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1 Abstract

Simulation is a core part of statistics and to simulate from any distribution
it is pivotal to understand the process of simulating from Uniform distribu-
tion (U(0,1)).For this purpose Pseudo Random Number Generators (PRNGs)
are being used for a considerable amount of time.They are very popular because
of their high periodicity and easy implementaion in higher level languages.Now,
in this project we will subject implementation of several algorithms in R which
are used to generate array of random numbers to a battery of tests and report
the outcome of these tests in a tabular format.

2 List of Random Number Generators:

e Wichmann-Hill

e Marsaglia-Multicarry
e Super-Duper

o Mersenne-Twister

e Knuth-TAOCP-2002
e Knuth-TAOCP

e [’Ecuyer-CMRG

3 Statistical Tests Of Randomness
e Turning Point Test
o Wald-Wolfowitz Runs Test
e Man-Kendall Rank Test



e Difference Sign Test
e Cox-Stuart Test

e Bartel’s Rank Test

4 Wichmann-Hill

e This function returns a pseudo-random number uniformly distributed Be-
tween 0 and 1.

e The cycle length is 6.95 x 10'2, not as claimed in the original article.

Author:
e Brian Wichmann
e David Hill

e Modifications by John Burkardt.

4.1 Parameters

1. Input/output, integer S1, S2, S3, three values used as the Seed for the
sequence. These values should be positive Integers between 1 and 30,000.

2. Output, real R4_RANDOM, the next value in the sequence.

4.2 Algorithm

Function r4_uni (sl, s2, s3)

Integer sl
Integer s2
Integer s3
Real r4_random

sl = mod (171 * s1, 30269

s2 = mod (172 * s2, 30307

$3 = mod (170 * s3, 30323

r4d_random = mod (real (sl
1.0)

return r4_random

~— — —

/ 30269 + real (s2) / 30307 + real (s3) / 30323,



4.3 Tests of Randomness
4.3.1 Bartel’s Rank Test

library(randtests)

n=1000

RNGkind(kind = "Wichmann-Hill")

set.seed(2)

x1=runif (n)

yll=bartels.rank.test(x1, "two.sided", pvalue="normal")
yi1
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Bartels Ratio Test

data: x1
statistic = -1.4782, n = 1000, p-value = 0.1394
alternative hypothesis: nonrandomness

4.3.2 Cox-Stuart Test

> yl2=cox.stuart.test(xl, "two.sided")
> yl12

Cox Stuart test
data: x1
statistic = 258, n = 500, p-value = 0.5024
alternative hypothesis: non randomness
4.3.3 Difference-sign test of randomness

> y13=difference.sign.test(x1, "two.sided")
> y13

Difference Sign Test
data: x1
statistic = 0.82117, n = 1000, p-value = 0.4115
alternative hypothesis: nonrandomness
4.3.4 Mann-Kendall rank test of randomness

> yl4=rank.test(x1l, "two.sided")
> yl14

Mann-Kendall Rank Test

data: x1
statistic = 0.067117, n = 1000, p-value = 0.9465
alternative hypothesis: trend



4.3.5 Wald-Wolfowitz runs test of randomness

> yl15=runs.test(x1, "two.sided")
> y15

Runs Test

data: x1

statistic = -1.5187, runs = 477, nl = 500, n2 = 500, n = 1000, p-value
= 0.1288

alternative hypothesis: nonrandomness

4.3.6 Turning Point test

> yl6=turning.point.test(x1l, "two.sided")
> yl6

Turning Point Test

data: x1
statistic = -2.5023, n = 1000, p-value = 0.01234
alternative hypothesis: non randomness

5 Marsaglia-Multicarry

e In computer science, multiply-with-carry (MWC) is a method invented by
George Marsaglia for generating sequences of random integers based on
an initial set from two to many thousands of randomly chosen seed values.

e The main advantages of the MWC method are that it invokes simple com-
puter integer arithmetic and leads to very fast generation of sequences
of random numbers with immense periods, ranging from around 2% to
22000000 - Ag with all pseudorandom number generators, the resulting se-
quences are functions of the supplied seed values.

5.1 Algorithm

e In its most common form, a lag-r MWC generator requires a base b, a
multiplier a, and a set of r+ 1 random seed values, consisting of r residues
of b, xg,x1,x2,x,_1, and an initial carry ¢,_1 < a.

e The lag-r MWC sequence is then a sequence of pairs x,, ¢, determined by
Ty = (aTp—yr + Cp—1) mod b, ¢, = L%J, n > r, and the MWC
generator output is the sequence of &'s, @, Tr11 , Trio,...



5.2 Properties

e The period of a lag-r MWC generator is the order of b in the multiplicative
group of numbers modulo ab” — 1.

e In R, the seed is two integers (all values allowed).

e It has a period of more than 250 and has passed all tests (according to
Marsaglia).

5.3 Tests of Randomness

5.3.1 Bartel’s Rank Test

> RNGkind(kind = "Marsaglia-Multicarry")

> set.seed(2)

> x2=runif (n)

> y21=bartels.rank.test(x2, "two.sided", pvalue="normal")
> y21

Bartels Ratio Test

data: x2
statistic = -0.62754, n = 1000, p-value = 0.5303
alternative hypothesis: nonrandomness
5.3.2 Cox-Stuart Test
> y22=cox.stuart.test(x2, "two.sided")
> y22

Cox Stuart test
data: x2
statistic = 251, n = 500, p-value = 0.9643
alternative hypothesis: non randomness
5.3.3 Difference-sign test of randomness
> y23=difference.sign.test(x2, "two.sided")
> y23

Difference Sign Test
data: x2

statistic = 1.2591, n = 1000, p-value = 0.208
alternative hypothesis: nonrandomness



5.3.4 Mann-Kendall rank test of randomness

> y24=rank.test(x2, "two.sided")
> y24

Mann-Kendall Rank Test

data: x2
statistic = 1.2682, n = 1000, p-value = 0.2047
alternative hypothesis: trend

5.3.5 Wald-Wolfowitz runs test of randomness

> y25=runs.test(x2, "two.sided")
> y25

Runs Test

data: x2

statistic = -0.18983, runs = 498, nl = 500, n2 = 500, n = 1000, p-value
= 0.8494

alternative hypothesis: nonrandomness

5.3.6 Turning Point test

> y26=turning.point.test(x2, "two.sided")
> y26

Turning Point Test

data: x2
statistic = -1.3012, n = 1000, p-value = 0.1932
alternative hypothesis: non randomness

6 Super-Duper

e Super Duper developed by G. Marsaglia, combines the binary form of the
output from the multiplicative congruential generator with multiplier a =
69,069 and modulus m=232. With the output of a Tausworthe generator
using a left-shift of 17 and a right shift of 15.

e Tausworthe generator: Tausworthe Generator is a kind of multiplicative
recursive which produces random bits. It has the following form:
Tnt1 = (A12y + Aop—1 + ... + AkZp_k4+1) mod 2
where x;, A;e{0,1}Vi .



6.1 Properties

e It has a period of about 4.6 * 10'® for most initial seeds. The seed is two
integers (all values allowed for the first seed; the second must be odd).

¢ We use the implementation by Reeds et al (1982-84).

e The two seeds are the Tausworthe and congruence long integers, respec-
tively.

6.2 Tests of Randomness

6.2.1 Bartel’s Rank Test

> RNGkind(kind = "Super-Duper")

> set.seed(2)

> x3=runif (n)

> y31=bartels.rank.test(x3, "two.sided", pvalue="normal")
> y31

Bartels Ratio Test

data: x3
statistic = -0.46193, n = 1000, p-value = 0.6441
alternative hypothesis: nonrandomness
6.2.2 Cox-Stuart Test
> y32=cox.stuart.test(x3, "two.sided")
> y32

Cox Stuart test
data: x3
statistic = 253, n = 500, p-value = 0.8231
alternative hypothesis: non randomness
6.2.3 Difference-sign test of randomness
> y33=difference.sign.test(x3, "two.sided")
> y33

Difference Sign Test
data: x3

statistic = -0.38321, n = 1000, p-value = 0.7016
alternative hypothesis: nonrandomness



6.2.4 Mann-Kendall rank test of randomness
> y34=rank.test (x3, "two.sided")
> y34
Mann-Kendall Rank Test
data: x3
statistic = 0.87574, n = 1000, p-value = 0.3812
alternative hypothesis: trend
6.2.5 Wald-Wolfowitz runs test of randomness
> y35=runs.test(x3, "two.sided")
> y35
Runs Test
data: x3
statistic = -0.69605, runs = 490, nl = 500, n2 = 500, n = 1000, p-value
= 0.4864
alternative hypothesis: nonrandomness
6.2.6 Turning Point test
> y36=turning.point.test(x3, "two.sided")
> y36
Turning Point Test
data: x3

statistic = -0.40036, n = 1000, p-value = 0.6889
alternative hypothesis: non randomness

7 Mersene-Twister

e The Mersenne Twister is a pseudorandom number generator (PRNG).

e [t is by far the most widely used general-purpose PRNG.Its name derives
from the fact that its period length is chosen to be a Mersenne prime.

e The Mersenne Twister was developed in 1997 by Makoto Matsumoto and
Takuji Nishimura.

e It was designed specifically to rectify most of the flaws found in older
PRNGs. It was the first PRNG to provide fast generation of high-quality
pseudorandom integers.



The most commonly used version of the Mersenne Twister algorithm is
based on the Mersenne prime 219937 — 1.

The standard implementation of that, MT19937, uses a 32-bit word length.
Matsumoto & Nishimura (1998) work on the finite set No = {0,1}, so a
variable z is represented by a vectors of w bits (e.g. 32 bits).

7.1 Algorithm

They use the following linear recurrence for the n + it" term: z;,, =
upp| .1
Tipm D (2 [231) A,
upp low

where n > m are constant integers, z,”” (respectively x;°" ) means the
upper (lower) w — r (r) bits of z; and A (a w X w matrix of Ny). | is the
operator of concatenation, so x;"” |xf‘i“1’ appends the upper w — r bits of
x; with the lower r bits of x;41.

After a right multiplication with the matrix A , @ adds the result with
Zi+m bit to bit modulo two (i.e. @ denotes the exclusive-or called xor).

Once provided an initial seed xq, ..., 2,,_1, Mersenne Twister produces ran-
dom integers in 0O, ..., 2% — 1.

7.2 Properties

The commonly used version of Mersenne Twister, MT19937, which produces a
sequence of 32-bit integers, has the following desirable properties:

1.

It has a very long period of 29937 — 1. While a long period is not a
guarantee of quality in a random number generator, short periods (such
as the 232 common in many older software packages) can be problematic.

It is k-distributed to 32-bit accuracy for every 1 < k < 623.

It passes numerous tests for statistical randomness, including the Diehard
tests.

. All operations used in the recurrence are bitwise operations, thus it is a

very fast computation compared to modulus operations used in previous
algorithms.

7.3 Tests of Randomness

7.3.1 Bartel’s Rank Test

>
>
>
>
>

RNGkind(kind = "Mersenne-Twister")

set.seed(2)

x4=runif (n)

y41=bartels.rank.test (x4, "two.sided", pvalue="normal")
y41



Bartels Ratio Test

data: x4
statistic = 0.50787, n = 1000, p-value = 0.6115
alternative hypothesis: nonrandomness

7.3.2 Cox-Stuart Test

> y42=cox.stuart.test (x4, "two.sided")
> y42

Cox Stuart test

data: x4
statistic = 251, n = 500, p-value = 0.9643
alternative hypothesis: non randomness

7.3.3 Difference-sign test of randomness

> y43=difference.sign.test (x4, "two.sided")
> y43

Difference Sign Test

data: x4
statistic = 0.27372, n = 1000, p-value = 0.7843
alternative hypothesis: nonrandomness

7.3.4 Mann-Kendall rank test of randomness

> y44=rank.test (x4, "two.sided")
> y44

Mann-Kendall Rank Test

data: x4
statistic = 0.26941, n = 1000, p-value = 0.7876
alternative hypothesis: trend

7.3.5 Wald-Wolfowitz runs test of randomness

> y45=runs.test (x4, "two.sided")
> y45

Runs Test

data: x4

statistic = 0.25311, runs = 505, nl = 500, n2 = 500, n = 1000, p-value
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= 0.8002
alternative hypothesis: nonrandomness

7.3.6 Turning Point test

> y46=turning.point.test (x4, "two.sided")
> y46

Turning Point Test

data: x4
statistic = 2.5273, n = 1000, p-value = 0.01149
alternative hypothesis: non randomness

8 Knuth-TAOCP-2002

e A particular case of this type of generators is when
X = (Xn—37 + Xn_100) mod 2°°;
which is a Fibonacci-lagged generator and the ‘seed’ is the set of the 100

last numbers (actually recorded as 101 numbers, the last being a cyclic
shift of the buffer).

o The period is around 2'2°. This generator has been invented by Knuth
(2002) and is generally called “Knuth-TAOCP-2002” or simply “Knuth-
TAOCP”.

8.1 Tests of Randomness
8.1.1 Bartel’s Rank Test

> RNGkind (kind = "Knuth-TAOCP-2002")

> set.seed(2)

> xb=runif(n)

> ybl=bartels.rank.test (x5, "two.sided", pvalue="normal")
> yb1

Bartels Ratio Test

data: x5
statistic = -1.7476, n = 1000, p-value = 0.08054
alternative hypothesis: nonrandomness

8.1.2 Cox-Stuart Test

> yb2=cox.stuart.test (x5, "two.sided")
> yb2

11



Cox Stuart test

data: x5

statistic = 262, n = 500, p-value = 0.3037
alternative hypothesis: non randomness
8.1.3 Difference-sign test of randomness

> yb3=difference.sign.test (x5, "two.sided")
> yb3

Difference Sign Test

data: x5
statistic = -0.93066, n = 1000, p-value = 0.352
alternative hypothesis: nonrandomness

8.1.4 Mann-Kendall rank test of randomness

> yb4=rank.test (x5, "two.sided")
> yb4

Mann-Kendall Rank Test

data: x5
statistic = 0.57106, n = 1000, p-value = 0.568
alternative hypothesis: trend

8.1.5 Wald-Wolfowitz runs test of randomness

> ybb=runs.test (x5, "two.sided")
> yb5

Runs Test

data: xb

statistic = -1.3921, runs = 479, nl = 500, n2 = 500, n = 1000, p-value
= 0.1639

alternative hypothesis: nonrandomness

8.1.6 Turning Point test

> yb6=turning.point.test (x5, "two.sided")
> y56

Turning Point Test

data: x5

12



statistic = 0.50045, n = 1000, p-value = 0.6168
alternative hypothesis: non randomness

9 Knuth-TAOCP

e An earlier version from Knuth (1997). The 2002 version was not backwards
compatible with the earlier version: the initialization of the GFSR from
the seed was altered. R did not allow you to choose consecutive seeds, the
reported ‘weakness’, and already scrambled the seeds.

e Initialization of this generator is done in interpreted R code and so takes
a short but noticeable time.

9.1 Tests of Randomness
9.1.1 Bartel’s Rank Test

> RNGkind(kind = "Knuth-TAOCP")

> set.seed(2)

> x6=runif (n)

> y61=bartels.rank.test (x6, "two.sided", pvalue="normal")
> y61

Bartels Ratio Test

data: x6
statistic = -1.0752, n = 1000, p-value = 0.2823
alternative hypothesis: nonrandomness

9.1.2 Cox-Stuart Test

> y62=cox.stuart.test(x6, "two.sided")
> y62

Cox Stuart test

data: x6
statistic = 251, n = 500, p-value = 0.9643
alternative hypothesis: non randomness

9.1.3 Difference-sign test of randomness

> y63=difference.sign.test(x6, "two.sided")
> y63

Difference Sign Test

13



data: x6
statistic = -0.38321, n = 1000, p-value = 0.7016
alternative hypothesis: nonrandomness

9.1.4 Mann-Kendall rank test of randomness
> y64=rank.test(x6, "two.sided")
> y64
Mann-Kendall Rank Test
data: x6
statistic = -1.2817, n = 1000, p-value = 0.2
alternative hypothesis: trend
9.1.5 Wald-Wolfowitz runs test of randomness
> y65=runs.test(x6, "two.sided")
> y65
Runs Test
data: x6
statistic = -0.69605, runs = 490, nl = 500, n2 = 500, n = 1000, p-value
= 0.4864
alternative hypothesis: nonrandomness
9.1.6 Turning Point test
> y66=turning.point.test(x6, "two.sided")
> y66
Turning Point Test
data: x6

statistic = 1.1761, n = 1000, p-value = 0.2396
alternative hypothesis: non randomness

10 L’Ecuyer-CMRG

e This is a ‘combined multiple-recursive generator’ from L’Ecuyer (1999),
each element of which is a feedback multiplicative generator with three
integer elements: thus the seed is a (signed) integer vector of length 6. It
is given by:

e 2, = (x, — yn) mod m; where the two underlying generators z,, and y,
are,

14



Zp = (G1Tp—1 + A2Zn—_2 + agxp_3) mod my
Yn = (blynfl + b2yn72 + b3yn73) mod mao

with coefficients a; = 0, ao = 63308, a3 = -183326, by = 86098, by = 0, b3 =
-539608, and moduli m; = 2731 - 1 = 2147483647 and my = 2145483479.
10.1 Properties

e The period of this generator is lem(m3 —1,m3 —1), which is approximately

2185 (about 10%).

e This is not particularly interesting of itself, but provides the basis for the
multiple streams used in package parallel.

10.2 Tests of Randomness
10.2.1 Bartel’s Rank Test

> RNGkind(kind = "L'Ecuyer-CMRG")

> set.seed(2)

> x7=runif (n)

> y71=bartels.rank.test (x7, "two.sided", pvalue="normal")
> y71

Bartels Ratio Test

data: X7
statistic = 0.71466, n = 1000, p-value = 0.4748
alternative hypothesis: nonrandomness

10.2.2 Cox-Stuart Test

> y72=cox.stuart.test(x7, "two.sided")
> y72

Cox Stuart test

data: x7
statistic = 234, n = 500, p-value = 0.1656
alternative hypothesis: non randomness

10.2.3 Difference-sign test of randomness

> y73=difference.sign.test(x7, "two.sided")
> y73

15



Difference Sign Test

data: x7
statistic = -0.27372, n = 1000, p-value = 0.7843
alternative hypothesis: nonrandomness
10.2.4 Mann-Kendall rank test of randomness
> y74=rank.test(x7, "two.sided")
> y74
Mann-Kendall Rank Test
data: x7
statistic = -0.55438, n = 1000, p-value = 0.5793
alternative hypothesis: trend
10.2.5 Wald-Wolfowitz runs test of randomness
> y75=runs.test(x7, "two.sided")
> y75
Runs Test
data: x7
statistic = 1.5819, runs = 526, nl = 500, n2 = 500, n = 1000, p-value =
0.1137
alternative hypothesis: nonrandomness
10.2.6 Turning Point test
> y76=turning.point.test(x7, "two.sided")
> y76
Turning Point Test
data: x7

statistic = 1.4763, n = 1000, p-value = 0.1399
alternative hypothesis: non randomness
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1 Wichmann-Hill 0.14 096 0.70 0.79 0.16 0.24
2 Marsaglia-Multicarry 0.50 0.21 0.38 0.80 0.62 0.47
3 Super-Duper 0.41 020 049 0.01 0.28 0.17
4 Mersenne-Twister 0.95 0.85 0.69 0.08 096 0.78
5 Knuth-TAOCP-2002 0.13 0.19 0.61 030 0.70 0.58
6 Knuth-TAOCP 0.01 0.64 096 035 020 0.11
7 L’Ecuyer-CMRG 0.53 0.82 0.78 0.57 049 0.14
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Table 1: Table of p-values for different algorithms for different tests for
n=1000

Man-Kendall Rank Test
Wald-Wolfowitz Runs Test

Bartel’s Rank Test
Cox-Stuart Test
Difference Sign Test

N OO e W N

Wichmann-Hill
Marsaglia-Multicarry
Super-Duper
Mersenne-Twister
Knuth-TAOCP-2002
Knuth-TAOCP
L’Ecuyer-CMRG

Table 2: Table showing result of different tests for different algorithms
at 0.1 level of significance for n=1000
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E 5 & 3 < =
A O A =
1 Wichmann-Hill 0.04 0.73 0.56 0.95 0.59 0.60
2  Marsaglia-Multicarry 0.51 0.33 0.42 0.96 0.56 0.70
3 Super-Duper 0.67 0.36 045 0.09 0.47 097
4 Mersenne-Twister 0.20 0.37 0.40 0.11 0.87 0.56
5 Knuth-TAOCP-2002 0.04 0.79 0.73 097 0.05 0.72
6 Knuth-TAOCP 0.01 031 0.39 0.10 0.63 045
7 L’Ecuyer-CMRG 0.51 097 0.23 055 0.72 0.83

Table 3: Table of p-values for different algorithms for different tests for
n=2000
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Bartel’s Rank Test

N O Ot s W N

Wichmann-Hill
Marsaglia-Multicarry
Super-Duper
Mersenne-Twister
Knuth-TAOCP-2002
Knuth-TAOCP
L’Ecuyer-CMRG

Cox-Stuart Test

Difference Sign Test

Man-Kendall Rank Test

‘Wald-Wolfowitz Runs Test

Turning Point Test

Table 4: Table showing result of different tests for different algorithms

at 0.1 level of significance for n=2000
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1 Wichmann-Hill 0.15 0.83 0.54 0.73 0.61 0.27
2  Marsaglia-Multicarry 0.79 0.61 1.00 041 0.84 0.87
3 Super-Duper 098 0.98 0.57 0.61 091 0.83
4 Mersenne-Twister 0.78 0.18 0.40 0.18 0.27 0.03
5 Knuth-TAOCP-2002 0.10 0.05 0.81 0.65 0.61 0.97
6 Knuth-TAOCP 0.02 0.65 0.83 0.06 0.35 0.12
7 L’Ecuyer-CMRG 0.21 0.67 0.19 0.83 0.87 0.23

Table 5: Table of p-values for different algorithms for different tests for

n=2000
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Bartel’s Rank Test
Cox-Stuart Test
Difference Sign Test
Man-Kendall Rank Test
Wald-Wolfowitz Runs Test|
Turning Point Test

Wichmann-Hill
Marsaglia-Multicarry
Super-Duper
Mersenne-Twister
Knuth-TAOCP-2002
Knuth-TAOCP
L’Ecuyer-CMRG

N O Ot s W N

Table 6: Table showing result of different tests for different algorithms
at 0.1 level of significance for n=2000

13 Appendix

13.1  Statistical Tests Of Randomness
e Turning Point Test

o Wald-Wolfowitz Runs Test
e Man-Kendall Rank Test

e Difference Sign Test

o Cox-Stuart Test

e Bartel’s Rank Test

13.2 Turning Point Test

e In statistical hypothesis testing, a turning point test is a statistical test of
the independence of a series of random variables.

e Maurice Kendall and Alan Stuart describe the test as reasonable for a test
against cyclicity but poor as a test against trend.

e We say i is a turning point if the vector X, X5, ..., X;, ..., X, is not mono-
tonic at index i. The number of turning points is the number of maxima
and minima in the series.
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Let T be the number of turning points then for large n,

T — 2n—4
7 =——=-~N(0,1) (1)

16n—29
90
R function:-

turning.point.test(x,alternative)

13.3 Wald-Wolfowitz Runs Test
e It is the simple runs test.

e Under the null hypothesis, the number of runs in a sequence of N ele-
ments is a random variable whose conditional distribution given the ob-

servation of N positive values and N_ negative values (N = N + N_)
2N, N_

is approximately normal with mean y = =—%— + 1 and variance o? =
2Ny N_ (2N N_—N) _ (p=1)(p—2)
N2(N-1) = N-1

e R function:- runs.test(x,alternative,threshold,pvalue,plot).

13.4 Mann-Kendall Rank Test

e Originally, Kendall’s tau statistic is used as a measure of association
in a bivariate population (X,Y). If we treat the time, {1,2,...n}, of
an observed sequence as X and the set of time-ordered observations,
{Y1,Y2,..,Y,}, as Y; then the association between X and Y can be con-
sidered as an indication of trend.

i—1

o The test statisticis T = % sign(Y; —Y;) which converges to a normal

i=2j=1

random variable under the null hypothesis of randomness: T ~ N (0, 03);
n(n—1)(2n+5)

where 03 = 13

e R function:- rank.test(x,alternative).

13.5 Difference Sign Test

e The sequence is y1,y2, ..., Yn. For this test we count the number S of values
of ¢ such that y; > y;_1, i = 2,...,n or equivalently the number of times
the differenced series (y; — y;—1) is positive.

e For an iid sequence it is clear that yug = ES = 1/2(n — 1). It can also be
_ (nt1)
=1z o

shown under the same assumption that 0% = Var(9)

e Forlargen, S ~ N(us,0%) . A large positive( or negative) value of (S—pus)
indicates the presence of increasing( or decreasing) trend in the data. We
therefore reject the assumption of trend in the data if % >®_ o9 .

e R function:- difference.sign.test(x,alternative)
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13.6 Cox- Stuart Test

e Given a set of ordered observations Xy, Xo, ..., X,,, let

¢ =n/2if n even

= (n+1)/2 if n is odd

Then pair the data as X1, X14¢, X2, Xote, ooy Xn—e, Xn. The Cox-Stuart
test is then simply a sign test applied to these paired data.

e R function:- cox.stuart.test(x; alternative)

13.7 Bartel’s Rank Test

e The test statisticis RVN = &

e This is the rank version of von Neumann’s Ratio Test for Randomness.

T.El(Ri*RH—l)2
= where R; = Rank(X;). RVN-2/,
£ (Ri—rr1ya)?

4(n—2)(5n*—2n—9)

is asymptotically standard normal , with o2 = S (1=1)2

¢ R function:- bartels.rank.test(x,alternative,pvalue="normal”)
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