INDIAN STATISTICAL INSTITUTE
 M.STAT Second Year
 2017-18 Semester II

Computational Finance
Midterm Examination

Points for each question is in brackets. Total Points 100.
Students are allowed to bring 2 pages (one-sided) of hand-written notes
Duration: 3 hours

1. $(5+15+10)$ The objective of this problem is to show that Binomial Option pricing formula with

$$
u=e^{\sigma \sqrt{\Delta t}}, d=1 / u \quad \text { and } \quad p=\frac{e^{r \Delta t}-d}{u-d}
$$

approximately solves the BS equation as $\Delta t \rightarrow 0$ and to find the Binomial option price numerically.
(a) Write down the relationship induced by no arbitrage, between prices of an option at time t and $t+\Delta t$, in the single period Binomial model.
(b) Use Taylor expansion and take limit at $\Delta t \rightarrow 0$ to show that the relationship in (a) leads to the Black Scholes PDE.
(c) Write a program to implement the Binomial model above to price a CALL option. The inputs are the asset price S_{0}, the strike price K, the riskless interest rate r, the current time t and the maturity time T, the volatility σ, and the number of steps n.
2. (10) Show that for estimating $E[f(Z)]$ based on an antithetic pair $(Z,-Z)$, where $Z \sim \mathcal{N}(0, I)$, antithetic sampling eliminates all variance if f is antisymmetric.
3. (10) Describe the Mersenne twister random number generator algorithm.
4. (15) Obtain the price of a geometric average PUT option analytically when the underlying STOCK follows geometric Brownian motion.
5. $(10+10)$ Let f be a twice continuously differentiable function on $[a, b]$. Suppose $f(x)=P_{1}(x)+E(x)$, where P_{1} is the polynomial of degree one in the trapezoid rule. Show that $|E(x)| \leq f^{\prime \prime}(\xi) *(x-a)(x-b) / 2$ with $\xi \in(a, b)$. Assume that $\left|f^{\prime \prime}\right| \leq M$ is bounded. Then show that $\left|\int_{a}^{b} E(x) d x\right| \leq=M / 12(b-a)^{3}$.
6. $(5+10)$ Consider the random vector $\left(Y_{1}, Y_{2}, Y_{3}\right)$ with expectation $\left(\theta_{1}, \theta_{1}+\theta_{2}, \theta_{2}\right)$, $\operatorname{var}\left(Y_{i}\right)=1, i=1,2,3, \operatorname{cov}\left(Y_{i}, Y_{j}\right)=-1 / 2$, for $i \neq j$. The objective is to estimate θ_{1}. One unbiased estimator is Y_{1}. Use the idea of control variates to propose another estimator and compare the number of simulations required for the same degree of accuracy. [It is assumed that one simulation is generation of one observation from the joint distribution of $\left(Y_{1}, Y_{2}, Y_{3}\right)$ and takes the same computational effort at generating one observation from the marginal distribution of Y_{1}.].

