INDIAN STATISTICAL INSTITUTE

CHENNAI CENTRE M.STAT I. 2013-14 Semester I

Large Sample Statistical Methods Final Examination

Numbers in [] denote points for each question. Total points is 110. You can answer any part of any question. However, the maximum you can score is 100.

Duration: 3 hours

- 1 [10] A sequence X_n of random variables converge in distribution to a random variable X.
 - (a) Construct random variable Y_n and Y such that $Y_n \stackrel{d}{=} X_n$, $Y \stackrel{d}{=} X$ and $Y_n \stackrel{wp1}{\longrightarrow} Y$. (No proof required. Just define the random variables.)
 - (b) Show that when $Y_n \xrightarrow{wp1} Y$, for a continuous function $g, g(Y_n) \xrightarrow{wp1} g(Y)$.
 - (c) Conclude that $g(X_n)$ converge in distribution to g(X)
- 2/[15] Let X_1, \dots, X_n be iid according to Poisson distribution.
 - (a) Find the asymptotic relative efficiency of δ_{1n} =(number of $X_i = 0$)/n to $\delta_{2n} = \exp\{-\bar{X}_n\}$ as estimators of $e^{-\lambda}$.
 - (b) Are any of them asymptotically efficient? Justify your answer.
- 3 [20] Let X_1, \dots, X_n are independent Bernoulli(p). The parameter of interest is the population variance.
 - (a) Find the asymptotic distribution of the unbiased estimator s^2 and the mle $m_2 = (n-1)s^2/n$ when $p \neq 1/2$,
 - (b) Find the asymptotic distribution of s^2 and m_2 when p = 1/2.
- 4 [20] In the context of hypothesis testing, answer the following:
 - (a) Show that the likelihood ratio test is consistent.
 - (b) Consider the shrinking set of alternatives $\theta_{1n} = c/\sqrt{n}$, where c is a constant, and null $\theta_0 = 0$. Suppose the test statistics has asymptotic normal distribution given by $\frac{\sqrt{n}(T_n \mu(\theta_{1n}))}{\sigma(\theta_{1n})} \Rightarrow \mathcal{N}(0,1)$ for some μ and σ where μ is differentiable at 0 and σ is continuous at 0. Show that the tests that reject for large values of T_n and are asymptotically of level α have asymptotic power $1 \Phi(z_{\alpha} h\mu'(0)/\sigma(0))$.
- 5 [15] The observations Y_i have gamma distribution $\Gamma(\gamma, 1/\tau)$. The parameter of interest is $1/\tau$ and τ has the conjugate prior density $\Gamma(g, \alpha)$. Determine the limit distribution of the posterior mean and verify that it is asymptotically efficient.

continued on back

6 [20] Consider the U-statistic

$$U_n = \frac{2}{n(n-1)} \sum_{1 \le i < j \le n} X_i X_j$$

for estimating $\theta = \mu^2$ where X_1, \dots, X_n are iid with mean μ and variance σ^2 .

- (a) Find the projection \hat{U}_n of U_n explicitly
- (b) Show that $\sqrt{n}(\hat{U}_n \theta) \Rightarrow \mathcal{N}(0, 4\mu^2\sigma^2)$.
- (c) Express $R_n = U_n \hat{U}_n$ as a U-statistic and show that $E(R_n^2) = O(n^{-2})$
- (d) Conclude that $\sqrt{n}(U_n \theta) \Rightarrow \mathcal{N}(0, 4\mu^2\sigma^2)$.

7 [10] Answer the following

- (a) Show that, for the class of continuous F's, the exact distribution of the Kolmogorov-Smirnov statistic does not depend on F.
- (b) Define D_{n+} as the one-sided Kolmogorov-Smirnov distance. Show that nD_{n+}^2 is asymptotically distributed as Exponential(2).