n, the classical central limit theorem tells us: if F has finite variance σ2

F ,
then the sampling distribution of X̄n is approximately N (θ, σ2

F/n). For Medn, from
Section 4 we get that if the density f is continuous and positive at θ, then the sam-
pling distribution of Medn is approximately N (θ, (4[f(θ)]2n)−1). The asymptotic
relative efficiency (ARE) of Med to X̄ is ARE(Med, X̄, F ) = 4[f(θ)]2σ2

F .

Example 2’ (Mean vs Median: Different distributions) With F = N (θ, σ2
F ),

it is seen that ARE(Med, X̄,N (θ, σ2
F )) = 2/π = 0.64. For sampling from a double

exponential (or Laplace) distribution with density f(x) = θ
2

exp(−θ | x− θ |),−∞ <
x <∞ (and thus variance 2/θ2), we get ARE(Med, X̄,Laplace) = 2. Thus depend-
ing on the distribution, median can be more or less efficient (asymptotically) than
the mean. A very interesting solution to this dilemma is given by an estimator that
has excellent overall performance, the so-called Hodges-Lehmann location estimator
(Hodges and Lehmann(1963) Annals of Mathematical Statistics)

HLn = Median(
Xi +Xj

2
) (107)

the median of all pairwise averages of the sample observations. We have that HLn is
asymptoticallyN (θ, (12[

∫
f 2(x)dx]2n)−1), which yields that ARE(HL, X̄,N (θ, σ2

F )) =
3/π = 0.955 and ARE(HL, X̄,Laplace) = 1.5. Also, for the Logistic distribution with
density

f(x) =
1

σ

exp{(x− θ)/σ}
(1 + exp{(x− θ)/σ})2 ,−∞ < x <∞,

for which HLn is the MLE of θ and thus optimal, we have ARE(HL, X̄,Logistic) =
π2/9 = 1.097. Further, for F the class of all distributions symmetric about θ and hav-
ing finite variance, we have infFARE(HL, X̄, F ) = 108/125 = 0.864 (see Lehmann).
The estimator HLn is highly competitive with X at Normal distributions, can be
infinitely more efficient at some other symmetric distributions F , and is never much
less efficient at any distribution F in F .
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9.3 Asymptotic Bias and Efficiency

(Casella and Berger 470-471, Lehmann and Casella sec 6.1, 6.2)
There are two ways in which we can look at the bias as sample size goes to

infinity. We can look at the finite sample bias Bias(Tn) and take the limit as n→∞.
This is called the limiting bias. We can also look for a suitably scaled version of the
estimator converges in distribution to a non-degenerate random variable and look
at the bias of that limiting distribution. This is the asymptotic bias. Here are the
precise definitions:

Definition 7. An estimator Tn of τ(θ) is unbiased in the limit, if limn→∞ E(Tn) =
τ(θ).

Definition 8. For an estimator Tn, suppose that kn(Tn− τ(θ))⇒ H. The estimator
Tn is asymptotically unbiased if the expectation of H is zero.

Example 1 (Asymptotically biased estimator) LetX1, · · · , Xn are iid U(0, θ).

The MLE of θ is X(n) (108)

P (X(n) ≤ a) = (a/θ)n and E(X(n)) = θ (109)

Hence P (n(θ −X(n)) ≤ a) = P (X(n) ≥ θ − a/n) = 1− (1− a/nθ)n → 1− e−a/θ.
Thus n(θ−X(n))⇒ Exp(1

θ
). The expectation of the limiting random variable is not

zero. So X(n) is not asymptotically unbiased. From (??) X(n) is unbiased in the limit.

Similar concepts exist for efficiency, which concerned with the asymptotic variance
of the estimator.

Definition 9. For an estimator Tn, if limn→∞ knVar(Tn) = τ 2 < ∞, where kn is a
sequence of constants, then τ 2 is called the limiting variance.

Definition 10. For an estimator Tn, suppose that kn(Tn − τ(θ)) ⇒ N (0, σ2). The
parameter σ2 is called the asymptotic variance of Tn.

In most cases these two are the same. But in complicated cases, this may not
hold. It is always the case that the asymptotic variance is smaller than the limiting
variance (Lehmann and Casella Sec 6.1).

Example 2 Let us consider the mean X̄n of n iid normal observations with
mean µ and variance σ2. Suppose we are interested in estimating 1

µ
and we use the

estimator Tn = 1
X̄n

. For each finite n the distribution of
√
nX̄n is N (0, σ2).

Var(
√
nTn) =∞, by direct integral of

1

x2
with respect to the normal pdf.

(110)
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So, the limiting variance of Tn is infinity. On the other hand, by Delta method,

√
n(Tn −

1

µ
)⇒ N (0,

σ2

µ4
)

So the asymptotic variance of Tn is σ2

µ4
.

In the spirit of the Cramer Rao lower bound, there is an optimal asymptotic
variance.

Definition 11. A sequence of estimators Wn is asymptotically efficient for a param-
eter τθ if

√
n(Wn − τ(θ)⇒ N (0, ν(θ) and

ν(θ) =
(τ ′(θ)2)

Eθ((
∂
∂θ

log f(X | θ))2)
=

(τ ′(θ)2)

I(θ)
, (111)

that is the asymptotic variance of Wn achieves the Cramer-Rao lower bound.

For a long time it was believed that if

√
n(Wn − τ(θ)⇒ N (0, ν(θ), (112)

then

ν(θ) ≥ (τ ′(θ)2)

I(θ)
(113)

under regularity conditions on the densities. This belief was shattered by the example
(due to hodges; see LaCam 1953) below:

Example 3 (Superefficient Estimator): Let X1, · · · , Xn be iid N (θ, 1) and
the parameter of interest is θ. In this case, h(θ) = θ, and

I(θ) = Eθ((
∂

∂θ
log f(X | θ))2)

= Eθ((
∂

∂θ

1

2
(X − θ)2)2)

= Eθ(X − θ)2

= 1

Thus equation(??) reduces ν(θ) ≥ 1. Now consider the sequence of estimators

Tn =

{
X̄ if | X̄ |≥ 1/n1/4

aX̄ if | X̄ |< 1/n1/4

Then,
√
n(Tn − θ)⇒ N (0, ν(θ)), (114)

where ν(θ) = 1 when θ 6= 0 and ν(θ) = a2 when θ = 0. (115)
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If a < 1, inequality (??) is violated at θ = 0.
This phenomenon is quite common and is called superefficiency. There will typ-

ically exist estimators satisfying (??) but with ν(θ) violating (??) at least for some
values of θ. However, it was shown by LaCam(1953) that for any sequence of esti-
mators satisfying (??), the set S of points of super-efficiency has Lebesgue measure
zero.

9.4 ARE of tests

Under the alternative θ = θ1, where θ1 is fixed, the power of the LR test converges
to 1 (homework: show this). Such tests are said to be consistent. There are three
approaches to studying the asymptotic power of tests in order to obtain nontrivial
asymptotic result:

1. let α→ 0 (Bayes)

2. look at rates at which power → 1 (Bahadur)

3. let the alternative shrink toward θ0 (Pitman)

We will focus on the third. Let us consider power against alternatives of the form
θ1n = θ0 + g/

√
n for some nonzero k× 1 vector g. Proceeding as above, we now find

√
n(θ̂ − θ1n)⇒ N (0, I(θ0)−1) (116)

which implies
√
n(θ̂− θ0)⇒ N (g, I(θ0)−1) so that ξW converges to a quadratic form

in multivariate normals with a nonzero mean. The limiting distribution is χ2
k(δ)

where δ is the noncentrality parameter and equals g′Ig.(homework)

Exercises

1. Show that posterior consistency implies robustness of Bayesian inference with
respect to the prior.

2. Problem 6.6.14 of Lehmann and Casella, pg 510.

3. Problem 6.6.15 of Lehmann and Casella, pg 510.

4. Complete example 1 by proving (??) and (??)

5. Complete example 2 by proving (??)

6. Complete example 3 by proving (??) and (??)

7. Show that the likelihood ratio test is consistent
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8. Consider the simple linear regression model

yi = βxi + εi

with slope zero. εi are iid with mean 0 and variance σ2. Find the asymptotic
distribution of β̂, the least squares estimator of β under suitable assumptions
on xi, namely, xn → 0, max xi∑

x2j
→ 0, 1

n

∑
x2
j → t <∞.
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