INDIAN STATISTICAL INSTITUTE CHENNAI CENTRE M.STAT First Year 2014-15 Semester I

Large Sample Statistical Methods Final Examination

Points for each question is in brackets. Total Points 100. Students are allowed to bring 2 pages (front and back) of hand-written notes Duration: 3 hours

- 1. (10) Let X_n be $AN(\mu, \sigma^2/n)$ and let Y_n be $AN(c, v/n), c \neq 0$, and put $Z_n = \sqrt{n}(X_n \mu)/Y_n$. Show that Z_n is $AN(0, \sigma^2/c^2)$.
- 2. (10) Let X_1, \dots, X_n be a sequence of iid random variables from a distribution with finite first four moments. Show that the joint distribution of the first two sample moments is asymptotically normal using the Cramer Wold device.
- 3. (20) Suppose X_1, \dots, X_n are iid $U(\theta 1/2, \theta + 1/2)$. Consider the one sample Wilcoxon statistic given by

$$W = \frac{1}{\binom{n}{2}} \sum_{i < j} I(X_i + X_j > 0)$$

for testing the hypothesis $\theta = 0$. Obtain the asymptotic distribution of W under the null hypothesis using the theory of U-statistics.

- 4. (15) Let X_1, \dots, X_n be iid Poisson observations with rate λ . Consider a Gamma (α, β) prior density for λ . Show that the posterior is consistent.
- 5. (10) Show that the likelihood ratio test is consistent.
- 6. (20) Show that the projection of Kendall's tau on the ranks is Spearmen's rho upto a constant. Derive the asymptotic distribution of Spearmen's rho under the null hypothesis of independence.
- 7. (20) Let X_1, \dots, X_n be iid according to the logistic distribution with cdf

$$F_{\theta}(x) = \frac{1}{1 + e^{-(x-\theta)}}$$

- (a) Show that the likelihood equation has unique root $\hat{\theta}_n$ that maximizes the likelihood function.
- (b) Find the asymptotic distribution of $\hat{\theta_n}$.
- (c) Show that \overline{X}_n is a consistent estimator of θ .
- (d) Suggest an estimator that can be computed explicitly and has the same asymptotic distribution as $\hat{\theta_n}$.