Statistical Tests of Randomness for Random Number Generators

Abhishek Ray and Tathagata Saha

13th April 2017

1 Abstract

Simulation is a core part of statistics and to simulate from any distribution it is pivotal to understand the process of simulating from Uniform distribution $(\mathrm{U}(0,1))$.For this purpose Pseudo Random Number Generators (PRNGs) are being used for a considerable amount of time. They are very popular because of their high periodicity and easy implementaion in higher level languages.Now, in this project we will subject implementation of several algorithms in R which are used to generate array of random numbers to a battery of tests and report the outcome of these tests in a tabular format.

2 List of Random Number Generators:

- Wichmann-Hill
- Marsaglia-Multicarry
- Super-Duper
- Mersenne-Twister
- Knuth-TAOCP-2002
- Knuth-TAOCP
- L'Ecuyer-CMRG

3 Statistical Tests Of Randomness

- Turning Point Test
- Wald-Wolfowitz Runs Test
- Man-Kendall Rank Test
- Difference Sign Test
- Cox-Stuart Test
- Bartel's Rank Test

4 Wichmann-Hill

- This function returns a pseudo-random number uniformly distributed Between 0 and 1.
- The cycle length is 6.95×10^{12}, not as claimed in the original article.

Author:

- Brian Wichmann
- David Hill
- Modifications by John Burkardt.

4.1 Parameters

1. Input/output, integer $\mathrm{S} 1, \mathrm{~S} 2, \mathrm{~S} 3$, three values used as the Seed for the sequence. These values should be positive Integers between 1 and 30,000.
2. Output, real R4_RANDOM, the next value in the sequence.

4.2 Algorithm

Function r4_uni (s1, s2, s3)
Integer s1
Integer s2
Integer s3
Real r4_random
$\mathrm{s} 1=\bmod (171 * \mathrm{~s} 1,30269)$
$\mathrm{s} 2=\bmod (172 * \mathrm{~s} 2,30307)$
$\mathrm{s} 3=\bmod (170 * \mathrm{~s} 3,30323)$
r4_random $=\bmod ($ real $(\mathrm{s} 1) / 30269+$ real $(\mathrm{s} 2) / 30307+$ real $(\mathrm{s} 3) / 30323$, 1.0)
return r4_random

4.3 Tests of Randomness

4.3.1 Bartel's Rank Test

```
> library(randtests)
> n=1000
> RNGkind(kind = "Wichmann-Hill")
> set.seed(2)
> x1=runif(n)
> y11=bartels.rank.test(x1, "two.sided", pvalue="normal")
> y11
    Bartels Ratio Test
data: x1
statistic = -1.4782, n = 1000, p-value = 0.1394
alternative hypothesis: nonrandomness
```


4.3.2 Cox-Stuart Test

```
> y12=cox.stuart.test(x1, "two.sided")
> y12
    Cox Stuart test
data: x1
statistic = 258, n = 500, p-value = 0.5024
alternative hypothesis: non randomness
```


4.3.3 Difference-sign test of randomness

```
> y13=difference.sign.test(x1, "two.sided")
> y13
    Difference Sign Test
data: x1
statistic = 0.82117, n = 1000, p-value = 0.4115
alternative hypothesis: nonrandomness
```


4.3.4 Mann-Kendall rank test of randomness

```
> y14=rank.test(x1, "two.sided")
> y14
            Mann-Kendall Rank Test
data: x1
statistic = 0.067117, n = 1000, p-value = 0.9465
alternative hypothesis: trend
```


4.3.5 Wald-Wolfowitz runs test of randomness

```
> y15=runs.test(x1, "two.sided")
> y15
    Runs Test
data: x1
statistic = -1.5187, runs = 477, n1 = 500, n2 = 500, n = 1000, p-value
= 0.1288
alternative hypothesis: nonrandomness
```


4.3.6 Turning Point test

> y16=turning.point.test(x1, "two.sided")
> y16
Turning Point Test

```
data: x1
```

statistic $=-2.5023, \mathrm{n}=1000$, p -value $=0.01234$
alternative hypothesis: non randomness

5 Marsaglia-Multicarry

- In computer science, multiply-with-carry (MWC) is a method invented by George Marsaglia for generating sequences of random integers based on an initial set from two to many thousands of randomly chosen seed values.
- The main advantages of the MWC method are that it invokes simple computer integer arithmetic and leads to very fast generation of sequences of random numbers with immense periods, ranging from around 2^{60} to $2^{2000000}$. As with all pseudorandom number generators, the resulting sequences are functions of the supplied seed values.

5.1 Algorithm

- In its most common form, a lag-r MWC generator requires a base b, a multiplier a, and a set of $r+1$ random seed values, consisting of r residues of $b, x_{0}, x_{1}, x_{2}, x_{r-1}$, and an initial carry $c_{r-1}<a$.
- The lag- r MWC sequence is then a sequence of pairs x_{n}, c_{n} determined by $x_{n}=\left(a x_{n-r}+c_{n-1}\right) \bmod b, c_{n}=\left\lfloor\frac{a x_{n-r}+c_{n-1}}{b}\right\rfloor, n \geq r$, and the MWC generator output is the sequence of $x^{\prime} s, x_{r}, x_{r+1}, x_{r+2}, \ldots$

5.2 Properties

- The period of a lag- r MWC generator is the order of b in the multiplicative group of numbers modulo $a b^{r}-1$.
- In R, the seed is two integers (all values allowed).
- It has a period of more than 2^{60} and has passed all tests (according to Marsaglia).

5.3 Tests of Randomness

5.3.1 Bartel's Rank Test

```
> RNGkind(kind = "Marsaglia-Multicarry")
> set.seed(2)
> x2=runif(n)
> y21=bartels.rank.test(x2, "two.sided", pvalue="normal")
> y21
```

 Bartels Ratio Test
 data: x2
statistic $=-0.62754, \mathrm{n}=1000$, p -value $=0.5303$
alternative hypothesis: nonrandomness

5.3.2 Cox-Stuart Test

```
> y22=cox.stuart.test(x2, "two.sided")
> y22
    Cox Stuart test
data: x2
statistic = 251, n = 500, p-value = 0.9643
alternative hypothesis: non randomness
```


5.3.3 Difference-sign test of randomness

```
> y23=difference.sign.test(x2, "two.sided")
> y23
    Difference Sign Test
data: x2
statistic = 1.2591, n = 1000, p-value = 0.208
alternative hypothesis: nonrandomness
```


5.3.4 Mann-Kendall rank test of randomness

```
> y24=rank.test(x2, "two.sided")
> y24
```

```
    Mann-Kendall Rank Test
data: x2
statistic = 1.2682, n = 1000, p-value = 0.2047
alternative hypothesis: trend
```


5.3.5 Wald-Wolfowitz runs test of randomness

```
> y25=runs.test(x2, "two.sided")
> y25
```

Runs Test
data: x2
statistic $=-0.18983$, runs $=498$, n1 $=500$, n2 = 500, n = 1000, p-value
$=0.8494$
alternative hypothesis: nonrandomness

5.3.6 Turning Point test

```
> y26=turning.point.test(x2, "two.sided")
> y26
```

 Turning Point Test
 data: x2
statistic $=-1.3012, \mathrm{n}=1000$, p -value $=0.1932$
alternative hypothesis: non randomness

6 Super-Duper

- Super Duper developed by G. Marsaglia, combines the binary form of the output from the multiplicative congruential generator with multiplier $a=$ 69,069 and modulus $\mathrm{m}=2^{32}$. With the output of a Tausworthe generator using a left-shift of 17 and a right shift of 15 .
- Tausworthe generator: Tausworthe Generator is a kind of multiplicative recursive which produces random bits. It has the following form:
$x_{n+1}=\left(A_{1} x_{n}+A_{2} x_{n-1}+\ldots+A_{k} x_{n-k+1}\right) \bmod 2$
where $x_{i}, A_{i} \epsilon\{0,1\} \forall i$.

6.1 Properties

- It has a period of about $4.6 * 10^{18}$ for most initial seeds. The seed is two integers (all values allowed for the first seed; the second must be odd).
- We use the implementation by Reeds et al (1982-84).
- The two seeds are the Tausworthe and congruence long integers, respectively.

6.2 Tests of Randomness

6.2.1 Bartel's Rank Test

```
> RNGkind(kind = "Super-Duper")
> set.seed(2)
> x3=runif(n)
> y31=bartels.rank.test(x3, "two.sided", pvalue="normal")
> y31
```

```
    Bartels Ratio Test
data: x3
statistic = -0.46193, n = 1000, p-value = 0.6441
alternative hypothesis: nonrandomness
```


6.2.2 Cox-Stuart Test

```
> y32=cox.stuart.test(x3, "two.sided")
```

> y32
Cox Stuart test
data: x3
statistic $=253, \mathrm{n}=500, \mathrm{p}$-value $=0.8231$
alternative hypothesis: non randomness

6.2.3 Difference-sign test of randomness

```
> y33=difference.sign.test(x3, "two.sided")
> y33
    Difference Sign Test
data: x3
statistic = -0.38321, n = 1000, p-value = 0.7016
alternative hypothesis: nonrandomness
```


6.2.4 Mann-Kendall rank test of randomness

```
> y34=rank.test(x3, "two.sided")
> y34
```

```
    Mann-Kendall Rank Test
data: x3
statistic = 0.87574, n = 1000, p-value = 0.3812
alternative hypothesis: trend
```


6.2.5 Wald-Wolfowitz runs test of randomness

> y35=runs.test(x3, "two.sided")
> y35

```
    Runs Test
data: x3
statistic = -0.69605, runs = 490, n1 = 500, n2 = 500, n = 1000, p-value
= 0.4864
alternative hypothesis: nonrandomness
```


6.2.6 Turning Point test

> y36=turning.point.test(x3, "two.sided")
> y36
Turning Point Test
data: x3
statistic $=-0.40036$, $\mathrm{n}=1000$, p -value $=0.6889$
alternative hypothesis: non randomness

7 Mersene-Twister

- The Mersenne Twister is a pseudorandom number generator (PRNG).
- It is by far the most widely used general-purpose PRNG.Its name derives from the fact that its period length is chosen to be a Mersenne prime.
- The Mersenne Twister was developed in 1997 by Makoto Matsumoto and Takuji Nishimura.
- It was designed specifically to rectify most of the flaws found in older PRNGs. It was the first PRNG to provide fast generation of high-quality pseudorandom integers.
- The most commonly used version of the Mersenne Twister algorithm is based on the Mersenne prime $2^{19937}-1$.
- The standard implementation of that, MT19937, uses a 32-bit word length. Matsumoto \& Nishimura (1998) work on the finite set $N_{2}=\{0,1\}$, so a variable x is represented by a vectors of ω bits (e.g. 32 bits).

7.1 Algorithm

- They use the following linear recurrence for the $n+i^{\text {th }}$ term: $x_{i+n}=$ $x_{i+m} \bigoplus\left(x_{i}^{u p p} \mid x_{i+1}^{l o w}\right) A$,
where $n>m$ are constant integers, $x_{i}^{u p p}$ (respectively $x_{i}^{\text {low }}$) means the upper (lower) $\omega-r(r)$ bits of x_{i} and A (a $\omega \times \omega$ matrix of N_{2}). \mid is the operator of concatenation, so $x_{i}^{u p p} \mid x_{i+1}^{l o w}$ appends the upper $\omega-r$ bits of x_{i} with the lower r bits of x_{i+1}.
- After a right multiplication with the matrix A, \oplus adds the result with x_{i+m} bit to bit modulo two (i.e. \oplus denotes the exclusive-or called xor).
- Once provided an initial seed x_{0}, \ldots, x_{n-1}, Mersenne Twister produces random integers in $0, \ldots, 2^{\omega}-1$.

7.2 Properties

The commonly used version of Mersenne Twister, MT19937, which produces a sequence of 32 -bit integers, has the following desirable properties:

1. It has a very long period of $2^{19937}-1$. While a long period is not a guarantee of quality in a random number generator, short periods (such as the 232 common in many older software packages) can be problematic.
2. It is k -distributed to 32 -bit accuracy for every $1 \leq k \leq 623$.
3. It passes numerous tests for statistical randomness, including the Diehard tests.
4. All operations used in the recurrence are bitwise operations, thus it is a very fast computation compared to modulus operations used in previous algorithms.

7.3 Tests of Randomness

7.3.1 Bartel's Rank Test

```
> RNGkind(kind = "Mersenne-Twister")
> set.seed(2)
> x4=runif(n)
> y41=bartels.rank.test(x4, "two.sided", pvalue="normal")
> y41
```

```
    Bartels Ratio Test
data: x4
statistic = 0.50787, n = 1000, p-value = 0.6115
alternative hypothesis: nonrandomness
```


7.3.2 Cox-Stuart Test

```
> y42=cox.stuart.test(x4, "two.sided")
> y42
    Cox Stuart test
data: x4
statistic = 251, n = 500, p-value = 0.9643
alternative hypothesis: non randomness
```


7.3.3 Difference-sign test of randomness

```
> y43=difference.sign.test(x4, "two.sided")
```

> y43=difference.sign.test(x4, "two.sided")
> y43
> y43
Difference Sign Test
Difference Sign Test
data: x4
data: x4
statistic = 0.27372, n = 1000, p-value = 0.7843
statistic = 0.27372, n = 1000, p-value = 0.7843
alternative hypothesis: nonrandomness

```
alternative hypothesis: nonrandomness
```

7.3.4 Mann-Kendall rank test of randomness

```
> y44=rank.test(x4, "two.sided")
> y44
    Mann-Kendall Rank Test
data: x4
statistic = 0.26941, n = 1000, p-value = 0.7876
alternative hypothesis: trend
```


7.3.5 Wald-Wolfowitz runs test of randomness

```
> y45=runs.test(x4, "two.sided")
y y5
    Runs Test
data: x4
statistic = 0.25311, runs = 505, n1 = 500, n2 = 500, n = 1000, p-value
```


7.3.6 Turning Point test

> y46=turning.point.test(x4, "two.sided")
$>y 46$
Turning Point Test

```
data: x4
```

statistic $=2.5273, \mathrm{n}=1000, \mathrm{p}$-value $=0.01149$
alternative hypothesis: non randomness

8 Knuth-TAOCP-2002

- A particular case of this type of generators is when
$X_{n}=\left(X_{n-37}+X_{n-100}\right) \bmod 2^{30}$;
which is a Fibonacci-lagged generator and the 'seed' is the set of the 100 last numbers (actually recorded as 101 numbers, the last being a cyclic shift of the buffer).
- The period is around 2^{129}. This generator has been invented by Knuth (2002) and is generally called "Knuth-TAOCP-2002" or simply "KnuthTAOCP".

8.1 Tests of Randomness

8.1.1 Bartel's Rank Test

```
> RNGkind(kind = "Knuth-TAOCP-2002")
> set.seed(2)
> x5=runif(n)
> y51=bartels.rank.test(x5, "two.sided", pvalue="normal")
> y51
```

```
            Bartels Ratio Test
```

data: x5
statistic $=-1.7476, \mathrm{n}=1000$, p -value $=0.08054$
alternative hypothesis: nonrandomness

8.1.2 Cox-Stuart Test

```
> y52=cox.stuart.test(x5, "two.sided")
> y52
```

```
    Cox Stuart test
data: x5
statistic = 262, n = 500, p-value = 0.3037
alternative hypothesis: non randomness
```


8.1.3 Difference-sign test of randomness

```
> y53=difference.sign.test(x5, "two.sided")
```

> y53=difference.sign.test(x5, "two.sided")
> y53
Difference Sign Test
data: x5
statistic = -0.93066, n = 1000, p-value = 0.352
alternative hypothesis: nonrandomness

```

\subsection*{8.1.4 Mann-Kendall rank test of randomness}
```

> y54=rank.test(x5, "two.sided")
> y54

```

\section*{Mann-Kendall Rank Test}
data: x5
statistic \(=0.57106, \mathrm{n}=1000\), p -value \(=0.568\)
alternative hypothesis: trend
8.1.5 Wald-Wolfowitz runs test of randomness
```

> y55=runs.test(x5, "two.sided")
> y55
Runs Test
data: x5
statistic = -1.3921, runs = 479, n1 = 500, n2 = 500, n = 1000, p-value
= 0.1639
alternative hypothesis: nonrandomness

```

\subsection*{8.1.6 Turning Point test}
> y56=turning.point.test(x5, "two.sided")
> y56

Turning Point Test
data: x5
```

statistic = 0.50045, n = 1000, p-value = 0.6168

```
alternative hypothesis: non randomness

\section*{9 Knuth-TAOCP}
- An earlier version from Knuth (1997). The 2002 version was not backwards compatible with the earlier version: the initialization of the GFSR from the seed was altered. R did not allow you to choose consecutive seeds, the reported 'weakness', and already scrambled the seeds.
- Initialization of this generator is done in interpreted R code and so takes a short but noticeable time.

\subsection*{9.1 Tests of Randomness}

\subsection*{9.1.1 Bartel's Rank Test}
```

> RNGkind(kind = "Knuth-TAOCP")
> set.seed(2)
> x6=runif(n)
> y61=bartels.rank.test(x6, "two.sided", pvalue="normal")
> y61

```

\section*{Bartels Ratio Test}
data: x 6
statistic \(=-1.0752, \mathrm{n}=1000\), p -value \(=0.2823\)
alternative hypothesis: nonrandomness

\subsection*{9.1.2 Cox-Stuart Test}
```

> y62=cox.stuart.test(x6, "two.sided")

```
> y62
    Cox Stuart test
data: x6
statistic \(=251, \mathrm{n}=500\), p -value \(=0.9643\)
alternative hypothesis: non randomness

\subsection*{9.1.3 Difference-sign test of randomness}
```

> y63=difference.sign.test(x6, "two.sided")
> y63

```

Difference Sign Test
```

data: x6
statistic = -0.38321, n = 1000, p-value = 0.7016
alternative hypothesis: nonrandomness

```

\subsection*{9.1.4 Mann-Kendall rank test of randomness}
```

> y64=rank.test(x6, "two.sided")

```
> y64=rank.test(x6, "two.sided")
> y64
```

> y64

```
```

 Mann-Kendall Rank Test
    ```
    Mann-Kendall Rank Test
data: x6
statistic = -1.2817, n = 1000, p-value = 0.2
alternative hypothesis: trend
```


9.1.5 Wald-Wolfowitz runs test of randomness

```
> y65=runs.test(x6, "two.sided")
```

> y65=runs.test(x6, "two.sided")
> y65

```
> y65
```

```
    Runs Test
```

 Runs Test
 data: x6
data: x6
statistic = -0.69605, runs = 490, n1 = 500, n2 = 500, n = 1000, p-value
statistic = -0.69605, runs = 490, n1 = 500, n2 = 500, n = 1000, p-value
= 0.4864
= 0.4864
alternative hypothesis: nonrandomness

```
alternative hypothesis: nonrandomness
```


9.1.6 Turning Point test

```
> y66=turning.point.test(x6, "two.sided")
```

> y66=turning.point.test(x6, "two.sided")
> y66
Turning Point Test
data: x6
statistic = 1.1761, n = 1000, p-value = 0.2396
alternative hypothesis: non randomness

```

\section*{10 L'Ecuyer-CMRG}
- This is a 'combined multiple-recursive generator' from L'Ecuyer (1999), each element of which is a feedback multiplicative generator with three integer elements: thus the seed is a (signed) integer vector of length 6. It is given by:
- \(z_{n}=\left(x_{n}-y_{n}\right) \bmod m_{1}\) where the two underlying generators \(x_{n}\) and \(y_{n}\) are,
\[
\begin{aligned}
& x_{n}=\left(a_{1} x_{n-1}+a_{2} x_{n-2}+a_{3} x_{n-3}\right) \bmod m_{1} \\
& y_{n}=\left(b_{1} y_{n-1}+b_{2} y_{n-2}+b_{3} y_{n-3}\right) \bmod m_{2}
\end{aligned}
\]
with coefficients \(a_{1}=0, a_{2}=63308, a_{3}=-183326, b_{1}=86098, b_{2}=0, b_{3}=\) -539608 , and moduli \(m_{1}=2^{\wedge} 31-1=2147483647\) and \(m_{2}=2145483479\).

\subsection*{10.1 Properties}
- The period of this generator is \(l c m\left(m_{1}^{3}-1, m_{2}^{3}-1\right)\), which is approximately \(2^{185}\) (about \(10^{56}\) ).
- This is not particularly interesting of itself, but provides the basis for the multiple streams used in package parallel.

\subsection*{10.2 Tests of Randomness}

\subsection*{10.2.1 Bartel's Rank Test}
```

> RNGkind(kind = "L'Ecuyer-CMRG")
> set.seed(2)
> x7=runif(n)
> y71=bartels.rank.test(x7, "two.sided", pvalue="normal")
> y71

```

\section*{Bartels Ratio Test}
```

data: x7

```
statistic \(=0.71466, \mathrm{n}=1000\), p -value \(=0.4748\)
alternative hypothesis: nonrandomness

\subsection*{10.2.2 Cox-Stuart Test}
```

> y72=cox.stuart.test(x7, "two.sided")
> y72

```
    Cox Stuart test
data: \(x 7\)
statistic \(=234, \mathrm{n}=500, \mathrm{p}\)-value \(=0.1656\)
alternative hypothesis: non randomness

\subsection*{10.2.3 Difference-sign test of randomness}
```

> y73=difference.sign.test(x7, "two.sided")
> y73

```
```

 Difference Sign Test
 data: x7
statistic = -0.27372, n = 1000, p-value = 0.7843
alternative hypothesis: nonrandomness

```

\subsection*{10.2.4 Mann-Kendall rank test of randomness}
```

> y74=rank.test(x7, "two.sided")
> y74

```

\section*{Mann-Kendall Rank Test}
data: x 7
statistic \(=-0.55438, \mathrm{n}=1000\), p -value \(=0.5793\)
alternative hypothesis: trend

\subsection*{10.2.5 Wald-Wolfowitz runs test of randomness}
```

> y75=runs.test(x7, "two.sided")
> y75
Runs Test
data: x7
statistic = 1.5819, runs = 526, n1 = 500, n2 = 500, n = 1000, p-value =
0.1137
alternative hypothesis: nonrandomness

```

\subsection*{10.2.6 Turning Point test}
> y76=turning.point.test(x7, "two.sided")
> y76
    Turning Point Test
data: x 7
statistic \(=1.4763, \mathrm{n}=1000\), p -value \(=0.1399\)
alternative hypothesis: non randomness

\section*{11 Comparison Of Run-times}


\section*{12 Summary of Tests for different Algorithms}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline & &  &  &  &  &  &  \\
\hline 1 & Wichmann-Hill & 0.14 & 0.96 & 0.70 & 0.79 & 0.16 & 0.24 \\
\hline 2 & Marsaglia-Multicarry & 0.50 & 0.21 & 0.38 & 0.80 & 0.62 & 0.47 \\
\hline 3 & Super-Duper & 0.41 & 0.20 & 0.49 & 0.01 & 0.28 & 0.17 \\
\hline 4 & Mersenne-Twister & 0.95 & 0.85 & 0.69 & 0.08 & 0.96 & 0.78 \\
\hline 5 & Knuth-TAOCP-2002 & 0.13 & 0.19 & 0.61 & 0.30 & 0.70 & 0.58 \\
\hline 6 & Knuth-TAOCP & 0.01 & 0.64 & 0.96 & 0.35 & 0.20 & 0.11 \\
\hline 7 & L'Ecuyer-CMRG & 0.53 & 0.82 & 0.78 & 0.57 & 0.49 & 0.14 \\
\hline
\end{tabular}

Table 1: Table of p-values for different algorithms for different tests for \(\mathrm{n}=1000\)
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline & &  & H
H
0
0
0
0
0
0
0 &  &  &  &  \\
\hline 1 & Wichmann-Hill & PASS & PASS & PASS & PASS & PASS & PASS \\
\hline 2 & Marsaglia-Multicarry & PASS & PASS & PASS & PASS & PASS & PASS \\
\hline 3 & Super-Duper & PASS & PASS & PASS & FAIL & PASS & PASS \\
\hline 4 & Mersenne-Twister & PASS & PASS & PASS & FAIL & PASS & PASS \\
\hline 5 & Knuth-TAOCP-2002 & PASS & PASS & PASS & PASS & PASS & PASS \\
\hline 6 & Knuth-TAOCP & FAIL & PASS & PASS & PASS & PASS & PASS \\
\hline 7 & L'Ecuyer-CMRG & PASS & PASS & PASS & PASS & PASS & PASS \\
\hline
\end{tabular}

Table 2: Table showing result of different tests for different algorithms at 0.1 level of significance for \(n=1000\)
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline & &  &  &  &  &  &  \\
\hline 1 & Wichmann-Hill & 0.04 & 0.73 & 0.56 & 0.95 & 0.59 & 0.60 \\
\hline 2 & Marsaglia-Multicarry & 0.51 & 0.33 & 0.42 & 0.96 & 0.56 & 0.70 \\
\hline 3 & Super-Duper & 0.67 & 0.36 & 0.45 & 0.09 & 0.47 & 0.97 \\
\hline 4 & Mersenne-Twister & 0.20 & 0.37 & 0.40 & 0.11 & 0.87 & 0.56 \\
\hline 5 & Knuth-TAOCP-2002 & 0.04 & 0.79 & 0.73 & 0.97 & 0.05 & 0.72 \\
\hline 6 & Knuth-TAOCP & 0.01 & 0.31 & 0.39 & 0.10 & 0.63 & 0.45 \\
\hline 7 & L'Ecuyer-CMRG & 0.51 & 0.97 & 0.23 & 0.55 & 0.72 & 0.83 \\
\hline
\end{tabular}

Table 3: Table of p-values for different algorithms for different tests for \(\mathrm{n}=2000\)
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline & &  &  &  & 䔍 &  &  \\
\hline 1 & Wichmann-Hill & FAIL & PASS & PASS & PASS & PASS & PASS \\
\hline 2 & Marsaglia-Multicarry & PASS & PASS & PASS & PASS & PASS & PASS \\
\hline 3 & Super-Duper & PASS & PASS & PASS & FAIL & PASS & PASS \\
\hline 4 & Mersenne-Twister & PASS & PASS & PASS & PASS & PASS & PASS \\
\hline 5 & Knuth-TAOCP-2002 & FAIL & PASS & PASS & PASS & FAIL & PASS \\
\hline 6 & Knuth-TAOCP & FAIL & PASS & PASS & FAIL & PASS & PASS \\
\hline 7 & L'Ecuyer-CMRG & PASS & PASS & PASS & PASS & PASS & PASS \\
\hline
\end{tabular}

Table 4: Table showing result of different tests for different algorithms at 0.1 level of significance for \(\mathrm{n}=2000\)
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline & &  &  &  &  &  &  \\
\hline 1 & Wichmann-Hill & 0.15 & 0.83 & 0.54 & 0.73 & 0.61 & 0.27 \\
\hline 2 & Marsaglia-Multicarry & 0.79 & 0.61 & 1.00 & 0.41 & 0.84 & 0.87 \\
\hline 3 & Super-Duper & 0.98 & 0.98 & 0.57 & 0.61 & 0.91 & 0.83 \\
\hline 4 & Mersenne-Twister & 0.78 & 0.18 & 0.40 & 0.18 & 0.27 & 0.03 \\
\hline 5 & Knuth-TAOCP-2002 & 0.10 & 0.05 & 0.81 & 0.65 & 0.61 & 0.97 \\
\hline 6 & Knuth-TAOCP & 0.02 & 0.65 & 0.83 & 0.06 & 0.35 & 0.12 \\
\hline 7 & L'Ecuyer-CMRG & 0.21 & 0.67 & 0.19 & 0.83 & 0.87 & 0.23 \\
\hline
\end{tabular}

Table 5: Table of p-values for different algorithms for different tests for \(\mathrm{n}=2000\)
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline & &  &  &  & 䔍 &  &  \\
\hline 1 & Wichmann-Hill & PASS & PASS & PASS & PASS & PASS & PASS \\
\hline 2 & Marsaglia-Multicarry & PASS & PASS & PASS & PASS & PASS & PASS \\
\hline 3 & Super-Duper & PASS & PASS & PASS & PASS & PASS & PASS \\
\hline 4 & Mersenne-Twister & PASS & PASS & PASS & PASS & PASS & FAIL \\
\hline 5 & Knuth-TAOCP-2002 & PASS & FAIL & PASS & PASS & PASS & PASS \\
\hline 6 & Knuth-TAOCP & FAIL & PASS & PASS & FAIL & PASS & PASS \\
\hline 7 & L'Ecuyer-CMRG & PASS & PASS & PASS & PASS & PASS & PASS \\
\hline
\end{tabular}

Table 6: Table showing result of different tests for different algorithms at 0.1 level of significance for \(\mathrm{n}=2000\)

\section*{13 Appendix}

\subsection*{13.1 Statistical Tests Of Randomness}
- Turning Point Test
- Wald-Wolfowitz Runs Test
- Man-Kendall Rank Test
- Difference Sign Test
- Cox-Stuart Test
- Bartel's Rank Test

\subsection*{13.2 Turning Point Test}
- In statistical hypothesis testing, a turning point test is a statistical test of the independence of a series of random variables.
- Maurice Kendall and Alan Stuart describe the test as reasonable for a test against cyclicity but poor as a test against trend.
- We say i is a turning point if the vector \(X_{1}, X_{2}, \ldots, X_{i}, \ldots, X_{n}\) is not monotonic at index i. The number of turning points is the number of maxima and minima in the series.

Let T be the number of turning points then for large n ,
\[
\begin{equation*}
Z=\frac{T-\frac{2 n-4}{3}}{\sqrt{\frac{16 n-29}{90}}} \sim N(0,1) \tag{1}
\end{equation*}
\]

R function:-
turning.point.test( x, alternative)

\subsection*{13.3 Wald-Wolfowitz Runs Test}
- It is the simple runs test.
- Under the null hypothesis, the number of runs in a sequence of \(N\) elements is a random variable whose conditional distribution given the observation of \(N_{+}\)positive values and \(N_{-}\)negative values \(\left(N=N_{+}+N_{-}\right)\) is approximately normal with mean \(\mu=\frac{2 N_{+} N_{-}}{N}+1\) and variance \(\sigma^{2}=\) \(\frac{2 N_{+} N_{-}\left(2 N_{+} N_{-}-N\right)}{N^{2}(N-1)}=\frac{(\mu-1)(\mu-2)}{N-1}\).
- R function:- runs.test(x,alternative,threshold,pvalue,plot).

\subsection*{13.4 Mann-Kendall Rank Test}
- Originally, Kendall's tau statistic is used as a measure of association in a bivariate population \((X, Y)\). If we treat the time, \(\{1,2, \ldots . n\}\), of an observed sequence as \(X\) and the set of time-ordered observations, \(\left\{Y_{1}, Y_{2}, . ., Y_{n}\right\}\), as \(Y\); then the association between \(X\) and \(Y\) can be considered as an indication of trend.
- The test statistic is \(T=\sum_{i=2}^{n} \sum_{j=1}^{i-1} \operatorname{sign}\left(Y_{i}-Y_{j}\right)\) which converges to a normal random variable under the null hypothesis of randomness: \(T \sim N\left(0, \sigma_{3}^{2}\right)\); where \(\sigma_{3}^{2}=\frac{n(n-1)(2 n+5)}{18}\).
- R function:- rank.test(x,alternative).

\subsection*{13.5 Difference Sign Test}
- The sequence is \(y_{1}, y_{2}, \ldots, y_{n}\). For this test we count the number \(S\) of values of \(i\) such that \(y_{i}>y_{i-1}, i=2, \ldots, n\) or equivalently the number of times the differenced series \(\left(y_{i}-y_{i-1}\right)\) is positive.
- For an iid sequence it is clear that \(\mu_{S}=E S=1 / 2(n-1)\). It can also be shown under the same assumption that \(\sigma_{S}^{2}=\operatorname{Var}(S)=\frac{(n+1)}{12}\).
- For large n, \(S \sim N\left(\mu_{S}, \sigma_{S}^{2}\right)\). A large positive( or negative) value of ( \(S-\mu_{S}\) ) indicates the presence of increasing (or decreasing) trend in the data. We therefore reject the assumption of trend in the data if \(\frac{\left|S-\mu_{S}\right|}{\sigma_{S}}>\Phi_{1-\alpha / 2}\).
- R function:- difference.sign.test(x,alternative)

\subsection*{13.6 Cox- Stuart Test}
- Given a set of ordered observations \(X_{1}, X_{2}, \ldots, X_{n}\), let \(\mathrm{c}=\mathrm{n} / 2\) if n even \(=(\mathrm{n}+1) / 2\) if n is odd
Then pair the data as \(X_{1}, X_{1+c}, X_{2}, X_{2+c}, \ldots, X_{n-c}, X_{n}\). The Cox-Stuart test is then simply a sign test applied to these paired data.
- R function:- cox.stuart.test(x; alternative)

\subsection*{13.7 Bartel's Rank Test}
- This is the rank version of von Neumann's Ratio Test for Randomness.
- The test statistic is \(R V N=\begin{gathered}\substack{n-1 \\ i=1 \\ \sum_{1}\left(R_{i}-R_{i+1}\right)^{2} \\ i=1 \\ i=1 \\\left(R_{i}-(n+1) / 2\right)^{2}} \\ \text { where } R_{i}=\operatorname{Rank}\left(X_{i}\right) . R V N-2 / \sigma ~\end{gathered}\) is asymptotically standard normal, with \(\sigma^{2}=\frac{4(n-2)\left(5 n^{2}-2 n-9\right)}{5 n(n+1)(n-1)^{2}}\).
- R function:- bartels.rank.test(x,alternative,pvalue="normal")

\section*{References}
[1] R Core Team, R Foundation for Statistical Computing, R: A Language and Environment for Statistical Computing, 2016. Available at https://www.Rproject.org/.
[2] Frederico Caeiro and Ayana Mateus, randtests: Testing randomness in \(R\); 2014. Available at https://CRAN.R-project.org/package=randtests.
[3] Christophe Dutang and Diethelm Wuertz, A note on random number generation; September 2009.
[4] Makoto Matsumoto and Takuji Nishimura, Mersenne Twister: A 623dimensionally equidistributed uniform pseudorandom number generator; Keio University/ Max-Planck-Institut fur Mathematik```

