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Problem

Problem Statement

Download historical daily closing prices available in [a] for the past 10 years

of the constituents of NSE Nifty 50 [b]. Estimate the indices and

proportion of a mixture model for the tail index. For a single population,

the estimation can be done using [c].

e Historical data [a]
e Nifty stock list [b]
o Extreme Fit in R [c]

Company.Name

‘Adani Ports and Special Economic Zone Ltd,
Asian Paints Ltd,

Ais Bark Ltd.

Bajaj Auto Ltd,

Bajaj Finance Ltd.

Bajaj Finserv Lt

Industry

SERVICES
CONSUMER GOODS.
FINANCIAL SERVICES
AUTOMOBILE

FINANCIAL SERVICES
FINANCIAL SERVICES

Figure 1: Nifty50 List

Symbol

ADANIPORTS
ASIANPAINT
AXISBANK
BAJAJAUTO
BAJFINANCE
BAJAJFINSY.

ISIN.Code

INE742F01042
INE021A01026
INE238A01034
INES17I01010
INE296401024
INEST8I01018



Problem

Nifty50

AUTOMOBILE CEMENT & CEMENT PRODUCTS CONSTRUCTION
6 2 1
CONSUMER GOODS ENERGY FERTILISERS & PESTICIDES
4 8 1
FINANCIAL SERVICES IT  MEDIA & ENTERTAINMENT
11 5 1
METALS PHARMA SERVICES
4 4 1
TELECOM

2

Figure 2: Industry wise classification

We look at their daily closing stock prices for the last 10 years. For each
constituent, we are to estimate the indices and proportion of a mixture
model for the tail index. Let us work with one of them, namely SBI.
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SBI Historical Data

We have downlaoded the data from Investing.com source which was given
to us.

i..Date Price Open High Low vol. change..
Jan 01, 2018 307.10 310.6 312.75 306.30 12.18m -0.90%
Dec 29, 2017 309.90 310.0 312.00 309.05 11.94m 0.49%
Dec 28, 2017 208.40 3215.3 316.50 207.65 20.35M -2.05%
Dec 27, 2017 314.85 316.5 320.30 313.05 14.28M -0.73%
Dec 26, 2017 317.15 318.6 319.95 316.30 9.33m -0.84%
Dec 22, 2017 319.85 317.1 323.85 316.50 13.82M 0.98%
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Figure 3: Stock Price (SBI)

We will look at the daily closing prices, and then consider the log returns.
Let us look at a few empirical things.

H Parameter Estimate H

Mean 0.0001258867
Std Dev. 0.02378821
Skewness 0.6674823
Kurtosis 10.70131




Fit with a Single Pareto
o
Fit with a Single Pareto

Log Return Density

Log Return (SBI)

Density
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N=2476 Bandwidth = 0.003555
Figure 4: Log Return (SBI)

Using Single General Pareto Distributions
The pdf is given by

f@) = s+ (e M

with x 2 u,a > 0, A > 0.



Fit with a Single Pareto
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Fit with a Single Pareto

Parameter Estimation

Excess over threshold
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Figure 5: Mean Excess Plot (SBI)

Plot of upper tail in log - log scale
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Fit with a Single Pareto
L]
Fit with a Single Pareto

Parameter Estimation

We can further be more careful while choosing the estimated parameters,
by looking for stability from the below plot.

Percent Data Points above Threshold
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Figure 7: Shape Parameter £ with Threshold (SBI)



Mixture

Pareto Mixture

Using Mixture of General Pareto Distributions

We are to implement an EM Algorithm to model the tail as a mixture of 2
Pareto distributions estimating the shapes, scales and proportions.

Here is the theory for the same.

filz) = L1+ 52V (@ > an)

fox) = 51+ 25 (5522)] 2 0 (@ > )

In specific we consider 1 = 0 and z2 = x;.

We define,

Z; = L Xi~f
P(Zizl):ﬂ'l,
So,

E[Z|X = 2] = P(Z = 1|X = 2)
_ 7T1f1($|C¥1,/\1) (2)
- omfi(elan, ) + (1 =) fo(@]az, A2)




Expectation-Maximization

Consider the likelihood for Vx > 0,

Likelihood L = ] [(m1 f1(X:)" (mafa(X0)) 7 (3)

=logL = Z i(logmy — log)\1—(a1+1)log(x_x1)+l(a:>x1))

A1
+(1 - ZZ)(logm —log A2 — (az + 1) log(*522) + I(z > x2))]

E-Step

n

E(log L) =Y [Zi(logm —log A1 — (o1 + 1) log(Z /\1
=1

+(1 = Z;)(log ma — log Ao — (a2 + 1) log(*2 ””2) + I(z > x2))]

=)+ (@ > @)



EM

[ ]
EM
Expectation-Maximization
M-Step
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EM
Expectation-Maximization
dlog E(log L|z1,x2,..Tn) =0
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Expectation-Maximization
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Similarly we have, = sz =

i(l - Zz-“”)

=1



points to note!
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points to note!

few points!

o However using unknown locations, the EM algorithm will not work as
they will never be updated. Here is the reference paper for the same in
ResearchGate website. ”On Maximum Likelihood Estimation of a
Pareto Mixture, January 2103, by Marco Bee, Giuseppe Espa, Roberto
Benedetti”.

So we take them as known values from the single distribution fit. Then
we carry on applying the EM Algorithm.

o It is interesting to see that one of the Pareto Distribution of the
mixture is highly dominant and its parameters are very close to what
we get when we used a single GPD to estimate.Similarly the lower tail
and also for the other stocks.



More Stocks
°
More of Them

Results

In the same way we analyze for the other stocks. We summarize the results
for a few below:

stock |single GPD shape |single GPD scale |Mixture GPD dominant shape|mixture GPD dominant
| | |
SBIL | 5.610924 |0.01452079 |5.610822 |0.01452078
COAL | 8. 578711 |0.01076159 |8.578711 |0.01076242
CNTY |7.686716 |0.01745051 |7.685447 |0.01744987
DSTV |4.615578 |0.01878393 |4.615227 |0.01878339
EICH | 3. 364470 |0.01531268 |3.364226 |0.01531208
GLEN |4.584767 |0.01627197 |4.584292 |0.01627135
HDEK | 5.892666 |0.01194083 |5.89262 |0.01194082
HDFC |4. 519679 |0.01381828 |4.519149 |0.01381763
HLL |5.472644 |0.01028556 |5.571171 |0.01031392
HPCL |7.886756 |0.01553146 |7.885558 |0.01553085
ICBK |24.27835 |0.02093861 |24.27837 |0.02093860
INFY |4.593573 |0.01158688 |4.593227 |0.01158677
ITC | 8.905622 | 0. 01090664 | 8.904653 |0. 01090651
LICH |6.932689 |0.01904173 |6.931799 |0.01904114
LUPN |25.29333 |0.01179709 |25.29339 |0.01179709
MAHM |2.966781 |0.01128694 |2.972521 |0.01129308
ONGC |5.952683 |0.01258339 |5.952454 |0.01258333

Figure 8: Results for other Stocks



More Stocks

°

More of Them

Results
stock |single GPD shape |single GPD scale |Mixture GPD dominant shape|Mixture GPD dominant

| |

RANE |4.165468 |0.01594564 l4.161342 |0.01594299
REDY |24.15001 |0.01187990 |24.13921 |0.01187973
RELI |4.157552 |0.01030483 |4.255115 |0.01034989
Tamo |8.378704 |0. 01706061 |8.377153 |0.01705996
TCS |7.51643 10.01460201 |7.515213 10.01480135
TEML |3.565791 |0.01597966 |3.566564 |0.01598011
TTEX |14.38224 |0.02580105 |14. 38006 |0.02580058
UPLL |4.380475 10.01540045 |4.383597 |0.01540248
WCKH |3.993936 |0.02069185 |3.993621 |0.02069126
YESB |3.501047 |10.01621788 13.512563 |0.01623037
BAJA |5.1944986 |0.01067211 |5.193866 |0. 01067194
BFRG | 5. 87405 |0.01652911 |5.874944 |0.01652997
BOB |2.898630 |0.01336198 |2.898461 |0.01336140
BPCL |10.75635 |0.01472858 |10.75326 |0.01472785
APSE |7.899816 10.01836482 |7.90111 |0.01836565
ARBN |13.67091 |0.01807263 |113.6689 |0.01807249
ASOK |5.610924 10.01452079 |5.610822 |0.01452078
AXBK |15.44735 10.01783171 115.45257 10.01783257

Figure 9: Results for other Stocks
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Bayesian Framework!
Pareto and it’s Estimates

o Let Y is distributed according to a Pareto law.
It’s density f(ylc, ym) = a(ym)®y~ TV I(y > ym),  ym >0, >0

The cumulative distribution is F(y) = (1 — ymy~ “)I(y > ym)

o From the likelihood equation we get the two sufficient statistics as

Min(y) and Z log(yi/ym). Whose classical estimates are obtained by
i=1

taking ym = Min(y) and & =n/ Z log(yi/ym)-
i=1
L(yla, ym) = " exp[—(a+1) Y _ log(y:) + anlog(ym)| I (ya) > Ym)
i=1
(4)

1Ndoye, A.A. and Lubrano, M., 2014, September. Tournaments and Superstar
models: A Mixture of two Pareto distributions. In Economic Well-Being and
Inequality: Papers from the Fifth ECINEQ Meeting (pp. 449-479). Emerald Group
Publishing Limited.
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Dist & Estimates

Power Distribution

o X is said to have a power function distribution if its probability density
function is defined as,

—a_a—1

p(z) = ax,,* 2% " I(x < zm) (5)

where o > Oandz,, > 0.

o Cumulative distribution function, F'(z) = z,,*z%I(z < Z.,)

n
e Two sufficient statistics are provided by M ax(y)andz log(yi/ym)
i—1
note: If x has a power function distribution in («, ), then y = 1/x is
distributed according to a Pareto(«, ym) where ym = 1/2m.



Paretomix
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Paretomix

Pareto Mixture

Mixture of two pareto with different shape and scale parameters,
f(y|al7 a2, Ymil, ym%l’) =

—(041+1)I(

paryehy Yy > ym1) + (1= pazyody > Iy > yma)  (6)

o The two components have a different support, so it is natural to
assume for instance that ym2 > ym1. In this framework, the first
member is concerned with observations greater than y,,1 while the
second component corresponds to observations greater than y,,2. So,
any observation y; such that ym1 < y; < ym2 belongs to the first
regime with probability 1 and not with probability p.

o Since the usual EM algorithm does not work for estimating the five
parameters, we present Gibbs Sampling technique to estimate the
parameters.



Priors & Posteriors

Conjugate Priors

The priors we have used for this Bayesian framework,

@ Prior on a : Gamma(ao, vo)

n
Posterior: Gamma(ao + Z log(yi/ym), vo +m)
i=1
@ Prior on y,, Power(yo,Ymo)
Posterior : Power(yo + no, Maz(Min(y:), ymo))

@ Prior for p : Beta(NOl,noz)
Posterior: Beta(noi + n1,no2 + n2), where n1 and ny are the number
of observations that conditionally on z fall into each regime.

Priors &
°



Gibbs Sampling

Gibbs Sampler

e Fix a value for the total number of draws m, fix a value for ym2, select
a starting value for p, and compute the following starting values
Ym1 = Y1), 01 = &(Ym1), a2 = &(Yma2).

@ Start the loop on j, the Gibbs iterations.

e Determine the observations y1s|y < ym2 that belong for sure to the
first regime for a given draw of y,,2.Determine the remaining
observations yi2|y > yYma.

o For the remaining observations yi2, simulate the sample allocation 2
where each element is drawn according to a Binomial(z9|p;), with

base probability p; = m-



Gibbs Sampling

Gibbs Sampler (Further Steps)

Select the sub-sample separation yi, and y2, among the yi2.

Form the first regime allocation y(] ) =

() _ (J)
Yor

(y1s,y1r), and the second
regime allocation y;

Compute ng

— 29 109 and ng)

Draw p(j) ~ Beta(nj W) 4 n(n, (3) + noz).

Draw y(]) ~ Power(’y(o) + n ag] b Maac(Min(y%j)), Ymo1))
Draw yf,{)Q ~ Power('y(o) + n(]) (J b , Max(Mi n(yéj)), Ymo2))
(4)

ny

Draw o' ~ Gamma(a{” + Z og(y /y$9)), vor 4 n1)

Draw aéj) ~ Gamma(a (O) Zlog ym (j)z),lloz + n2)

j=7+1



Historical Daily Closing Price Data

Prior Value for y,,2 (SBI)

Log-Log Plot of Complementary Cumulative Dist(SBI)
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Figure 10: 1-Fn(x) vs log(y)(SBI)



Historical Daily Closing Price Data

Prior Value for y,,,2 (COAL)

Log-Log Plot of Complementary Cumulative Dist(COAL)
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Figure 11: 1-Fn(x) vs log(y)(COAL)



Posterior Inference

Posterior Inference for Mixture Distribution

SBI

COAL

H Parameter Estimate H
[e%1 0.23148
Qa2 0.9373483
Ym1 4.500561e-05
Ym?2 0.006122063
P 0.3068412
H Parameter Estimate H
a1 0.2898847
Qo 1.45775
Ymi 0.0001407731
Ym2 0.009020065
p 0.5519838




Posterior Inference
Comparison: Cumulative Pareto Mixture Distribution with Empirical
Distribution (SBI)

Empirical cdf & Mixcdf (SBI)
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Figure 12: Fy,(z) and mixcdf (SBI)



Posterior Inference
Comparison: Cumulative Pareto Mixture Distribution with Empirical
Distribution (COAL)

Empirical cdf & Mixcdf (COAL)

1.0

eOmEs OO o o

[+]
OHmOEEY oo @

06

04

02

T T T T T T
0.00 0.02 0.04 0.08 0.08 010

upper tail

Figure 13: Fy,(z) and mixedf (COAL)



points to note!

few points!

o In Gibbs Sampling algorithm, the theory ensures that after a
sufficiently large number of iterations, T, the set
(agﬂ,aéj),yfﬁ,yg%,p(j)) :j=T+41,...,N can be seen as a random
sample from the joint posterior distribution.

e This Bayesian inference for a mixture of Pareto is sensitive to the
choice of prior information. We need to be careful on choosing the
parameter’s priors of the mixture.

n
o In Gibbs Sampler & is computed using Z log(yi/ym) where y; is
i=1
restricted to the sub-sample y; > y. Same way we can also model for
the log losses and for other stocks.
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points to note!

Thank You :-
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