
Computational Finance 

Irreversibility of Financial Time Series: A Graph Theoretical Approach 

Diptarka Saha(MB1516) 

Anirban De(MB1428) 

Introduction 

A time series is said to be directional (or irreversible) if it possesses probabilistic properties 

which depend on the direction of time. A time series is said to be reversible if it has no such 

property. haviour. Appropriate plotting of time series can often reveal directionality; there is a 

lack of directional symmetry in certain characteristic behaviour sequences, such as rises and 

Falls. There has been relatively little written about directionality in time series. One reason for 

this may be that, until recently, time series modelling has been coterminus with standard 

Gaussian autoregressive moving average models (ARMA).However, Non-linear and non-

Gaussian linear models typically have directionality as a property of their higher order depen 

The basic idea is that directionality is an aspect of time series analysis which deserves wider 

recognition; for instance, it does not make sense to forecast with a time series model which is 

reversible, when past data are definitely irreversible. An example would help  

This data which is definitely irreversible should be modelled using irreversible models.   

This concept of reversibility is also very interesting in the realm of financial time series. 

Basically a reversible financial time series would follow the efficient market hypothesis and 

hence attempts of predicting its behaviour would be futile. However, the more the irreversibility 

the more inefficient (and predictable in some sense) is the market.  

It is important to stress at this point that financial time series are usually non-stationary. This is 

in principle a fundamental drawback, as to the best of our knowledge no rigorous theory has 

been advanced so far linking time series irreversibility and entropy production in the non-

stationary case. As a matter of fact, according to the original definition, non-stationary series are 

infinitely irreversible, so the quantification of how irreversible a non-stationarytime series 

seems to be an ill-defined problem to begin with. Again, here we circumvent this problem by 

using the so-called visibility algorithms, a family of methods to make time series analysis in 



graph space that have been shown recently to be able to quantify different degrees of 

irreversibility in both stationary and non-stationary processes. 

Accordingly, here we propose to apply the concept of graph-theoretical time series 

irreversibility in the context of financial time series. We first make use of the visibility 

algorithms to construct graph-theoretical representations of the stock prices of 15 companies 

from the NSE in the period 1997–2017. We then estimate time irreversibility in these 

representations through the Kullback–Leibler divergence of the in and out degree distributions. 

After checking that this measure is indeed genuine and not correlated to volatility, we show that 

all the companies under study are irreversible, and their degree of irreversibility varies across 

companies and fluctuates over time. The variance across companies allows us to rank 

companies, and the collective time fluctuations are finally used to 

provide a classification of financial periods. 

Methodical Notes 

Measure of Irreversibility 

A dynamical process is said to be time reversible if any two time series S = {x1, x2, ..., xn} and S*= 

{x-1, x-2, ..., x−n}(where n denotes time) generated by this process asymptotically have the same 

joint distribution . In the concrete casewhere the process is stationary, the definition of time 

reversibility reduces to the equivalence of statistics between the forward and backward 

process: a stationary time series is thus time reversible if a series {x1, x2, ..., xn} and its reverse 

{xn, ..., x2, x1} are equally likely to occur. That is to say, the joint distributions p(x1 , x2, ..., xn) 

and q(xn, ..., x2, x1) coincide for reversible processes. If p �= q we say that the process is 

(statistically) time irreversible. 

First, we need a measure of irreversibility, Amongst other descriptors, we advocate that the 

Kullback–Leibler divergence (KLD) between the statistics (distributions) of the (appropriately 

symbolized) time series of the forward and backward process is indeed an interesting choice. 

We recall that if p and q are discrete distributions with domain X, then the 

Kullback–Leibler divergence D kld(p|q) is defined as 

 

This is a semi-distance (i.e. non-symmetric) which is null if and only if p = q and positive 

otherwise 

Visibility Algorithms 

Visibility algorithms are a family of methods to map time series into graphs, in order to explore 

the structure of the time series (and the dynamics underneath) using graph theory. Let 

S = {x(t)}  be a real-valued time series data.  

We define and use the so called horizontal visibibility graph (HVG) is defined by  

(i) every datum x(i) in the series is mapped to a node i in the graph (hence the graph nodes 

inherit a natural ordering), 

(ii) two nodes i and j are connected by an edge if the associated data show mutual horizontal 

visibility if any other datum x(k), where i < k < j, fulfil the following ordering criterion: 

xk < inf(xi, x j), ∀k : i < k < j 



 

 

Note that previous definitions generate undirected graphs. 

However, these can be made directed  by assigning to the links the time arrow naturally induced 

by the node ordering. Accordingly, a link between i and j (where time ordering yields i < j), 

generates an outgoing link for i and an ingoing link for j in a directed version of a VG/HVG. The 

degree sequence of the VG/HVG 

(which assigns to each node its degree or number of edges) thus splits into an ingoing degree 

sequence {kin(t)}tT=1 , where kin(t) is the ingoing degree of node i = t, and an outgoing degree 

sequence. An important property at this point is that the ingoing 

and outgoing degree sequences are interchangeable under time series reversal. That is to say, if 

we define the time reversed series S∗ = {xT+1−t}tT=1 , then we have the following identities 

 

Now, one can define, from the ingoing and outgoing degree sequences, an ingoing degree 

distribution P(kin) ≡ Pin(k) and an outgoing degree distribution P(kout) ≡ Pout(k) 

In other words, the statistics of the forward and backward process are encoded, in graph-space, 

in the in and out degree sequences. Time series irreversibility can then be estimated via the 

Kullback– Leibler divergence between the in and out degree distributions 

 This graph-theoretical measure reads 



 

 

Data and Results 

 We  could only find data of resolution up to a day. So we gathered data for 15  companies from 

1997-2017. For each of them we calculated the IHVG  for each year and then tried to find patterns.  

Irreversibility plots for some of the companies follow 

 

 A clear pattern emerges, for banking companies such as HDFC and ICICI there is a huge peak at 

around 2008, which was presumably caused by 2008 financial meltdown. However, for non-

banking companies such as Airtel and IOC this peak does not emerge. This pattern actually 

follows for other companies too. Mostly, there are few peaks of irreversibility followed by quasi-

reversible areas. These irreversibility may have been caused due to different circumstances.  

Ranking Companies:  

In order to quantify the net amount of irreversibility of a certain company, we introduce 

Score[c]defined as the mean of the yearly IHVGs, the score of a company c as 

the average of the annualized irreversibility value. This quantity averages the degree of 



irreversibility of a given company over large periods of time. According to the analogy between 

reversibility and entropy production, the larger the Score is, the more ‘away from equilibrium’ 

the signal generated by c is, thus producing larger amounts of entropy. This might be relevant 

from a financial perspective, as the larger the Score of a company, the less efficient it is and thus 

more interesting from an investment viewpoint. Here are all the scores 

 

To further asses the the possibility that some companies may have suffered from large 

irreversibility only at sporadic occasions (which would yield a high irreversibility score even if 

the company were following a quasi-reversible evolution in most of the period), we 

also compute the irreversibility variance of a given company, defined as the variance of the IHVG s 

Here is the full table 

 

In general, the irreversibility Score will be a faithful static measure of a company’s 

irreversibility as long as we have relatively small variance. 



 

     

We see that in most of the cases the scores are pretty close and the variances are also low, 

however in some cases such as SBI both of them are high, TATA MOTORS shows a high variance 

in spite of low score. Interestingly, we find that the top six multinationals in the Score ranking, 

also have large variance. These are companies which have been dramatically affected by major 

external perturbations at certain specific times, perhaps acting as global sensors of the financial 

system’s stability state.  

Assessing periods of financial reversibility  

In the next section, we further explore this possibility, and investigate, in an unsupervised way, 

if the evolution of irreversibility features across companies over time reflects the stability of the 

whole financial system. This allows us to classify and cluster periods of time according to their 

level of systemic reversibility.  

We have 14 data points, each belonging in a R15 space, that we would like to classify and find 

pattern amongst.  

We try two methods 

(i) Principal Component Analysis 

Principal Component Analysis (PCA) is a common statistical procedure to perform 

dimensionality reduction on data. We perform this on our dataset and find the following 

diagram 



 

 The PCA does not provide us with a clear classification at this stage, however since only 38% of 

the variability is expressed in the first two PC s we would not expect much, to have a finer 

perspective we use our next method 

(ii) Hierarchical Clustering 

We build a hierarchical cluster on the data using the hclust() function in R with complete 

linkage criterion to produce a hierarchical cluster tree. This can be viewed in the dendogram 

below 

  

We can see, that the data is mainly divided into two parts, before 2011 and after 2011. It also 

seems the years closer to 2008 are also closer. Current years ( 2015,2016,2017) are also close 

which is possibly a sign of instability in the current market. However data with more resolution 

should be used to concur something definite . 

 



Conclusion 

From our computations with comparison to the original paper - one thing was obvious the 2008 

meltdown had some say in the dynamics of the market, however it was not as strong a factor as 

it is in US market. Possibly pointing that the effect of the catastrophe was not as severe here. 

Most important thing from here would be to find data with more resolution (minute wise, 

possibly seconds) to have some definite conclusions. But it is evident that each company has 

times ot irreversibility and times of quasi reversibility, however there is very much similarity in 

the behaviour of similar companies such as banking ones. Some further research with more 

companies would also be ideal 

APPENDIX:  

The codes 

kld=function(p,q){ 

d=sum(p*log(p/q)) 

return(d) 

} 

 

data=read.csv("ge1.csv") 

 

price=data[,2] 

 

kld.ts=function(price){ 

adj.graph=matrix(0,ncol=length(price),nrow=length(price)) 

 

for (i in 1:length(price)){ 

for(j in i:length(price)){ 

if(j==(i+1))adj.graph[i,j]=1 

if((j-i) >1 ){ 

ll=max(price[i+1]:price[j-1]) 

if(ll< min(price[i],price[j]))adj.graph[i,j]=1 

} 

} 

} 

 

 



 

graph=graph_from_adjacency_matrix(adj.graph,mode="directed") 

 

d_in=degree(graph,1:length(price),mode="in") 

d_out=degree(graph,1:length(price),mode="out") 

 

h_in=as.numeric(names(table(d_in))) 

h_out=as.numeric(names(table(d_out))) 

 

k_in =numeric(max(h_in,h_out)) 

k_out =numeric(max(h_in,h_out)) 

 

for (i in 1:length(k_in)){ 

 

if(i %in% h_in )k_in[i]=table(d_in)[names(table(d_in))==i] 

 

else k_in[i]=1/((length(price))^2) 

 

 

 

 

} 

 

k_in=k_in/sum(k_in) 

 

 

for (i in 1:length(k_out)){ 

 

if(i %in% h_out )k_out[i]=table(d_out)[names(table(d_out))==i] 

 

else k_out[i]=1/((length(price))^2) 

 

} 



 

k_out=k_out/sum(k_out) 

 

return(kld(k_in, k_out)) 

} 
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