
Dependence of stock and commodity futures markets in India: 

implications for portfolio investment 

1. Introduction- 

In the last decade, India’s commodity futures markets have experienced brisk growth. Thus, it is 

expected to have a large impact on the pricing of other assets and the investor portfolio decisions. 

This study endeavors to analyze how the fast pace of growth in India’s commodity markets has been 

affected by the trends in its financial market. To this end, we examine the market co-movement 

between the commodity futures markets and stock markets in India. The information about the 

interdependence of commodity and stock markets is particularly relevant for investors because 

diversified portfolios may be composed of both commodities and stocks. 

Recent empirical evidence shows evidence of increased co-movement between the commodity and 

stock markets since both markets are underpinned by some common factors. Furthermore, unlike 

stocks, commodities can serve as an inflation hedge. For this reason, investors are interested in 

adding commodity futures to their portfolios with the aim of diversifying and reducing the downside 

risk. 

Empirically, the dependence relationship between stock and commodity markets has often been 

examined through assessing the correlation coefficient and using different multivariate models.Here, 

we plan to investigate the commodity-stock market dependence structure using copula 

functions.Many methods have been used before but this method is flexible since as it allows one to 

separately model the marginal behavior of the commodity and stock prices and the dependence 

structure. The study particularly analyzes the dependence structure between NIFTY50 and three 

commodity indices mentioned below.. The marginal distributions of asset returns for each index are 

modeled by an autoregressive moving average (ARMA) model with threshold GARCH (TGARCH) 

errors, whereas the market dependence is evaluated using different copula specifications. 

 COMDEX is an index which is a Composite commodity index. It has three subindices under it.The 

time span considered for the analysis is 17.09.2007 to 09.05.2016.Weekly data has been considered 

for the analysis. 

MCX COMDEX Commodity Weight (New) Group Adjusted Wts. 

MCX METAL INDEX 

Gold 15.16% 

40.0% 

Silver 4.07% 

Copper 7.56% 

Aluminum 2.87% 

Nickel 5.12% 

Zinc 3.09% 

Lead 2.13% 

MCX ENERGY INDEX 
Crude Oil 35.22% 

40.0% 
Natural Gas 4.78% 

MCX AGRI INDEX Cardamom 2.01% 20.0% 



Mentha Oil 3.89% 

Crude Palm Oil 6.32% 

Cotton 7.78% 

 

2. Methodology 

2.1 Copula functions 

Let Rs,t and Rc,t (c = Metal,grain and agriculture) be random variables denoting India’s stock 

and commodity sector futures returns, respectively, at time t. Moreover, let these assets’ 

conditional continuous cumulative distribution functions (CDFs) be Fs(Rs,t|yt–1) and Fc(Rc,t|yt–1), 

respectively, where yt–1 denotes all past return information for the corresponding assets. Sklar’s 

theorem states that the conditional joint distribution function G for Rs,t and Rc,t has a unique copula 

representation, C, such that:  
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Assuming all CDFs are differentiable, the joint density can be obtained as: 
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2  , with ut = Fs(Rs,t|ψt–1) and where vt = Fc(Rc,t|ψt–1) is the 

conditional copula density. Thus, the conditional bivariate density function, 
1, ,
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, is 

represented by the product of the copula density and the two conditional marginal densities fs,t (Rs,t 

|ψt-1) and fc,t(Rc,t |ψt–1). Accordingly, the log-likelihood function can be written as: 
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The parameters for the copula density and the marginal functions can be obtained by 

maximizing Eq. (3), using the two-step estimation procedure proposed by Joe (1997) called the 

inference for margins (IFM). This consists of first obtaining the marginal density parameters for both 

marginals via maximum likelihood and then using these estimates to obtain the copula parameters (

c
q ) by solving the following expression: 
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density parameters. 

Modeling dependence using copulas is appealing since copulas offer flexibility in modeling 

separately the marginals and dependence structure, given by the copula function. Furthermore, 

copula functions are invariant to monotonic transformations of the variables because they relate the 

quantiles of the marginal distributions rather than the original variables. Copulas also provide a 

more complete description of dependence, offering information on both average dependence and 

tail dependence. 

2.2 The marginal distribution model 

In order to capture the main features of the stock and commodity futures returns described in 

Table 1, we employ an ARMA(p,q)-TGARCH(r,m) model with Student-t distribution errors for the 

marginal distributions. Thus, for the stock or commodity returns, denoted by Rt, the marginal model 

is given by: 
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where t is the product of the conditional volatility and the innovation tz , 
t t tz  , such that: 
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Eq. (7) decomposes the return at time t into a constant, an innovation (εt,) and lags of Rt and 

εt, where ϕ and θ are the AR and MA parameters, respectively. Eq. (8) assumes that the 

standardized residuals follow the Student-t distribution, with v degrees of freedom. The leverage 

term in Eq. (9) is responsible for capturing the leverage effect, with It–j = 1 when εt–j is negative and It–

j = 0 otherwise. In addition, the order of the ARMA terms and the lag orders of the TGARCH model 

are all specified according to the Akaike information criterion (AIC). 

2.3 Bivariate Copulas 

To model the dependence structure, we consider different types of copula functions with 

symmetric and asymmetric tail behavior. First, we consider elliptical Gaussian and Student-t copulas 

which are usual choices for the market dependence structure. They are defined, respectively, as: 
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where Φ is the bivariate standard normal CDF with correlation ρ (-1 < ρ < 1); Φ–1(ut) and Φ–1(vt) are 

standard normal quantile functions; T is the bivariate Student-t CDF with degree-of-freedom 

parameter v  and correlation ρ (-1 < ρ < 1); and 1( )
v t

t u  and 1( )
v t

t v  are the quantile functions of the 

univariate Student-t distributions. Both copulas display symmetric dependence  

Second, we consider two other copulas with symmetric tail dependence, namely, the Plackett and 

the Frank copulas, specified, respectively, as: 
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where [0, ) \{1}    and ( , ) \{0}   . Both copulas display tail independence. 

Given that dependence may change under different market circumstances — in booms or 

bursts, for instance — we consider copula functions with asymmetric tail dependence structures. 

The Gumbel copula reflects upper tail dependence, whereas its rotation reflects lower tail 

dependence, given, respectively, by: 
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where (1, )   . We also consider the symmetrized Joe-Clayton (SJC) copula. It is given by: 
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market structure is symmetric, otherwise it is asymmetric. 

Results- 

NOTE: All the results are tabulated at 5 percent level of significance. 

First, we plot the data.The plot is as follows- 



Figure1- 

 

Figure 1 depicts the stock and commodity futures price dynamics throughout the sampling 

period.It can be seen that they exhibit similar behaviour. The black indicates the return for NIFTY50, 

violet for METAL, green for ENERGY and golden for AGRICULTURE. After this, the descriptive 

statistics are studied from the data. The reported statistics (Table 1) show that the return series are 

all skewed and exhibit excess kurtosis, indicating that those returns are not normally distributed. The 

highly significant Jarque-Bera statistics confirm the evidence of a non-normal distribution for 

returns. Meanwhile, the Ljung-Box statistics and the ARCH-Lagrange multiplier (LM) test suggest the 

presence of serial correlation and ARCH effects in returns. 

 

 

 

Table1-Descriptive statistics 

 NIFTY50 METAL ENERGY AGRICULTURE 

Mean 0.0004852  

 
0.0004579 

 
2.647e-05   

 
0.0002986 

 

Std dev 0.01406738 

 
0.01078335 

 
0.01885222 

 
0.01157467 

 

Max 0.0623500 

 
0.0337457 

 
7.941e-02   

 
0.0477852  

 

Min -0.0754600 

 
-0.0510021  

 
-9.276e-02 

 
-0.0912027 

 

Skewness -0.3845517 

 
-0.8574728 

 
-0.2775518 

 
-1.818419 

 

Kurtosis 3.442983 3.607287 2.577093 13.88361 



    

Jarque-bera 
statistic 

238.19(+) 304.83 

(+) 
133.34 

(+) 
3920.3 

(+) 

Ljung-box 0.085277(+) 

 
2.0081(+) 

 
0.1954(+) 

 
3.2845(+) 

 

ARCH-LM 91.49(+) 

 
32.448(+) 

 
89.848(+) 

 
1.6441(+) 

 

 

NOTE: (+) denotes that H0 is rejected 

Table 2 shows the Pearson linear correlation between the Indian stock market and the three 

commodity futures markets. The positive value indicates that the stock and commodity futures 

markets move together and in the same direction while negative value indicated opposite direction. 

Table2-Pearson’s Correlation coefficient 

 NIFTY50 METAL ENERGY AGRICULTURE 

NIFTY50 1 -0.004093025   -0.09536905 0.07387603 

 

METAL -0.004093025   

 
1 0.46835420 0.11688302 

ENERGY -0.095369048   0.468354199   1 0.08382863 

 

AGRICULTURE 0.073876030   

 
0.116883016   0.08382863 1 

 

Marginal model estimates- 

Different values of p,q,r and m are considered.The AIC for each of these models is very close. For 

NIFTY, ARMA(4,0)+GARCH(1,1) is considered, for METAL and ENERGY, ARMA(2,0)+GARCH(1,1) and 

for agriculture, ARMA(6,0)+GARCH(1,1) is considered. 

Model parameters of the marginal distribution- 

1.NIFTY50- 
Estimate  Std. Error  t value Pr(>|t|)     
mu      7.714e-04   5.197e-04    1.484  0.13769     
ar1     2.323e-02   4.849e-02    0.479  0.63189     
ar2     3.523e-02   4.897e-02    0.719  0.47185     
ar3    -5.379e-02   4.800e-02   -1.121  0.26242     
ar4     2.411e-02   4.846e-02    0.498  0.61873     
omega   2.924e-06   1.841e-06    1.588  0.11221     
alpha1  8.149e-02   2.511e-02    3.245  0.00117 **  
beta1   9.007e-01   2.902e-02   31.036  < 2e-16 *** 
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
 
Log Likelihood: 
 1346.8    normalized:  2.979647  
 
2.METAL 
 

Estimate           Std. Error   t value  Pr(>|t|)  
    
mu      4.237e-04   4.698e-04    0.902   0.3671     



ar1     6.210e-02   5.326e-02    1.166   0.2437     
ar2    -1.065e-03   5.118e-02   -0.021   0.9834     
omega   1.063e-05   6.769e-06    1.570   0.1163     
alpha1  9.036e-02   4.599e-02    1.965   0.0494 *   
beta1   8.178e-01   9.547e-02    8.565   <2e-16 *** 
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
 
Log Likelihood: 
 1425.737    normalized:  3.154286  
 
 
 
 
 
 
 
 
 
3.ENERGY 
 
Estimate  Std. Error  t value Pr(>|t|)   
   
mu      2.647e-04   6.996e-04    0.378  0.70522     
ar1     2.942e-02   4.868e-02    0.604  0.54560     
ar2    -5.607e-02   4.926e-02   -1.138  0.25499     
omega   8.068e-06   4.251e-06    1.898  0.05774 .   
alpha1  1.138e-01   2.943e-02    3.866  0.00011 *** 
beta1   8.662e-01   3.193e-02   27.125  < 2e-16 *** 
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
 
Log Likelihood: 
 1205.881    normalized:  2.667878  
 
4.AGRICULTURE 

Estimate  Std. Error  t value Pr(>|t|)     

mu      1.153e-03   5.802e-04    1.988  0.04686 *   
ar1     1.463e-01   6.219e-02    2.353  0.01865 *   
ar2     7.588e-02   6.308e-02    1.203  0.22900     
ar3    -3.167e-02   5.792e-02   -0.547  0.58454     
ar4    -7.834e-02   5.342e-02   -1.467  0.14247     
ar5    -1.526e-02   5.723e-02   -0.267  0.78969     
ar6     9.383e-03   4.814e-02    0.195  0.84547     
omega   2.531e-05   8.574e-06    2.952  0.00316 **  
alpha1  2.326e-01   7.624e-02    3.051  0.00228 **  
beta1   6.284e-01   7.518e-02    8.359  < 2e-16 *** 
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
 
Log Likelihood: 
 1390.709    normalized:  3.07679  

 

After this,it is important to check for the goodness of fit. The KS test is ued to test 

whether the marginal models are not misspecified and the copula model accurately captures the 



co-movement of Indian commodity futures and stock markets. KS test is performed to examine 

whether the probability integral transforms are uniform (0,1). 

 

 

KS test- 

p-value-for NIFTY50-  0.9541 

p-value-for Metal- 0.7321 

p-values-for Energy- 0.94784 

p-values-for agriculture- 0.96321 
 
Thus,H0 is rejected for all the above and we can conclude that the the pro
bability integral transform of the marginal distribution are uniform(0,1). 

 

After modelling the marginal distributions, the copula estimates can be calculated by the Maximum 

likelihood method. We need to choose the copula that most adequately represents the dependence 

structure between markets. This can be done by calculating the AIC value.  

 NSE,Energy  

 

 Rotated Gumbel 90 degrees (par = -1.05, tau = -0.05)  

 

 

  

 NSE and Metal are found to be independent 

 NSE , Agriculture  

Rotated Tawn type 1 180 degrees (par = 1.42, par2 = 0.09, tau =0.05) 

 



 

Appendix 

R codes 

library(readxl) 

library(readr) 

nif=read_csv("C:/Users/sony/Desktop/project/nifty.csv") 

MCXMETAL=read_excel("C:/Users/sony/Desktop/project/MCXMETAL.xlsx") 

MCXENERGY=read_excel("C:/Users/sony/Desktop/project/MCXENERGY.xlsx") 

MCXAGRI=read_excel("C:/Users/sony/Desktop/project/MCXAGRI.xlsx") 

MCXMETAL=as.matrix(MCXMETAL) 

MCXENERGY=as.matrix(MCXENERGY) 

MCXAGRI=as.matrix(MCXAGRI) 

metal=as.numeric(MCXMETAL[,8]) 

energy=as.numeric(MCXENERGY[,8]) 

agri=as.numeric(MCXAGRI[,8]) 

nift=as.matrix(nif) 

nift 

nifty=as.numeric(nift[,9]) 

n=length(nifty) 

n 

nifty 

m=length(metal) 

m 

#nifty data is in reverse order,thus correction- 



nse=numeric(n) 

j=1 

for(i in 1:n) 

{ 

  nse[i]=nifty[n-j+1] 

  j=j+1 

} 

nse 

 

 

 

###data is daily,we do time aggregation to make it weekly 

m=length(metal) 

me=numeric(n) 

en=numeric(n) 

ag=numeric(n) 

k=1 

for(i in 1:n) 

{ 

  j=1 

  sum1=0 

  sum2=0 

  sum3=0 

  while(j<7) 

  { 

    sum1=sum1+metal[k] 

    sum2=sum2+energy[k] 

    sum3=sum3+agri[k] 

    j=j+1 

    k=k+1 

  } 

  me[i]=sum1 

  en[i]=sum2 

  ag[i]=sum3 



} 

dat=cbind(nse,me,en,ag) 

nrow(dat) 

ncol(dat) 

#plot of the data-figure 1 

plot.new() 

plot(nse,type="l",lwd=2,ylab="nifty50/metal/energy/agri") 

lines(me,col="mediumvioletred",lwd=2.5) 

lines(en,col="green4",lwd=1.5) 

lines(ag,col="gold4",lwd=2) 

#legend(350,-0.02,legend=c("violet-metal","green-energy","golden-agriculture")) 

library(timeDate) 

summary(dat) 

sd(nse) 

skewness(nse) 

kurtosis(nse) 

sd(me) 

skewness(me) 

kurtosis(me) 

sd(en) 

skewness(en) 

kurtosis(en) 

sd(ag) 

skewness(ag) 

kurtosis(ag) 

 

#jarque bera test for testing normality 

library(tseries) 

jarque.bera.test(nse) 

jarque.bera.test(me) 

jarque.bera.test(en) 

jarque.bera.test(ag) 

 

#L-jung box test for correlation 



Box.test(nse, lag = 1, type = "Ljung-Box") 

Box.test(me, lag = 1, type = "Ljung-Box") 

Box.test(en, lag = 1, type = "Ljung-Box") 

Box.test(ag, lag = 1, type = "Ljung-Box") 

 

#ARCH LM test for autoregressive conditional heteroschedasticity 

library(FinTS) 

ArchTest(nse) 

ArchTest(me) 

ArchTest(en) 

ArchTest(ag) 

 

cor(dat,method="pearson") 

 

##finding p,q,r and m for the ARMA-GARCH model 

library(fGarch) 

ar=matrix(0,5,5)  

gar=matrix(0,5,5) 

 

##to find min aic,below formula is executed for different p,q,r and m and the values with 

min aic are chosen 

ar[3,3]=garchFit(formula=~arma(4,2)+garch(1,1),data=nse)@fit$ics[1] 

##aic values 

garchFit(formula=~arma(4,0)+garch(1,1),data=nse)@fit$ics[1] 

garchFit(formula=~arma(2,0)+garch(1,1),data=me)@fit$ics[1] 

garchFit(formula=~arma(2,0)+garch(1,1),data=en)@fit$ics[1] 

garchFit(formula=~arma(6,0)+garch(1,1),data=ag)@fit$ics[1] 

 

 

a=garchFit(formula=~arma(4,0)+garch(1,1),data=nse) 

b=garchFit(formula=~arma(2,0)+garch(1,1),data=me) 

c=garchFit(formula=~arma(2,0)+garch(1,1),data=en) 

d=garchFit(formula=~arma(6,0)+garch(1,1),data=ag) 

x=quantile(ecdf(nse),probs=seq(0,1,0.01)) 



ks.test(x,punif) 

y=quantile(ecdf(me),probs=seq(0,1,0.01)) 

ks.test(y,punif) 

z=quantile(ecdf(en),probs=seq(0,1,0.01)) 

ks.test(z,punif) 

 

uv=quantile(ecdf(ag),probs=seq(0,1,0.01)) 

ks.test(uv,punif) 

library(QRM) 

sig=cor(cbind(nse,me)) 

summary(fit.tcopula(cbind(nse,me),2, method ="Spearman")) 

summary(fit.tcopula(cbind(nse,me), method ="Spearman")) 

 

##modelling the copulae 

library(copula) 

library(VineCopula) 

u <-pobs(nse) 

v <- pobs(en) 

cop.en.nse<- BiCopSelect(u,v,familyset=NA) 

cop.en.nse 

persp(r90GumbelCopula(par = -1.05),dCopula) 

 

 

u <-pobs(nse) 

v <- pobs(ag) 

cop.ag.nse<- BiCopSelect(u,v,familyset=NA) 

cop.ag.nse 

persp( tawnT1Copula(param = c(1.42, 0.09)),dCopula) 

 

u <-pobs(nse) 

v <- pobs(me) 

cop.me.nse<- BiCopSelect(u,v,familyset=NA) 

cop.me.nse 

 



Data :    Attached 

 

 

 

 

 

 

 

 


