
Statistical Tests of Randomness for Random

Number Generators

Abhishek Ray and Tathagata Saha

13th April 2017

1 Abstract

Simulation is a core part of statistics and to simulate from any distribution
it is pivotal to understand the process of simulating from Uniform distribu-
tion (U(0,1)).For this purpose Pseudo Random Number Generators

¯
(PRNGs)

are being used for a considerable amount of time.They are very popular because
of their high periodicity and easy implementaion in higher level languages.Now,
in this project we will subject implementation of several algorithms in R which
are used to generate array of random numbers to a battery of tests and report
the outcome of these tests in a tabular format.

2 List of Random Number Generators:

� Wichmann-Hill

� Marsaglia-Multicarry

� Super-Duper

� Mersenne-Twister

� Knuth-TAOCP-2002

� Knuth-TAOCP

� L’Ecuyer-CMRG

3 Statistical Tests Of Randomness

� Turning Point Test

� Wald-Wolfowitz Runs Test

� Man-Kendall Rank Test

1

� Difference Sign Test

� Cox-Stuart Test

� Bartel’s Rank Test

4 Wichmann-Hill

� This function returns a pseudo-random number uniformly distributed Be-
tween 0 and 1.

� The cycle length is 6.95 x 1012, not as claimed in the original article.

Author:

� Brian Wichmann

� David Hill

� Modifications by John Burkardt.

4.1 Parameters

1. Input/output, integer S1, S2, S3, three values used as the Seed for the
sequence. These values should be positive Integers between 1 and 30,000.

2. Output, real R4 RANDOM, the next value in the sequence.

4.2 Algorithm

Function r4 uni (s1, s2, s3)

Integer s1
Integer s2
Integer s3
Real r4 random

s1 = mod (171 * s1, 30269)
s2 = mod (172 * s2, 30307)
s3 = mod (170 * s3, 30323)
r4 random = mod (real (s1) / 30269 + real (s2) / 30307 + real (s3) / 30323,

1.0)
return r4 random

2

4.3 Tests of Randomness

4.3.1 Bartel’s Rank Test

> library(randtests)

> n=1000

> RNGkind(kind = "Wichmann-Hill")

> set.seed(2)

> x1=runif(n)

> y11=bartels.rank.test(x1, "two.sided", pvalue="normal")

> y11

Bartels Ratio Test

data: x1

statistic = -1.4782, n = 1000, p-value = 0.1394

alternative hypothesis: nonrandomness

4.3.2 Cox-Stuart Test

> y12=cox.stuart.test(x1, "two.sided")

> y12

Cox Stuart test

data: x1

statistic = 258, n = 500, p-value = 0.5024

alternative hypothesis: non randomness

4.3.3 Difference-sign test of randomness

> y13=difference.sign.test(x1, "two.sided")

> y13

Difference Sign Test

data: x1

statistic = 0.82117, n = 1000, p-value = 0.4115

alternative hypothesis: nonrandomness

4.3.4 Mann-Kendall rank test of randomness

> y14=rank.test(x1, "two.sided")

> y14

Mann-Kendall Rank Test

data: x1

statistic = 0.067117, n = 1000, p-value = 0.9465

alternative hypothesis: trend

3

4.3.5 Wald-Wolfowitz runs test of randomness

> y15=runs.test(x1, "two.sided")

> y15

Runs Test

data: x1

statistic = -1.5187, runs = 477, n1 = 500, n2 = 500, n = 1000, p-value

= 0.1288

alternative hypothesis: nonrandomness

4.3.6 Turning Point test

> y16=turning.point.test(x1, "two.sided")

> y16

Turning Point Test

data: x1

statistic = -2.5023, n = 1000, p-value = 0.01234

alternative hypothesis: non randomness

5 Marsaglia-Multicarry

� In computer science, multiply-with-carry (MWC) is a method invented by
George Marsaglia for generating sequences of random integers based on
an initial set from two to many thousands of randomly chosen seed values.

� The main advantages of the MWC method are that it invokes simple com-
puter integer arithmetic and leads to very fast generation of sequences
of random numbers with immense periods, ranging from around 260 to
22000000. As with all pseudorandom number generators, the resulting se-
quences are functions of the supplied seed values.

5.1 Algorithm

� In its most common form, a lag-r MWC generator requires a base b, a
multiplier a, and a set of r+1 random seed values, consisting of r residues
of b, x0,x1, x2, xr−1, and an initial carry cr−1 < a.

� The lag-r MWC sequence is then a sequence of pairs xn, cn determined by
xn = (axn−r + cn−1) mod b, cn = baxn−r+cn−1

b c, n ≥ r, and the MWC
generator output is the sequence of x′s, xr, xr+1 , xr+2,...

4

5.2 Properties

� The period of a lag-r MWC generator is the order of b in the multiplicative
group of numbers modulo abr − 1.

� In R, the seed is two integers (all values allowed).

� It has a period of more than 260 and has passed all tests (according to
Marsaglia).

5.3 Tests of Randomness

5.3.1 Bartel’s Rank Test

> RNGkind(kind = "Marsaglia-Multicarry")

> set.seed(2)

> x2=runif(n)

> y21=bartels.rank.test(x2, "two.sided", pvalue="normal")

> y21

Bartels Ratio Test

data: x2

statistic = -0.62754, n = 1000, p-value = 0.5303

alternative hypothesis: nonrandomness

5.3.2 Cox-Stuart Test

> y22=cox.stuart.test(x2, "two.sided")

> y22

Cox Stuart test

data: x2

statistic = 251, n = 500, p-value = 0.9643

alternative hypothesis: non randomness

5.3.3 Difference-sign test of randomness

> y23=difference.sign.test(x2, "two.sided")

> y23

Difference Sign Test

data: x2

statistic = 1.2591, n = 1000, p-value = 0.208

alternative hypothesis: nonrandomness

5

5.3.4 Mann-Kendall rank test of randomness

> y24=rank.test(x2, "two.sided")

> y24

Mann-Kendall Rank Test

data: x2

statistic = 1.2682, n = 1000, p-value = 0.2047

alternative hypothesis: trend

5.3.5 Wald-Wolfowitz runs test of randomness

> y25=runs.test(x2, "two.sided")

> y25

Runs Test

data: x2

statistic = -0.18983, runs = 498, n1 = 500, n2 = 500, n = 1000, p-value

= 0.8494

alternative hypothesis: nonrandomness

5.3.6 Turning Point test

> y26=turning.point.test(x2, "two.sided")

> y26

Turning Point Test

data: x2

statistic = -1.3012, n = 1000, p-value = 0.1932

alternative hypothesis: non randomness

6 Super-Duper

� Super Duper developed by G. Marsaglia, combines the binary form of the
output from the multiplicative congruential generator with multiplier a =
69, 069 and modulus m=232. With the output of a Tausworthe generator
using a left-shift of 17 and a right shift of 15.

� Tausworthe generator: Tausworthe Generator is a kind of multiplicative
recursive which produces random bits. It has the following form:

xn+1 = (A1xn +A2xn−1 + ...+Akxn−k+1) mod 2

where xi, Aiε{0, 1}∀i .

6

6.1 Properties

� It has a period of about 4.6 ∗ 1018 for most initial seeds. The seed is two
integers (all values allowed for the first seed; the second must be odd).

� We use the implementation by Reeds et al (1982–84).

� The two seeds are the Tausworthe and congruence long integers, respec-
tively.

6.2 Tests of Randomness

6.2.1 Bartel’s Rank Test

> RNGkind(kind = "Super-Duper")

> set.seed(2)

> x3=runif(n)

> y31=bartels.rank.test(x3, "two.sided", pvalue="normal")

> y31

Bartels Ratio Test

data: x3

statistic = -0.46193, n = 1000, p-value = 0.6441

alternative hypothesis: nonrandomness

6.2.2 Cox-Stuart Test

> y32=cox.stuart.test(x3, "two.sided")

> y32

Cox Stuart test

data: x3

statistic = 253, n = 500, p-value = 0.8231

alternative hypothesis: non randomness

6.2.3 Difference-sign test of randomness

> y33=difference.sign.test(x3, "two.sided")

> y33

Difference Sign Test

data: x3

statistic = -0.38321, n = 1000, p-value = 0.7016

alternative hypothesis: nonrandomness

7

6.2.4 Mann-Kendall rank test of randomness

> y34=rank.test(x3, "two.sided")

> y34

Mann-Kendall Rank Test

data: x3

statistic = 0.87574, n = 1000, p-value = 0.3812

alternative hypothesis: trend

6.2.5 Wald-Wolfowitz runs test of randomness

> y35=runs.test(x3, "two.sided")

> y35

Runs Test

data: x3

statistic = -0.69605, runs = 490, n1 = 500, n2 = 500, n = 1000, p-value

= 0.4864

alternative hypothesis: nonrandomness

6.2.6 Turning Point test

> y36=turning.point.test(x3, "two.sided")

> y36

Turning Point Test

data: x3

statistic = -0.40036, n = 1000, p-value = 0.6889

alternative hypothesis: non randomness

7 Mersene-Twister

� The Mersenne Twister is a pseudorandom number generator (PRNG).

� It is by far the most widely used general-purpose PRNG.Its name derives
from the fact that its period length is chosen to be a Mersenne prime.

� The Mersenne Twister was developed in 1997 by Makoto Matsumoto and
Takuji Nishimura.

� It was designed specifically to rectify most of the flaws found in older
PRNGs. It was the first PRNG to provide fast generation of high-quality
pseudorandom integers.

8

� The most commonly used version of the Mersenne Twister algorithm is
based on the Mersenne prime 219937 − 1.

� The standard implementation of that, MT19937, uses a 32-bit word length.
Matsumoto & Nishimura (1998) work on the finite set N2 = {0, 1}, so a
variable x is represented by a vectors of ω bits (e.g. 32 bits).

7.1 Algorithm

� They use the following linear recurrence for the n + ith term: xi+n =

xi+m
⊕

(xuppi |xlowi+1)A,

where n > m are constant integers, xuppi (respectively xlowi) means the
upper (lower) ω − r (r) bits of xi and A (a ω × ω matrix of N2). | is the
operator of concatenation, so xuppi |xlowi+1 appends the upper ω − r bits of
xi with the lower r bits of xi+1.

� After a right multiplication with the matrix A , ⊕ adds the result with
xi+m bit to bit modulo two (i.e. ⊕ denotes the exclusive-or called xor).

� Once provided an initial seed x0, ..., xn−1, Mersenne Twister produces ran-
dom integers in 0, ..., 2ω − 1.

7.2 Properties

The commonly used version of Mersenne Twister, MT19937, which produces a
sequence of 32-bit integers, has the following desirable properties:

1. It has a very long period of 219937 − 1. While a long period is not a
guarantee of quality in a random number generator, short periods (such
as the 232 common in many older software packages) can be problematic.

2. It is k-distributed to 32-bit accuracy for every 1 ≤ k ≤ 623.

3. It passes numerous tests for statistical randomness, including the Diehard
tests.

4. All operations used in the recurrence are bitwise operations, thus it is a
very fast computation compared to modulus operations used in previous
algorithms.

7.3 Tests of Randomness

7.3.1 Bartel’s Rank Test

> RNGkind(kind = "Mersenne-Twister")

> set.seed(2)

> x4=runif(n)

> y41=bartels.rank.test(x4, "two.sided", pvalue="normal")

> y41

9

Bartels Ratio Test

data: x4

statistic = 0.50787, n = 1000, p-value = 0.6115

alternative hypothesis: nonrandomness

7.3.2 Cox-Stuart Test

> y42=cox.stuart.test(x4, "two.sided")

> y42

Cox Stuart test

data: x4

statistic = 251, n = 500, p-value = 0.9643

alternative hypothesis: non randomness

7.3.3 Difference-sign test of randomness

> y43=difference.sign.test(x4, "two.sided")

> y43

Difference Sign Test

data: x4

statistic = 0.27372, n = 1000, p-value = 0.7843

alternative hypothesis: nonrandomness

7.3.4 Mann-Kendall rank test of randomness

> y44=rank.test(x4, "two.sided")

> y44

Mann-Kendall Rank Test

data: x4

statistic = 0.26941, n = 1000, p-value = 0.7876

alternative hypothesis: trend

7.3.5 Wald-Wolfowitz runs test of randomness

> y45=runs.test(x4, "two.sided")

> y45

Runs Test

data: x4

statistic = 0.25311, runs = 505, n1 = 500, n2 = 500, n = 1000, p-value

10

= 0.8002

alternative hypothesis: nonrandomness

7.3.6 Turning Point test

> y46=turning.point.test(x4, "two.sided")

> y46

Turning Point Test

data: x4

statistic = 2.5273, n = 1000, p-value = 0.01149

alternative hypothesis: non randomness

8 Knuth-TAOCP-2002

� A particular case of this type of generators is when

Xn = (Xn−37 +Xn−100) mod 230;

which is a Fibonacci-lagged generator and the ‘seed’ is the set of the 100
last numbers (actually recorded as 101 numbers, the last being a cyclic
shift of the buffer).

� The period is around 2129. This generator has been invented by Knuth
(2002) and is generally called “Knuth-TAOCP-2002” or simply “Knuth-
TAOCP”.

8.1 Tests of Randomness

8.1.1 Bartel’s Rank Test

> RNGkind(kind = "Knuth-TAOCP-2002")

> set.seed(2)

> x5=runif(n)

> y51=bartels.rank.test(x5, "two.sided", pvalue="normal")

> y51

Bartels Ratio Test

data: x5

statistic = -1.7476, n = 1000, p-value = 0.08054

alternative hypothesis: nonrandomness

8.1.2 Cox-Stuart Test

> y52=cox.stuart.test(x5, "two.sided")

> y52

11

Cox Stuart test

data: x5

statistic = 262, n = 500, p-value = 0.3037

alternative hypothesis: non randomness

8.1.3 Difference-sign test of randomness

> y53=difference.sign.test(x5, "two.sided")

> y53

Difference Sign Test

data: x5

statistic = -0.93066, n = 1000, p-value = 0.352

alternative hypothesis: nonrandomness

8.1.4 Mann-Kendall rank test of randomness

> y54=rank.test(x5, "two.sided")

> y54

Mann-Kendall Rank Test

data: x5

statistic = 0.57106, n = 1000, p-value = 0.568

alternative hypothesis: trend

8.1.5 Wald-Wolfowitz runs test of randomness

> y55=runs.test(x5, "two.sided")

> y55

Runs Test

data: x5

statistic = -1.3921, runs = 479, n1 = 500, n2 = 500, n = 1000, p-value

= 0.1639

alternative hypothesis: nonrandomness

8.1.6 Turning Point test

> y56=turning.point.test(x5, "two.sided")

> y56

Turning Point Test

data: x5

12

statistic = 0.50045, n = 1000, p-value = 0.6168

alternative hypothesis: non randomness

9 Knuth-TAOCP

� An earlier version from Knuth (1997). The 2002 version was not backwards
compatible with the earlier version: the initialization of the GFSR from
the seed was altered. R did not allow you to choose consecutive seeds, the
reported ‘weakness’, and already scrambled the seeds.

� Initialization of this generator is done in interpreted R code and so takes
a short but noticeable time.

9.1 Tests of Randomness

9.1.1 Bartel’s Rank Test

> RNGkind(kind = "Knuth-TAOCP")

> set.seed(2)

> x6=runif(n)

> y61=bartels.rank.test(x6, "two.sided", pvalue="normal")

> y61

Bartels Ratio Test

data: x6

statistic = -1.0752, n = 1000, p-value = 0.2823

alternative hypothesis: nonrandomness

9.1.2 Cox-Stuart Test

> y62=cox.stuart.test(x6, "two.sided")

> y62

Cox Stuart test

data: x6

statistic = 251, n = 500, p-value = 0.9643

alternative hypothesis: non randomness

9.1.3 Difference-sign test of randomness

> y63=difference.sign.test(x6, "two.sided")

> y63

Difference Sign Test

13

data: x6

statistic = -0.38321, n = 1000, p-value = 0.7016

alternative hypothesis: nonrandomness

9.1.4 Mann-Kendall rank test of randomness

> y64=rank.test(x6, "two.sided")

> y64

Mann-Kendall Rank Test

data: x6

statistic = -1.2817, n = 1000, p-value = 0.2

alternative hypothesis: trend

9.1.5 Wald-Wolfowitz runs test of randomness

> y65=runs.test(x6, "two.sided")

> y65

Runs Test

data: x6

statistic = -0.69605, runs = 490, n1 = 500, n2 = 500, n = 1000, p-value

= 0.4864

alternative hypothesis: nonrandomness

9.1.6 Turning Point test

> y66=turning.point.test(x6, "two.sided")

> y66

Turning Point Test

data: x6

statistic = 1.1761, n = 1000, p-value = 0.2396

alternative hypothesis: non randomness

10 L’Ecuyer-CMRG

� This is a ‘combined multiple-recursive generator’ from L’Ecuyer (1999),
each element of which is a feedback multiplicative generator with three
integer elements: thus the seed is a (signed) integer vector of length 6. It
is given by:

� zn = (xn − yn) mod m1 where the two underlying generators xn and yn
are,

14

xn = (a1xn−1 + a2xn−2 + a3xn−3) mod m1

yn = (b1yn−1 + b2yn−2 + b3yn−3) mod m2

with coefficients a1 = 0, a2 = 63308, a3 = -183326, b1 = 86098, b2 = 0, b3 =
-539608, and moduli m1 = 2ˆ31 - 1 = 2147483647 and m2 = 2145483479.

10.1 Properties

� The period of this generator is lcm(m3
1−1,m3

2−1), which is approximately
2185 (about 1056).

� This is not particularly interesting of itself, but provides the basis for the
multiple streams used in package parallel.

10.2 Tests of Randomness

10.2.1 Bartel’s Rank Test

> RNGkind(kind = "L'Ecuyer-CMRG")

> set.seed(2)

> x7=runif(n)

> y71=bartels.rank.test(x7, "two.sided", pvalue="normal")

> y71

Bartels Ratio Test

data: x7

statistic = 0.71466, n = 1000, p-value = 0.4748

alternative hypothesis: nonrandomness

10.2.2 Cox-Stuart Test

> y72=cox.stuart.test(x7, "two.sided")

> y72

Cox Stuart test

data: x7

statistic = 234, n = 500, p-value = 0.1656

alternative hypothesis: non randomness

10.2.3 Difference-sign test of randomness

> y73=difference.sign.test(x7, "two.sided")

> y73

15

Difference Sign Test

data: x7

statistic = -0.27372, n = 1000, p-value = 0.7843

alternative hypothesis: nonrandomness

10.2.4 Mann-Kendall rank test of randomness

> y74=rank.test(x7, "two.sided")

> y74

Mann-Kendall Rank Test

data: x7

statistic = -0.55438, n = 1000, p-value = 0.5793

alternative hypothesis: trend

10.2.5 Wald-Wolfowitz runs test of randomness

> y75=runs.test(x7, "two.sided")

> y75

Runs Test

data: x7

statistic = 1.5819, runs = 526, n1 = 500, n2 = 500, n = 1000, p-value =

0.1137

alternative hypothesis: nonrandomness

10.2.6 Turning Point test

> y76=turning.point.test(x7, "two.sided")

> y76

Turning Point Test

data: x7

statistic = 1.4763, n = 1000, p-value = 0.1399

alternative hypothesis: non randomness

16

11 Comparison Of Run-times

0 20 40 60 80 100

0.
00

0.
05

0.
10

0.
15

Coparison of Runtime for different algorithms

NUmber of observations

R
un

tim
e

Algorithm

Wichmann−Hill
Marsaglia−Multicarry
Super−Duper
Mersenne−Twister
Knuth−TAOCP−2002
Knuth−TAOCP
L'Ecuyer−CMRG

12 Summary of Tests for different Algorithms

B
a
rt

el
’s

R
a
n
k

T
es

t

C
ox

-S
tu

a
rt

T
es

t

D
iff

er
en

ce
S
ig

n
T

es
t

M
a
n
-K

en
d
a
ll

R
a
n
k

T
es

t

W
a
ld

-W
o
lf

ow
it

z
R

u
n
s

T
es

t

T
u
rn

in
g

P
o
in

t
T

es
t

1 Wichmann-Hill 0.14 0.96 0.70 0.79 0.16 0.24
2 Marsaglia-Multicarry 0.50 0.21 0.38 0.80 0.62 0.47
3 Super-Duper 0.41 0.20 0.49 0.01 0.28 0.17
4 Mersenne-Twister 0.95 0.85 0.69 0.08 0.96 0.78
5 Knuth-TAOCP-2002 0.13 0.19 0.61 0.30 0.70 0.58
6 Knuth-TAOCP 0.01 0.64 0.96 0.35 0.20 0.11
7 L’Ecuyer-CMRG 0.53 0.82 0.78 0.57 0.49 0.14

17

Table 1: Table of p-values for different algorithms for different tests for
n=1000

B
a
rt

el
’s

R
a
n
k

T
es

t

C
ox

-S
tu

a
rt

T
es

t

D
iff

er
en

ce
S
ig

n
T

es
t

M
a
n
-K

en
d
a
ll

R
a
n
k

T
es

t

W
a
ld

-W
o
lf

ow
it

z
R

u
n
s

T
es

t

T
u
rn

in
g

P
o
in

t
T

es
t

1 Wichmann-Hill PASS PASS PASS PASS PASS PASS

2 Marsaglia-Multicarry PASS PASS PASS PASS PASS PASS

3 Super-Duper PASS PASS PASS FAIL PASS PASS

4 Mersenne-Twister PASS PASS PASS FAIL PASS PASS

5 Knuth-TAOCP-2002 PASS PASS PASS PASS PASS PASS

6 Knuth-TAOCP FAIL PASS PASS PASS PASS PASS

7 L’Ecuyer-CMRG PASS PASS PASS PASS PASS PASS

Table 2: Table showing result of different tests for different algorithms
at 0.1 level of significance for n=1000

B
a
rt

el
’s

R
a
n
k

T
es

t

C
ox

-S
tu

a
rt

T
es

t

D
iff

er
en

ce
S
ig

n
T

es
t

M
a
n
-K

en
d
a
ll

R
a
n
k

T
es

t

W
a
ld

-W
o
lf

ow
it

z
R

u
n
s

T
es

t

T
u
rn

in
g

P
o
in

t
T

es
t

1 Wichmann-Hill 0.04 0.73 0.56 0.95 0.59 0.60
2 Marsaglia-Multicarry 0.51 0.33 0.42 0.96 0.56 0.70
3 Super-Duper 0.67 0.36 0.45 0.09 0.47 0.97
4 Mersenne-Twister 0.20 0.37 0.40 0.11 0.87 0.56
5 Knuth-TAOCP-2002 0.04 0.79 0.73 0.97 0.05 0.72
6 Knuth-TAOCP 0.01 0.31 0.39 0.10 0.63 0.45
7 L’Ecuyer-CMRG 0.51 0.97 0.23 0.55 0.72 0.83

Table 3: Table of p-values for different algorithms for different tests for
n=2000

18

B
a
rt

el
’s

R
a
n
k

T
es

t

C
ox

-S
tu

a
rt

T
es

t

D
iff

er
en

ce
S
ig

n
T

es
t

M
a
n
-K

en
d
a
ll

R
a
n
k

T
es

t

W
a
ld

-W
o
lf

ow
it

z
R

u
n
s

T
es

t

T
u
rn

in
g

P
o
in

t
T

es
t

1 Wichmann-Hill FAIL PASS PASS PASS PASS PASS

2 Marsaglia-Multicarry PASS PASS PASS PASS PASS PASS

3 Super-Duper PASS PASS PASS FAIL PASS PASS

4 Mersenne-Twister PASS PASS PASS PASS PASS PASS

5 Knuth-TAOCP-2002 FAIL PASS PASS PASS FAIL PASS

6 Knuth-TAOCP FAIL PASS PASS FAIL PASS PASS

7 L’Ecuyer-CMRG PASS PASS PASS PASS PASS PASS

Table 4: Table showing result of different tests for different algorithms
at 0.1 level of significance for n=2000

B
a
rt

el
’s

R
a
n
k

T
es

t

C
ox

-S
tu

a
rt

T
es

t

D
iff

er
en

ce
S
ig

n
T

es
t

M
a
n
-K

en
d
a
ll

R
a
n
k

T
es

t

W
a
ld

-W
o
lf

ow
it

z
R

u
n
s

T
es

t

T
u
rn

in
g

P
o
in

t
T

es
t

1 Wichmann-Hill 0.15 0.83 0.54 0.73 0.61 0.27
2 Marsaglia-Multicarry 0.79 0.61 1.00 0.41 0.84 0.87
3 Super-Duper 0.98 0.98 0.57 0.61 0.91 0.83
4 Mersenne-Twister 0.78 0.18 0.40 0.18 0.27 0.03
5 Knuth-TAOCP-2002 0.10 0.05 0.81 0.65 0.61 0.97
6 Knuth-TAOCP 0.02 0.65 0.83 0.06 0.35 0.12
7 L’Ecuyer-CMRG 0.21 0.67 0.19 0.83 0.87 0.23

Table 5: Table of p-values for different algorithms for different tests for
n=2000

19

B
a
rt

el
’s

R
a
n
k

T
es

t

C
ox

-S
tu

a
rt

T
es

t

D
iff

er
en

ce
S
ig

n
T

es
t

M
a
n
-K

en
d
a
ll

R
a
n
k

T
es

t

W
a
ld

-W
o
lf

ow
it

z
R

u
n
s

T
es

t

T
u
rn

in
g

P
o
in

t
T

es
t

1 Wichmann-Hill PASS PASS PASS PASS PASS PASS

2 Marsaglia-Multicarry PASS PASS PASS PASS PASS PASS

3 Super-Duper PASS PASS PASS PASS PASS PASS

4 Mersenne-Twister PASS PASS PASS PASS PASS FAIL

5 Knuth-TAOCP-2002 PASS FAIL PASS PASS PASS PASS

6 Knuth-TAOCP FAIL PASS PASS FAIL PASS PASS

7 L’Ecuyer-CMRG PASS PASS PASS PASS PASS PASS

Table 6: Table showing result of different tests for different algorithms
at 0.1 level of significance for n=2000

13 Appendix

13.1 Statistical Tests Of Randomness

� Turning Point Test

� Wald-Wolfowitz Runs Test

� Man-Kendall Rank Test

� Difference Sign Test

� Cox-Stuart Test

� Bartel’s Rank Test

13.2 Turning Point Test

� In statistical hypothesis testing, a turning point test is a statistical test of
the independence of a series of random variables.

� Maurice Kendall and Alan Stuart describe the test as reasonable for a test
against cyclicity but poor as a test against trend.

� We say i is a turning point if the vector X1, X2, ..., Xi, ..., Xn is not mono-
tonic at index i. The number of turning points is the number of maxima
and minima in the series.

20

Let T be the number of turning points then for large n,

Z =
T − 2n−4

3√
16n−29

90

∼ N(0, 1) (1)

R function:-
turning.point.test(x,alternative)

13.3 Wald-Wolfowitz Runs Test

� It is the simple runs test.

� Under the null hypothesis, the number of runs in a sequence of N ele-
ments is a random variable whose conditional distribution given the ob-
servation of N+ positive values and N− negative values (N = N+ + N−)

is approximately normal with mean µ = 2N+N−
N + 1 and variance σ2 =

2N+N−(2N+N−−N)
N2(N−1) = (µ−1)(µ−2)

N−1 .

� R function:- runs.test(x,alternative,threshold,pvalue,plot).

13.4 Mann-Kendall Rank Test

� Originally, Kendall’s tau statistic is used as a measure of association
in a bivariate population (X,Y). If we treat the time, {1, 2,n}, of
an observed sequence as X and the set of time-ordered observations,
{Y1, Y2, .., Yn}, as Y ; then the association between X and Y can be con-
sidered as an indication of trend.

� The test statistic is T =
n

Σ
i=2

i−1

Σ
j=1

sign(Yi − Yj) which converges to a normal

random variable under the null hypothesis of randomness: T ∼ N(0, σ2
3);

where σ2
3 = n(n−1)(2n+5)

18 .

� R function:- rank.test(x,alternative).

13.5 Difference Sign Test

� The sequence is y1, y2, ..., yn. For this test we count the number S of values
of i such that yi > yi−1, i = 2, ..., n or equivalently the number of times
the differenced series (yi − yi−1) is positive.

� For an iid sequence it is clear that µS = ES = 1/2(n − 1). It can also be

shown under the same assumption that σ2
S = V ar(S) = (n+1)

12 .

� For large n, S ∼ N(µS , σ
2
S) . A large positive(or negative) value of (S−µS)

indicates the presence of increasing(or decreasing) trend in the data. We

therefore reject the assumption of trend in the data if |S−µS |
σS

> Φ1−α/2 .

� R function:- difference.sign.test(x,alternative)

21

13.6 Cox- Stuart Test

� Given a set of ordered observations X1, X2, ..., Xn, let
c = n/2 if n even
= (n+1)/2 if n is odd

Then pair the data as X1, X1+c, X2, X2+c, ..., Xn−c, Xn. The Cox-Stuart
test is then simply a sign test applied to these paired data.

� R function:- cox.stuart.test(x; alternative)

13.7 Bartel’s Rank Test

� This is the rank version of von Neumann’s Ratio Test for Randomness.

� The test statistic isRV N =

n−1

Σ
i=1

(Ri−Ri+1)2

n
Σ

i=1
(Ri−(n+1)/2)2

whereRi = Rank(Xi). RVN−2/σ

is asymptotically standard normal , with σ2 = 4(n−2)(5n2−2n−9)
5n(n+1)(n−1)2 .

� R function:- bartels.rank.test(x,alternative,pvalue=”normal”)

References

[1] R Core Team, R Foundation for Statistical Computing, R: A Language and
Environment for Statistical Computing, 2016. Available at https://www.R-
project.org/.

[2] Frederico Caeiro and Ayana Mateus, randtests: Testing randomness in R ;
2014. Available at https://CRAN.R-project.org/package=randtests.

[3] Christophe Dutang and Diethelm Wuertz, A note on random number gen-
eration; September 2009.

[4] Makoto Matsumoto and Takuji Nishimura, Mersenne Twister: A 623-
dimensionally equidistributed uniform pseudorandom number generator ;
Keio University/ Max-Planck-Institut fur Mathematik

22

