INDIAN STATISTICAL INSTITUTE M.STAT Second Year 2017-18 Semester II

Computational Finance Midterm Examination

Points for each question is in brackets. Total Points 100. Students are allowed to bring 2 pages (one-sided) of hand-written notes Duration: 3 hours

1. (5+15+10) The objective of this problem is to show that Binomial Option pricing formula with

 $u = e^{\sigma\sqrt{\Delta t}}, d = 1/u$ and $p = \frac{e^{r\Delta t} - d}{u - d}$

approximately solves the BS equation as $\Delta t \to 0$ and to find the Binomial option price numerically.

- (a) Write down the relationship induced by no arbitrage, between prices of an option at time t and $t + \Delta t$, in the single period Binomial model.
- (b) Use Taylor expansion and take limit at $\Delta t \rightarrow 0$ to show that the relationship in (a) leads to the Black Scholes PDE.
- (c) Write a program to implement the Binomial model above to price a CALL option. The inputs are the asset price S_0 , the strike price K, the riskless interest rate r, the current time t and the maturity time T, the volatility σ , and the number of steps n.
- 2. (10) Show that for estimating E[f(Z)] based on an antithetic pair (Z, -Z), where $Z \sim \mathcal{N}(0, I)$, antithetic sampling eliminates all variance if f is antisymmetric.
- 3. (10) Describe the Mersenne twister random number generator algorithm.
- 4. (15) Obtain the price of a geometric average PUT option analytically when the underlying STOCK follows geometric Brownian motion.
- 5. (10+10) Let f be a twice continuously differentiable function on [a, b]. Suppose $f(x) = P_1(x) + E(x)$, where P_1 is the polynomial of degree one in the trapezoid rule. Show that $|E(x)| \leq f''(\xi) * (x-a)(x-b)/2$ with $\xi \in (a,b)$. Assume that $|f''| \leq M$ is bounded. Then show that $|\int_a^b E(x)dx| \leq M/12(b-a)^3$.
- 6. (5+10) Consider the random vector (Y_1, Y_2, Y_3) with expectation $(\theta_1, \theta_1 + \theta_2, \theta_2)$, var $(Y_i)=1$, i = 1, 2, 3, cov $(Y_i, Y_j)=-1/2$, for $i \neq j$. The objective is to estimate θ_1 . One unbiased estimator is Y_1 . Use the idea of control variates to propose another estimator and compare the number of simulations required for the same degree of accuracy. [It is assumed that one simulation is generation of one observation from the joint distribution of (Y_1, Y_2, Y_3) and takes the same computational effort at generating one observation from the marginal distribution of Y_1 .].