INDIAN STATISTICAL INSTITUTE CHENNAI CENTRE
 M.STAT I. 2016-17 Semester II
 Large Sample Statistical Methods
 Final Examination

Numbers in brackets indicate points for each question. Total marks is 100.

1 Suppose that X_{1}, \cdots, X_{n} are i.i.d. observations whose mgf exists for some $t>0$. Show that $X_{(n)}=O_{P}(\log (n))$, where $X_{(n)}$ is the largest order-statistic.

2 Give examples of the following and justify your claim in each case
(a) A sequence of random variables $\left\{X_{n}\right\}$ that converge in distribution to X but not in probability.
(b) A sequence of random variables $\left\{X_{n}\right\}$ that converge in probability to X but not with probability one.

3 Consider the simple linear regression model

$$
\begin{equation*}
y_{i}=\beta x_{i}+\epsilon_{i} \quad i=1, \cdots, n \tag{15}
\end{equation*}
$$

with slope zero. ϵ_{i} are iid with mean 0 and variance σ^{2}. Find the asymptotic distribution of $\hat{\beta}$, the least squares estimator of β under suitable assumptions on x_{i}, namely, $\overline{x_{n}} \rightarrow 0, \max \frac{x_{i}}{\sum x_{j}^{2}} \rightarrow 0, \frac{1}{n} \sum x_{j}^{2} \rightarrow t<\infty$.

4 Let X_{1}, \cdots, X_{n} be iid according to the Cauchy distribution

$$
\begin{equation*}
f_{\theta}(x)=\frac{\theta}{\pi} \frac{1}{x^{2}+\theta^{2}} \quad-\infty<x<\infty \tag{20}
\end{equation*}
$$

(a) Show that the likelihood equation has unique root $\hat{\theta_{n}}$ that maximizes the likelihood function.
(b) Find the asymptotic distribution of $\hat{\theta_{n}}$.

5 Let $\Pi_{N}=\left\{x_{N 1}, \cdots, x_{N N}\right\}, N=1,2, \ldots$, be a sequence of finite populations such that Π_{N} has mean μ_{N} and variance σ_{N}^{2}. Let $\bar{X}_{n N}$ denote the mean of a random sample of size n drawn without replacement from the population Π_{N}.
(a) Express $\bar{X}_{n N}$ as a two-sample simple linear rank statistic.
(b) Using part (a) and the Wald-Wolfowitz theorem, state a central limit theorem for $\bar{X}_{n N}$ as $n, N \rightarrow \infty$. State and verify the conditions required for the theorem to hold.

6 Suppose $X_{1} \cdots, X_{n}$ are iid $\mathcal{N}(\theta, 1)$ and the parameter of interest is $p=P\left(X_{1} \leq a\right)$ for fixed known constant a. The UMVU of p is

$$
\delta_{1 n}=\Phi\left(\sqrt{\frac{n}{n-1}}(a-\bar{X})\right) .
$$

An alternative nonparametric estimator is

$$
\delta_{2 n}=\frac{1}{n}\left(\text { number of } X_{i} \leq a\right)
$$

Find the asymptotic relative efficiency of $\delta_{2 n}$ with respect to $\delta_{1 n}$.

