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Problem Statement

Download historical daily closing prices available in [a] for the past 10 years
of the constituents of NSE Nifty 50 [b]. Estimate the indices and
proportion of a mixture model for the tail index. For a single population,
the estimation can be done using [c].

Historical data [a]

Nifty stock list [b]

Extreme Fit in R [c]

Figure 1: Nifty50 List
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Nifty50

Figure 2: Industry wise classification

We look at their daily closing stock prices for the last 10 years. For each
constituent, we are to estimate the indices and proportion of a mixture
model for the tail index. Let us work with one of them, namely SBI.



Problem Fit with a Single Pareto Mixture EM points to note! More Stocks Dist & Estimates Paretomix Priors & Posteriors Gibbs Sampling Daily Closing Price Data Posterior Inference

SBI Historical Data

We have downlaoded the data from Investing.com source which was given
to us.

Figure 3: Stock Price (SBI)

We will look at the daily closing prices, and then consider the log returns.
Let us look at a few empirical things.

Parameter Estimate

Mean 0.0001258867

Std Dev. 0.02378821

Skewness 0.6674823

Kurtosis 10.70131
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Fit with a Single Pareto

Log Return Density

Figure 4: Log Return (SBI)

Using Single General Pareto Distributions
The pdf is given by

f(x) =
1

λ
[1 +

1

α
(
x− u
λ

)]−(α+1) (1)

with x = u, α > 0, λ > 0.
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Fit with a Single Pareto

Parameter Estimation

Figure 5: Mean Excess Plot (SBI)

Figure 6: Upper Tail of GPD Fit (SBI)
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Fit with a Single Pareto

Parameter Estimation

We can further be more careful while choosing the estimated parameters,
by looking for stability from the below plot.

Figure 7: Shape Parameter ξ with Threshold (SBI)
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Pareto Mixture

Using Mixture of General Pareto Distributions
We are to implement an EM Algorithm to model the tail as a mixture of 2
Pareto distributions estimating the shapes, scales and proportions.
Here is the theory for the same.
f1(x) = 1

λ1
[1 + 1

α1
(x−x1
λ1

)]−(α1+1)I(x > x1)

f2(x) = 1
λ2

[1 + 1
α2

(x−x2
λ2

)]−(α2+1)I(x > x2)
In specific we consider x1 = 0 and x2 = xi.

We define,

Zi =

{
1 Xi ∼ f
0 Xi ∼ g

P (Zi = 1) = π1,
So,

E[Zi|X = x] = P (Zi = 1|X = x)

=
π1f1(x|α1, λ1)

π1f1(x|α1, λ1) + (1− π1)f2(x|α2, λ2)

(2)
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Expectation-Maximization

Consider the likelihood for ∀x > 0,

Likelihood L =

n∏
1

(π1f1(Xi))
Zi(π2f2(Xi))

1−Zi (3)

⇒ logL =

n∑
i=1

[Zi(log π1 − log λ1 − (α1 + 1) log(
x− x1
λ1

) + I(x > x1))

+(1− Zi)(log π2 − log λ2 − (α2 + 1) log(x−x2
λ2

) + I(x > x2))]

E-Step

E(log L) =

n∑
i=1

[Ẑi(log π1 − log λ1 − (α1 + 1) log(
x− x1
λ1

) + I(x > x1))

+(1− Ẑi)(log π2 − log λ2 − (α2 + 1) log(x−x2
λ2

) + I(x > x2))]
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EM

Expectation-Maximization

M-Step

∂ logE(logL|x1,x2,..xn)
∂π1

= 0

⇒ 1
π1

n∑
i=1

Ẑi −
1

1− π1

n∑
i=1

(1− Ẑi) = 0

=⇒ π̂1
(1) = 1

n

n∑
i=1

Ẑi
(0)

∂ logE(logL|x1,x2,..xn)
∂α1

= 0

⇒ (α1 + 1)

n∑
i=1

Ẑi

1 + xi−x1
α1λ1

xi − x1
α2
1λ1

= Ẑi log(1 +
x− x1
α1λ1

)

=⇒ α̂1
(1) =


Ẑi

(0)
log(1+

xi−x1
α
(0)
1 λ

(0)
1

)

n∑
i=1

Ẑi
(0)

1 + xi−x1
α
(0)
1 λ

(0)
1

(
xi − x1
α
(0)
1 λ

(0)
1

)

− 1


−1
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EM

Expectation-Maximization

∂ logE(logL|x1,x2,..xn)
∂α2

= 0

⇒ (α2 + 1)

n∑
i=1

1− Ẑi
1 + xi−x1

α2λ2

xi − x1
α2
2λ2

= (1− Ẑi) log(1 +
xi − x1
α2λ2

)

=⇒ α̂2
(1) =


(1−Ẑi

(0)
) log(1+

xi−x1
α
(0)
2 λ

(0)
2

)

n∑
i=1

1− Ẑi
(0)

1 + xi−x1
α
(0)
2 λ

(0)
2

(
xi − x1
α
(0)
2 λ

(0)
2

)

− 1


−1

∂ logE(logL|x1,x2,..xn)
∂λ1

= 0

⇒ (α1 + 1)

n∑
i=1

Ẑi

1 + xi−x1
α1λ1

xi − x1
α1λ2

1

=
1

λ1

n∑
i=1

Ẑi

=⇒ λ̂1
(1)

=

(α
(0)
1 +1)

n∑
i=1

Ẑi
(0)

1 + xi−x1
α
(0)
1 λ

(0)
1

xi − x1
α
(0)
1 λ

(0)
1

n∑
i=1

Ẑi
(0)
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EM

Expectation-Maximization

Similarly we have, =⇒ λ̂2
(1)

=

(α
(0)
2 +1)

n∑
i=1

1− Ẑi
(0)

1 + xi−x1
α
(0)
2 λ

(0)
2

xi − x1
α
(0)
2 λ

(0)
2

n∑
i=1

(1− Ẑi
(0)

)
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points to note!

few points!

However using unknown locations, the EM algorithm will not work as
they will never be updated. Here is the reference paper for the same in
ResearchGate website. ”On Maximum Likelihood Estimation of a
Pareto Mixture, January 2103, by Marco Bee, Giuseppe Espa, Roberto
Benedetti”.
So we take them as known values from the single distribution fit. Then
we carry on applying the EM Algorithm.

It is interesting to see that one of the Pareto Distribution of the
mixture is highly dominant and its parameters are very close to what
we get when we used a single GPD to estimate.Similarly the lower tail
and also for the other stocks.



Problem Fit with a Single Pareto Mixture EM points to note! More Stocks Dist & Estimates Paretomix Priors & Posteriors Gibbs Sampling Daily Closing Price Data Posterior Inference

More of Them

Results

In the same way we analyze for the other stocks. We summarize the results
for a few below:

Figure 8: Results for other Stocks
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More of Them

Results

Figure 9: Results for other Stocks
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Dist & Estimates

Bayesian Framework1

Pareto and it’s Estimates

Let Y is distributed according to a Pareto law.
It’s density f(y|α, ym) = α(ym)αy−(α+1)I(y > ym), ym > 0, α > 0

The cumulative distribution is F (y) = (1− yαmy−α)I(y > ym)

From the likelihood equation we get the two sufficient statistics as

Min(y) and
n∑
i=1

log(yi/ym). Whose classical estimates are obtained by

taking ŷm = Min(y) and α̂ = n/
n∑
i=1

log(yi/ym).

L(y|α, ym) = αnexp[−(α+ 1)

n∑
i=1

log(yi) + αn log(ym)]I(y(1) > ym)

(4)

1Ndoye, A.A. and Lubrano, M., 2014, September. Tournaments and Superstar
models: A Mixture of two Pareto distributions. In Economic Well-Being and
Inequality: Papers from the Fifth ECINEQ Meeting (pp. 449-479). Emerald Group
Publishing Limited.
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Dist & Estimates

Power Distribution

X is said to have a power function distribution if its probability density
function is defined as,

p(x) = αx−αm xα−1I(x < xm) (5)

where α > 0andxm > 0.

Cumulative distribution function, F (x) = x−αm xαI(x < xm)

Two sufficient statistics are provided by Max(y)and
n∑
i=1

log(yi/ym)

note: If x has a power function distribution in (α, xm), then y = 1/x is
distributed according to a Pareto(α, ym) where ym = 1/xm.



Problem Fit with a Single Pareto Mixture EM points to note! More Stocks Dist & Estimates Paretomix Priors & Posteriors Gibbs Sampling Daily Closing Price Data Posterior Inference

Paretomix

Pareto Mixture

Mixture of two pareto with different shape and scale parameters,
f(y|α1, α2, ym1, ym2, p) =

pα1y
α1
m1y

−(α1+1)I(y > ym1) + (1− p)α2y
α2
m2y

−(α2+1)I(y > ym2) (6)

The two components have a different support, so it is natural to
assume for instance that ym2 > ym1. In this framework, the first
member is concerned with observations greater than ym1 while the
second component corresponds to observations greater than ym2. So,
any observation yi such that ym1 < yi < ym2 belongs to the first
regime with probability 1 and not with probability p.

Since the usual EM algorithm does not work for estimating the five
parameters, we present Gibbs Sampling technique to estimate the
parameters.
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Priors & Posteriors

Conjugate Priors

The priors we have used for this Bayesian framework,

Prior on α : Gamma(α0, ν0)

Posterior: Gamma(α0 +

n∑
i=1

log(yi/ym), ν0 + n)

Prior on ym Power(γ0, ym0)
Posterior : Power(γ0 + nα,Max(Min(yi), ym0))

Prior for p : Beta(n01, n02)
Posterior: Beta(n01 + n1, n02 + n2), where n1 and n2 are the number
of observations that conditionally on z fall into each regime.



Problem Fit with a Single Pareto Mixture EM points to note! More Stocks Dist & Estimates Paretomix Priors & Posteriors Gibbs Sampling Daily Closing Price Data Posterior Inference

Gibbs Sampling

Gibbs Sampler

Fix a value for the total number of draws m, fix a value for ym2, select
a starting value for p, and compute the following starting values
ym1 = y(1), α1 = α̂(ym1), α2 = α̂(ym2).

Start the loop on j, the Gibbs iterations.

Determine the observations y1s|y < ym2 that belong for sure to the
first regime for a given draw of ym2.Determine the remaining
observations y12|y > ym2.

For the remaining observations y12, simulate the sample allocation z(j)

where each element is drawn according to a Binomial(z(i)|pi), with
base probability pi = pf1

pf1+(1−p)f2
.
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Gibbs Sampling

Gibbs Sampler (Further Steps)

Select the sub-sample separation y1r and y2r among the y12.

Form the first regime allocation y
(j)
1 = (y1s, y1r), and the second

regime allocation y
(j)
2 = y

(j)
2r .

Compute n
(j)
1 = n

(j)
1s + n

(j)
1r and n

(j)
2 .

Draw p(j) ∼ Beta(n
(j)
1 + n01, n

(j)
2 + n02).

Draw y
(j)
m1 ∼ Power(γ

(0)
1 + n

(j)
1 α

(j−1)
1 ,Max(Min(y

(j)
1 ), ym01))

Draw y
(j)
m2 ∼ Power(γ

(0)
2 + n

(j)
2 α

(j−1)
2 ,Max(Min(y

(j)
2 ), ym02))

Draw α
(j)
1 ∼ Gamma(α

(0)
1 +

n
(j)
1∑
i=1

log(y
(j)
1 /y

(j)
m1), ν01 + n1)

Draw α
(j)
2 ∼ Gamma(α

(0)
2 +

n
(j)
2∑
i=1

log(y
(j)
2 /y

(j)
m2), ν02 + n2)

j = j + 1
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Historical Daily Closing Price Data

Prior Value for ym2 (SBI)

Figure 10: 1-Fn(x) vs log(y)(SBI)
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Historical Daily Closing Price Data

Prior Value for ym2 (COAL)

Figure 11: 1-Fn(x) vs log(y)(COAL)
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Posterior Inference

Posterior Inference for Mixture Distribution

SBI

Parameter Estimate

α1 0.23148

α2 0.9373483

ym1 4.500561e-05

ym2 0.006122063

p 0.3068412

COAL

Parameter Estimate

α1 0.2898847

α2 1.45775

ym1 0.0001407731

ym2 0.009020065

p 0.5519838
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Posterior Inference

Comparison: Cumulative Pareto Mixture Distribution with Empirical
Distribution (SBI)

Figure 12: Fn(x) and mixcdf (SBI)
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Posterior Inference

Comparison: Cumulative Pareto Mixture Distribution with Empirical
Distribution (COAL)

Figure 13: Fn(x) and mixcdf (COAL)
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points to note!

few points!

In Gibbs Sampling algorithm, the theory ensures that after a
sufficiently large number of iterations, T, the set
(α

(j)
1 , α

(j)
2 , y

(j)
m1, y

(j)
m2, p

(j)) : j = T + 1, . . . , N can be seen as a random
sample from the joint posterior distribution.

This Bayesian inference for a mixture of Pareto is sensitive to the
choice of prior information. We need to be careful on choosing the
parameter’s priors of the mixture.

In Gibbs Sampler α̂ is computed using

n∑
i=1

log(yi/ym) where yi is

restricted to the sub-sample yi > ym. Same way we can also model for
the log losses and for other stocks.
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points to note!

Thank Y ou :-)
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