
Computational Finance

July 31, 2020

Syllabus

1. Numerical methods relevant to integration, differentiation and solving the par-
tial differential equations of mathematical finance: examples of exact solutions
including Black Scholes and its relatives, finite difference methods including
algorithms and question of stability and convergence, treatment of near and
far boundary conditions, the connection with binomial models, interest rate
models, early exercise, and the corresponding free boundary problems, and a
brief introduction to numerical methods for solving multi-factor models.

2. Simulation including random variable generation, variance reduction methods
and statistical analysis of simulation output. Pseudo random numbers, Lin-
ear congruential generator, Mersenne twister RNG. The use of Monte Carlo
simulation in solving applied problems on derivative pricing discussed in the
current finance literature. The technical topics addressed include importance
sampling, Monte Carlo integration, Simulation of Random walk and approxi-
mations to diffusion processes, martingale control variables, stratification, and
the estimation of the “Greeks. ” Application areas include the pricing of Amer-
ican options, pricing interest rate dependent claims, and credit risk. The use
of importance sampling for Monte Carlo simulation of VaR for portfolios of
options.

3. Statistical Analysis of Financial Returns: Fat-tailed and skewed distributions,
outliers, stylized facts of volatility, implied volatility surface, and volatility
estimation using high frequency data.

4. Advanced topics: Estimating VaR and Expected Shortfall, Exact and boot-
strap confidence intervals, Extreme value theory methods for risk management,
fitting copulas to data.
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Reference Texts:

1. P. Glasserman, Monte Carlo Methods in Financial Engineering

2. D. Ruppert, Statistics and Data Analysis for Financial Engineering

3. R. Carmona: Statistical Analysis of Financial Data in S-Plus

4. N. H. Chan, Time Series: Applications to Finance

5. R. S. Tsay, Analysis of Financial Time Series

6. J. Franke, W. K. Hardle and C. M. Hafner, Statistics of Financial Markets: An
Introduction

7. Kerry Back: A course in derivative securities

General instructions

• Bring laptops to class.

• HW0: revise your R skills.

• Final will be cumulative.

• 5% of score is on class involvement including attendance.

• My email is rsen@isichennai.res.in and phone no is 9176620249. Please email
me unless it is a very urgent situation.
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Numerical Methods

Preliminaries

• Algorithm: convergence

• Error: Discretization, truncation, rounding

• Well/Ill conditioned problems

Finding Roots of a function

• Application: Find Implied Volatility

• Definition of Implied Volatility

• Program in R to calculate Black-Scholes price of European option (blackscholes)

• Bisection Algorithm

• Program in R to calculate Implied Volatility using bisection (impliedbisect)

• Check the ”no-arbitrage” condition and display an error message when this is
violated.

• Inputs: all parameters of blackscholes other than σ, C and error tolerance.

• Newton-Raphson

• Update with vega

• Secant Method
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1 Preliminaries

1.1 Algorithms

An algorithm is a set of instructions to construct an approximate solution to a math-
ematical problem.
A basic requirement for an algorithm is that the error can be made as small as we
like.
Usually, the higher the accuracy we demand, the greater is the amount of computa-
tion required.
An algorithm is convergent if it produces a sequence of values which converge to the
desired solution of the problem.
Example Given c > 1 and ε > 0, use the bisection method to seek an approximation
to
√
c with error not greater than ε.

Find x =
√
c, c > 1 constant.

Answer: x =
√
c ⇐⇒ x2 = c ⇐⇒ f(x) := x2 − c = 0

⇒ f(1) = 1− c < 0 and f(c) = c2 − c > 0
⇒ ∃x0 ∈ (1, c)s.t.f(x0) = 0
f ′(x) = 2x > 0, f monotonically increasing. So x0 is unique.
Denote In := [an, bn] with I0 = [a0, b0] = [1, c]
Let xn := (an + bn)/2.

• If f(xn) = 0 then x0 = xn.

• If f(an)× f(xn) > 0 then x0 ∈ (xn, bn), let an+1 := xn, bn+1 := bn.

• If f(an)× f(xn) < 0 then x0 ∈ (an, xn), let an+1 := an, bn+1 := xn.

Length of In : m(In) = 1/2m(In−1) = · · · = 1/2nm(I0) = (c− 1)/2n

Algorithm stops if m(In) < ε and let x0 := xn.
Error as small as we like?
x0, x∗ ∈ In error |x0 − x ∗ | ≤ m(In)→ 0 as n→∞.

1.2 Errors

There are various errors in computed solutions, such as

• discretization error (discrete approximation to continuous systems),

• truncation error (termination of an infinite process), and

• rounding error (finite digit limitation in computer arithmetic).
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If a is a number and ã is an approximation to a, then the absolute error is |a − ã|
and the relative error is |a− ã|/|a| provided a 6= 0.
Example: Discuss sources of errors in deriving the numerical solution of the non-
linear differential equation x′ = f(x) on the interval [a, b] with initial condition
x(a) = x0.
discretization error
x′ = f(x) [differential equation]
(x(t+ h)− x(t))/h = f(x(t)) [difference equation]
DE =| (x(t+ h)− x(t))/h− x′(t) |
truncation error limn→∞xn = x, approximate x with xN , N a large number.
TE = | x− xN |
rounding error We cannot express x exactly, due to finite digit limitation. We get x̂
instead.
RE = |x− x̂|
Total error = DE + TE + RE.

1.3 Well/Ill conditioned problems

A problem is well-conditioned (or ill-conditioned) if every small perturbation of the
data results in a small (or large) change in the solution.
Example: Show that the solution to equations x + y = 2 and x + 1.01y = 2.01 is
ill-conditioned.
x+ y = 2, x+ 1.01y = 2.01⇒ x = 1, y = 1
Change 2.01 to 2.02
x+ y = 2, x+ 1.01y = 2.02⇒ x = 0, y = 2
I.e. 0.5% change in data produces 100% change in solution: ill-conditioned !
reason: det(1 1 1 1.01)= 0.01, nearly singular.
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2 Finding Roots of a function

Application: Find Implied Volatility
Let C denote the market price of a European Call option. The implied volatility σ
satisfies

Black Scholes Call(S,K, r, T, σ, 0)− C = 0 (1)

blackscholes <- function(S, X, rf, T, sigma, CallPut)

Bisection Algorithm
Start with upper and lower bounds for σ and repeatedly bisect the interval contain-
ing σ, each time finding a new upper and lower bound.
First we need to check the ”no-arbitrage” condition C + e−rTK ≥ S and display an
error message when this is violated.
Inputs: all parameters of Black Scholes Call other than σ, C and error tolerance.

implied_bisect <- function(S, X, rf, T, CallPut, price, tol, cond)

Newton-Raphson
Faster root-finding algorithm than bisection.
General Newton-Raphson update

x1 = x0 − f(x0)/f
′(x0) (2)

. This amounts to approximating the function as being linear and using the root of
the approximation as the updated guess. In case of Option Prices, the derivative of
the option price with respect to volatility is called vega. For the European option
price under the Black-Scholes model this equals

ν = S
√

(T )φ(d1) (3)

where φ is the normal pdf.
So updated statement is

guess=guess-call/vega

Secant Method
A similar idea that does not require the computation of derivative is to keep track
of two most recent (x,f(x)) and use the difference quotient.

vega=(call-prior_call)/(guess-prior_guess)
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Program for
computing Black-Scholes option price

blackscholes <- function(S, X, rf, T, sigma, CallPut) {

#CallPut is 0 for Call and 1 for Put

d1 <- (log(S/X)+(rf-sigma^2/2)*T)/(sigma*sqrt(T))

d2 <- d1 - sigma * sqrt(T)

if(CallPut == 0)

value<- max(S*pnorm(d1) - X*exp(-rf*T)*pnorm(d2), 0)

else

value<- max(X*exp(-rf*T) * pnorm(-d2) - S*pnorm(-d1), 0)

return(value)

}

Program for computing implied volatility by bisection method

implied_bisect <- function(S, X, rf, T, CallPut, price, tol, cond) {

#cond=1 if upper-lower is used for tolerence, otherwise abs(fguess) is used for tolerence

if(CallPut==0 && price<S-X*exp(-rf*T)|| CallPut!=0 && price<X*exp(-rf*T)-S)

guess=0

else

#finding the upper bound

lower=0

flower=blackscholes(S, X, rf, T,lower,CallPut)- price

upper=1

fupper=blackscholes(S, X, rf, T,upper,CallPut)- price
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while(flower*fupper>0){

upper=upper*2

fupper=blackscholes(S, X, rf, T,upper,CallPut)- price}

#updating to bisected interval

guess=0.5*(upper+lower)

fguess=blackscholes(S, X, rf, T,guess,CallPut)- price

if (cond==1)

while(upper-lower>tol){

if(fguess*flower<0)

upper=guess

else

lower=guess

end

flower=blackscholes(S, X, rf, T,lower,CallPut)- price

fupper=blackscholes(S, X, rf, T,upper,CallPut)- price

guess=0.5*(upper+lower)

fguess=blackscholes(S, X, rf, T,guess,CallPut)- price}

else

while(abs(fguess)>tol){

if(fguess*flower<0)

upper=guess

else

lower=guess

end

flower=blackscholes(S, X, rf, T,lower,CallPut)- price

fupper=blackscholes(S, X, rf, T,upper,CallPut)- price

guess=0.5*(upper+lower)

fguess=blackscholes(S, X, rf, T,guess,CallPut)- price}

end

end

return(guess)

}

Homework 1 Write the program for computing implied volatility using Newton
Raphson and Secant methods.
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3 Numerical Integration

3.1 Motivation

Numerical integration is a standard topic in numerical analysis. Classical approaches
to numerical integration based on quadrature formulas are deterministic.

We have seen that option pricing requires computing an expected value under a
risk-neutral measure, but an expected value is actually an integral.

The expected value of a function g(.) of a random variable X with probability
density fX(x) is

∫∞
−∞ g(x)fX(x)dx. In really simple cases, we may find an analytical

solution, like in the Black- Scholes case.

If the random variable X is a scalar, classical deterministic methods work quite
well. When expectation is taken with respect to a random vector and we must inte-
grate over a high-dimensional space, random sampling may be necessary. We shall
see these in the simulation chapter as Monte-Carlo methods.

Numerical integration may be implicitly used to estimate probabilities. If A
is an event which may occur or not depending on a random variable X, then
P (A) =

∫∞
−∞ IA(x)fX(x)dx, where IA(x) is the indicator function for event A (taking

the value 1 if A occurs when X = x, 0 otherwise). When A is a rare event, clever
strategies are needed to get an accurate estimate with a reasonable computational
effort.

Finally, there are situations in which we define a function by an integral. A typical
case is the expected value of a function depending on a control variable (modeling
our decisions) and a random variable (modeling what we cannot control)

H(z) = E(g(X, z)) =

∫ ∞
−∞

g(x, z)fX(x)dx

This is quite common in stochastic optimization and dynamic programming, whereby
we want to find a maximizer (or minimizer) of H(z) , and this calls for a suitable
approximation of H by discretization of the continuous distribution. In other words,
we want to generate a discrete set of scenarios yielding a reasonable approximation
of the underlying uncertainty. Numerical methods such as Gaussian quadrature are
helpful here.
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3.2 Introduction

Consider the problem of approximating the value of a definite integral like

I[f ] =

∫ b

a

f(x)dx

over a bounded interval [a, b] for a function f of a single variable. Since the integration
is a linear operator, it is natural to look for an approximation preserving this property.
Using a finite number of values of f over a set of nodes xj such that a = x0 < x1 <
· · · < xn = b, we may define a quadrature formula such as

Q[f ] =
n∑
j=0

wjf(xj)

A quadrature formula is characterized by the weights wj and by the nodes xj. To
be precise, a quadrature formula like the one we are describing is called a closed
formula, since evaluation of the function in the extreme points of the interval is
used. Sometimes, open formulas are used when the function is not well-behaved
near a or b, or when we are integrating on an infinite interval. Any quadrature
formula is characterized by a truncation error:

E = I[f ]−Q[f ]

A reasonable requirement is that the error should be zero for sufficiently simple
functions such as polynomials. We may define the order of a certain quadrature
formula as the maximum degree m such that the truncation error is zero for all the
polynomials of degree n or less. In other words, if the original function is substituted
by an interpolating polynomial, we should not commit any error in integrating the
polynomial.

3.3 Classical interpolatory formulas

One way to derive quadrature formula is to consider equally spaced nodes:

xj = a+ jh, j = 0, 1, 2, · · · , n

where h = (b− a)/n ; also let fj = f(xj). Selecting equally spaced nodes yields the
set of Newton-Cotes quadrature formulas.

Given those n + 1 nodes, we may consider the interpolating polynomial Pn(x)
using Lagrange polynomials of degree n.

For a given set of distinct points xj and numbers fj, the Lagrange polynomial
is the polynomial of lowest degree that assumes at each point xj the corresponding
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value fj. Given a set of n+ 1 data points ((x0, f0), · · · , (xn, fn)) where no two xj are
the same, the interpolation polynomial in the Lagrange form is a linear combination

Pn(x) :=
n∑
j=0

fj`j(x)

of Lagrange basis polynomials

`j(x) :=
∏

0≤m≤n
m 6=j

x− xm
xj − xm

=
(x− x0)
(xj − x0)

· · · (x− xj−1)
(xj − xj−1)

(x− xj+1)

(xj − xj+1)
· · · (x− xn)

(xj − xn)
,

where 0 ≤ j ≤ n.
Then we may compute the correct weights as follows:∫ b

a

f(x)dx ≈
∫ b

a

Pn(x)dx =

∫ b

a

n∑
j=0

fj`j(x)dx =
n∑
j=0

fj[

∫ b

a

`j(x)dx] =
n∑
j=0

wjfj

3.3.1 Trapezoidal rule

Consider the case of two nodes only, x0 = a and x1 = b. Here we are just interpolating
f by a straight line:

P1(x) = f0
(x− x1)
(x0 − x1)

+ f1
(x− x0)
(x1 − x0)

. (4)

A straightforward calculation yields
∫ x1
x0
P1(x) = h(f1+f0

2
). Actually, what we are

saying is that we may approximate the area below the function using trapezoidal
elements and the formula above gives the area of one element. Applying the idea to
more subintervals, we get the trapezoidal rule:

Q[f ] = h(
1

2
f0 +

n−1∑
j=1

fj +
1

2
fn). (5)

Given any quadrature formula for an interval: we may get a composite formula by
applying the same pattern to small subintervals of a large one.

3.3.2 Simpson’s Rule

A quadrature formula based on n+ 1 nodes is by construction exact for polynomials
of degree n. We may go the other way around, and build a formula by requiring a
certain order. Consider the case∫ 1

0

f(x)dx = w0f(0) + w1f(0.5) + w2f(l),

11



and say we want a formula that is exact for polynomials of degree ≤ 2. Having fixed
the nodes, we may find the weights by solving the system of linear equations:

1 =

∫ 1

0

1dx = w0 + w1 + w2

1/2 =

∫ 1

0

xdx = 1/2w1 + w2

1/3 =

∫ 1

0

x2dx = 1/4w1 + w2

which yields wo = 1/6, w1 = 2/3, w2 = 1/6. Applying the same idea on the interval
[a, b] , we get Simpson’s rule:∫ b

a

f(x)dx =
b− a

6
(f(a) + 4f(

a+ b

2
) + f(b))

Simpson’s rule may be applied to subintervals of (a, b) in order to get a composite
formula.

3.4 Gaussian Quadrature

In Newton-Cotes formulas we fix nodes and try to find suitable weights so that
the order of the formula is as large as possible. The rationale behind Gaussian
quadrature is that if we do not fix nodes a priori, we essentially double the degrees
of freedom, in such a way that the order can be more or less doubled. Furthermore,
Gaussian quadrature formulas are developed with respect to a non-negative weight
function w(x). We look for a quadrature formula like

∫ b
a
w(x)f(x) =

∑n
i=1wif(xi)

which is exact when f is a polynomial. The weight function w(x) can be used to
encapsulate undesired singularities of the integrand function. We will only outline
the development of Gauss-Hermite quadrature, where w(x) = e−x

2
.

Now, how should we select the nodes and weights in in order to get a quadrature
formula with maximum order. We should choose as nodes the n roots of a polynomial
of order n, selected within a family of orthogonal polynomials with respect to the
inner product:

< f, g >=

∫ b

a

w(x)f(x)g(x)dx.

It can be shown that a polynomial of degree k within that family has k distinct
real roots. Furthermore, these roots are interleaved, in the sense that each of the
k − 1 roots of the polynomial of degree k − 1 lies in an interval defined by a pair of
consecutive roots of the polynomial of degree k . Using this choice of nodes, along
with a proper choice of weights, yields a quadrature formula with order 2n− 1.
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To see this, consider a polynomial q ∈ Πn, i.e., a polynomial of degree n, which
is orthogonal to all polynomials in Πn−l.

Any polynomial f ∈ Π2n−1 can be divided by q, obtaining a quotient p and a
remainder r : f = qp+r, where p, r ∈ Πn−l. Now let us integrate wf by a quadrature
formula on n nodes xi, i = 1, · · · , n, which are the zeros of q:

∫ b
a
w(x)f(x)dx

=

∫ b

a

w(x)p(x)q(x)dx+

∫ b

a

w(x)r(x)dx

= 0 +

∫ b

a

w(x)r(x)dx (q is orthogonal to p)

=
n∑
i=1

wir(xi) (quadrature is exact for r ∈ Πn−1)

=
n∑
i=1

wif(xi) (xi is zero of q)

A family of orthogonal polynomials pj(x) may be built by the following procedure:

p0(x) = 1

pj+1(x) = (x− aj)pj(x)− bj(pj−1(x), j = 0, 1, 2, · · ·

where aj =
< xpj, pj >

< pj, pj >

bj =
< pj, pj >

< pj−1, pj−1 >

Here coefficient b0 is arbitrary and it can be set to 0. At each step, the procedure
generates a new polynomial of degree one plus the degree of the previous polynomial.
In the end, we have a family of orthogonal polynomials, one for each degree. Actually
there are different choices of normalizations yielding different families of polynomials.

In the Gauss-Hermite case, whereby w(x) = e−x
2
, applying the procedure above

results in the following recursive procedure yielding a sequence of Hermite polyno-
mials: Hj+l = 2xHj − 2jHj−1.

3.5 Applications

Tauchen, George, and Robert Hussey. ”Quadrature-based methods for obtaining
approximate solutions to nonlinear asset pricing models.” Econometrica: Journal of
the Econometric Society (1991): 371-396.
The paper develops a discrete state space solution method for a class of nonlinear
rational expectations models. These models rarely admit explicit solutions.
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As part of a larger study of monetary velocity in cash-in-advance models, Hodrick,
Kockerlakota, and Lucas (1989) calibrate a Markov chain model for bivariate money
growth and consumption growth. They find that with sixteen states of nature the
Markov chain can adequately approximate a VAR(1) model fitted to annual data.
Boudoukh and Whitelaw (1988), who use the quadrature technique and related ideas
to study the pricing of mortgage-backed securities and American options. Though
their securities have a particularly complicated path-dependent cash flow, in test
cases they get very close approximations to exact solutions with state spaces as
small as three points.
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4 Basics of Mathematical Finance

4.1 Risk-Neutral Measure

Single Period Market: Consider a market in whichK assets, labeledA1, A2, · · · , AK ,
are freely traded. Assume that one of these, say A1, is riskless, that is, its value at
time t = 1 does not depend on the market scenario. The share price of asset Aj at
time t = 0 is Sj0; without loss of generality, we may assume that S1

0 = 1. Uncertainty
about the behavior of the market is encapsulated in a finite set of N possible market
scenarios, labeled ω1, ω2, · · · , ωN . The share prices S2

1 , S
3
1 , · · · , SK1 of the K−1 assets

at time t = 1 are functions of the market scenario.
Observe that, since asset A1 is riskless, there is a constant r, called the riskless

rate of return, such that the share price S1
1 of A1 in any scenario ωi is

S1
1(ωi) = er∀ i = 1, 2, · · · , N. (6)

Definition 1. A portfolio is a vector θ = (θ1, θ2, · · · , θK) ∈ RK of K real numbers.
The entry θj represents the number of shares of asset Aj that are owned; if θj < 0
then the portfolio is said to be short | θj | shares of asset Aj .

The value of the portfolio θ at time t = 0 is

V0(θ) =
K∑
j=1

θjS
j
0 (7)

and the value of the portfolio θ at time t = 1 in market scenario ωi is

V1(θ;ωi) =
K∑
j=1

θjS
j
1(ωi). (8)

Definition 2. An arbitrage is a portfolio θ that “makes money from nothing”,
formally, a portfolio θ such that either

V0(θ) ≤ 0 and V1(θ;ω) > 0∀ i = 1, 2, · · · , N (9)

OR V0(θ) < 0 and V1(θ;ωj) ≥ 0∀ i = 1, 2, · · · , N (10)

Definition 3. A probability distribution πi = π(ωi) on the set of possible market
scenarios is said to be an equilibrium measure (or risk-neutral measure) if,
for every asset A, the share price of A at time t = 0 is the discounted expectation,
under π, of the share price at time t = 1, that is, if

Sj0 = e−r
N∑
i=1

π(ωi)S
j
1(ωi)∀ j = 1, 2, · · · , K. (11)
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4.2 Fundamental Theorems of Asset Pricing

Theorem 1. (First Fundamental Theorem of Arbitrage Pricing) There exists an
equilibrium measure if and only if arbitrages do not exist.

The first implication is easy to prove. Suppose that there is an equilibrium
measure π. Then for any portfolio θ, the portfolio values at time t = 0 and t = 1 are
related by discounted expectation:

V0(θ) =
N∑
i=1

π(ωi)e
−rV (θ;ωi). (12)

(To see this, just multiply equation (11) by θj , sum on j, and use the definitions of
portfolio value in (7)-(8) above.) If V (θ;ωi) > 0 for every market scenario ωi (as must
be the case for an arbitrage portfolio), then equation (12) implies that V0(θ) > 0,
and so θ cannot be an arbitrage. Thus, arbitrages do not exist.

The second implication, that absence of arbitrages implies the existence of an
equilibrium measure, is harder to prove and we shall skip it. The main ingredient is
the Separating Hyperplane Theorem.

Example: The Call Option Let us consider the pricing of the European call
option on an asset Stock. The strike price is K, and so the terminal value of the
option is given by

V1 = (S1 −K)+ = S1 −K if S1 ≥ K (13)

= 0 if S1 < K. (14)

Two-Scenario Market: There are two possible market scenarios, ω1, ω2. The
value of one share of Stock at time 1 is S1(ωi) = di in scenario ωi, with d1 < d2. The
riskless rate of return is r. By the fundamental theorem, in an arbitrage-free market,
there is a probability distribution π on the two scenarios that determines prices by
discounted expectation, and so, in particular,

S0 = π(ω1)e
−rd1 + π(ω2)e

−rd2. (15)

Because there are only two market scenarios, equation (15) uniquely determines the
equilibrium measure π ( note that π is a probability measure, so adds up to one):

π(ω1) = (d2 − S0e
r)/(d2 − d1), (16)

π(ω2) = (S0e
r − d1)/(d2 − d1). (17)

Finally, if the call option is to be freely traded, and if the market is to remain
arbitrage-free, then its value at time t = 0 is also determined by discounted expec-
tation. Since there is only one possible equilibrium measure, as in the last displayed
equations, the value of the call at time t = 0 is

V0 = π(ω2)(d2 −K). (18)
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Three-Scenario Market: Consider now the pricing of the call option with strike
K in the three-scenario market discussed earlier. If the only freely traded assets in
the market were Stock and MoneyMarket, then the pricing formulas (11) would not
uniquely determine the equilibrium distribution π, because formulas (11) provide
only two equations in three unknowns. Thus, any probability distribution (π1, π2, π3)
on the three scenarios such that S0e

r = d1π1 + d2π2 + d3π3 would be allowable as an
equilibrium measure. Call the set of all such probability distributions Π. Then any
element π ∈ Π such that

v = e−r(p2(d2 −K)+ + p3(d3 −K)) (19)

holds would be an equilibrium measure for the enlarged market in which the freely
traded assets are Stock, MoneyMarket, and Call, where Call is the call option on
Stock with strike K, provided the t = 0 price of Call is given by (19). By the
Fundamental Theorem, any such market is arbitrage-free.

Definition 4. Suppose the freely traded assets in a market are A1, · · · , Ak. A
derivative security is a tradeable asset whose value V1 at time t = 1 is a function
V (ωi) of the market scenario. In the language of probability, it is a random variable
measurable on the sigma field generated by the asset prices.

Definition 5. Consider a market with freely traded assets A1, · · · , Ak and B. A
portfolio θ in A1, · · · , Ak is replicating portfolio for B if

SB1 (ωi) =
K∑
i=1

θjS
j
1(ωi) ∀i = 1, · · · , N (20)

Replicating portfolios enable financial institutions that sell asset B to hedge by
using the following strategy. For each share of B sold, buy θj shares of asset Aj ad
hold till time t = 1. Then at time t = 1, net gain = net loss =0. The institution
selling B makes money by charging a fee or premium.

Definition 6. A market is complete if every derivative security can be hedged.

Theorem 2. (Second Fundamental Theorem of Asset Pricing): Consider a market
model that has a risk-neutral measure. The market is complete iff the risk-neutral
measure is unique.

Proof: See Shreve page 232.
Remark 1: Risk-neutral measure may be, and generally is, different from the

physical measure. Under the physical measure, in general, expected returns of stocks
are more than that on bonds. This is measured by the market price of risk. This is
related to risk/return relations as in CAPM. But for pricing derivatives, one has to
use the risk-neutral measure.
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Remark 2: Market is complete iff A1, · · · , AK linerly span the space of derivative
securities. In general, the latter are random variables, that is functions, but not
necessarily linear.

Remark 3: We have done the whole treatment in a two-period set-up. All the
results can be generalized to a continuous time setup. The mathematics get very
involved, but the concepts are the same.

4.3 Brownian Motion

Why Brownian motion?

• In real markets, trading takes place in continuous time. Problems of pricing and
hedging derivative securities in continuous-time markets require continuous-
time models.

• In equilibrium, the discounted price process of any tradeable asset, is a mar-
tingale.

• The prices of traded assets vary continuously with time and have finite quadratic
variation.

Brownian motion now rears its head for the following basic reason, a fundamental
theorem of Paul Levy:

Theorem Every continuous-time martingale with continuous paths and finite
quadratic variation is a time-changed Brownian motion.

Definition A standard Brownian (or a standard Wiener process) is a stochastic
process {Wt}t≥0 (that is, a family of random variables Wt , indexed by nonnegative
real numbers t, defined on a common probability space (Ω, F, P )) with the following
properties:

1. W0 = 0

2. With probability 1, the function t→ Wt is continuous in t.

3. The process has stationary, independent increments.

4. The increment Wt+s −Ws has the Normal(0, t) distribution.

The term independent increments means that for every choice of nonnegative real
numbers 0 ≤ s1 < t1 ≤ s2 < t2 = · · · = sn < tn < ∞, the increment random
variables Wt1 −Ws1 ,Wt2 −Ws2 , · · · ,Wtn −Wsn , are jointly independent.

The term stationary increments means that for any 0 < s, t <∞ the distribution
of the increment Wt+s −Ws has the same distribution as Wt −W0 = Wt.

18



It should not be obvious that properties (1)–(4) in the definition of a standard
Brownian motion are mutually consistent, so it is not a priori clear that a standard
Brownian motion exists. (The main issue is to show that properties (3)–(4) do not
preclude the possibility of continuous paths.) That it does exist was first proved by
N. Wiener in about 1920. But notice that properties (3) and (4) are compatible.
This follows from the following elementary property of the normal distributions: If
X, Y are independent, normally distributed random variables with means µX , µY
and variances σ2

X , σ
2
Y then the random variable X + Y is normally distributed with

mean µX + µY and variance σ2
X + σ2

Y .

4.3.1 Quadratic Variation of Brownian Paths

Fix t > 0, and let Π = {t0, t1, t2, · · · , tn} be a partition of the interval [0, t]. For
each natural number n, define the n−th dyadic partition Dn[0, t] to be the partition
consisting of the dyadic rationals k/2n of depth n (here k is an integer) that are
between 0 and t (with t added if it is not a dyadic rational of depth n). Let X(s) be
any process indexed by s. For any partition Π, define the quadratic variation of X
relative to Π by

QV (X; Π) =
n∑
j=1

(X(tj)−X(tj−1))
2

Proposition Let {W (t)}t≥0 be a standard Brownian motion. For each t > 0,
with probability one,

lim
n→∞

QV (W ;Dn[0, t]) = t.

The primary significance of this result is that it is the key to the Itˆo formula
of stochastic calculus. It also implies that the Brownian path cannot be of bounded
variation in any interval, and so in particular is not differentiable in any interval.
(Even more is known: the Brownian path is nowhere differentiable.)
Partial Proof. We will first prove the weaker statement that the convergence holds in
probability. To simplify things, assume that t = 1. Then for each n ≥ 1, the random
variables ξn,k := 2n(W(k/2

n) − W ((k − 1)/2n))2, k = 1, 2, ..., 2n are independent,
identically distributed χ2 with one degree of freedom (that is, they are distributed
as the square of a standard normal random variable).

Observe that Eξn,k = 1. Now QV (W ;Dn[0, 1]) = 2−n
∑2n

k=1 ξn,k. The right side
of this equation is the average of 2n independent, identically distributed random
variables, and so the Weak Law of Large Numbers implies convergence in probability
to the mean of the χ2 distribution with one degree of freedom, which equals 1. The
stronger statement that the convergence holds with probability one can easily be
deduced from the Chebyshev inequality and the Borel–Cantelli lemma.
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Homework 2

1. In a single period binary market with STOCK and BOND, obtain the risk-
neutral distribution. What are the conditions on the possible prices at time 1?
Price a European CALL with strike K. Prove this with an arbitrage argument.

2. Let f(x) = P1(x)+E(x), where P1 is given in equation 4. Show that | E(x) |≤
f ′′(ξ)∗(x−a)(x−b)/2 with ξ ∈ (a, b). Assume that |f ′′| ≤M is bounded. Then

show that |
∫ b
a
E(x)dx |≤= M/12(b−a)3. The composite formula of Trapezoid

rule in equation 5, has corresponding error | I[f ]−Q[f ] |≤M(b− a)/12h2

3. Derive the conditional distribution of Wt+s given Ws.
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5 Numerical Differentiation

• bond duration

• delta, gamma

• sensitivity analysis

• optimization

This is taught from chapter 5 of the lecture notes of Prof Levy Introduction to
Numerical Analysis available here http://www.math.umd.edu/ dlevy/books/na.pdf
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Homework 3

1. Use the differentiation by integration formula (5.10) with n = 2 while approxi-
mating the derivative at x1, to obtain the second-order centered approximation
of the first-derivative.

2. Evaluate the quadratic variation of Brownian motion and exponential(x) on
[0,1] for different grid sizes and plot.

3. Compute the histogram of profits from N simulations of a discretely balanced
delta hedge for the Black Scholes call.
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6 Numerical solution of PDE

Some common sensitivity measures of an option price C (the rate of change of the
option price with respect to the underlying factors) are defined by Delta = δ = ∂C

∂S
,

Gamma = γ = ∂2C
∂S2 , vega = ν = ∂C

∂σ
, rho = ρ = ∂C

∂r
, theta = θ = −∂C

∂T

6.1 examples of exact solutions

HW: Find explicit formulae for the Greeks in case of the Black-Scholes European
call option.

• Deriving the Black Scholes pde

• Discretizing the PDE

• Implicit and Explicit Methods

• Crank-Nicolson method

• Random walk model and assumptions

• CRR model

• Binomial approximation to BSE

• N-period option pricing and approximation to BS

• Local truncation error

• Stability

• methods for solving multi-factor models

• interest rate models

• early exercise

• the corresponding free boundary problems

A good reference is Chapter 5 of Numerical Methods in Finance and Economics: A
MATLAB-Based Introduction by Paolo Brandimarte.
For pricing of American Put Option and the free boundary problem, refer to The
Pricing of the American Option by Ravi Myneni in The Annals of Applied Proba-
bility, Vol. 2, No. 1 (Feb., 1992), pp. 1-23. Particularly Lemma 5.1 explains the
super-martingale property.
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Homework 4

1. Derive the Black Scholes PDE and Transform BS pde to heat equation. Ab-
hishek, Kritika, Subhendu

2. Derive the CRR model from conditions on first two momemts of Binomial and
extra condition when ud = 1. Simplify this when o(∆t) terms are ignored.
Damitri, Tathagata

3. Show that Binomial Option pricing formula approximately solves the BS equa-
tion. Saikat

4. Show that Binomial Option price approximates the BS option price.

5. Crank Nicholson Algorithm for BSPDE by direct discretization. Abhishek,
Tathagata, Saikat, Kritika

6. Crank Nicholson Algorithm for BSPDE after transforming to Heat Equation

7. Crank Nicholson Algorithm for American option. Refer to Matlab code in
section 9.5 of Matlab book.

8. Evaluate the American Put on Spread option using Binomial model. Damitri
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Simulation methods

Materials from the following pages of Glasserman: 11-12, 49-52, 58-69, 75-87,
90-98, 102-105,108-109,194-238.
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Statistical Analysis

7 Topics in Univariate iid returns

Read Chapter 6.5 of Embrechts Klueppelberg Mikosch.

7.1 VaR and Expected shortfall

The most common reported measure of risk is Value-at-Risk (VaR). The VaR of a
portfolio is the amount risked over some period of time with a fixed probability. VaR
provides a more sensible measure of the risk of the portfolio than variance since it
focuses on losses.

The VaR of a portfolio measures the value which an investor would lose with
some small probability, usually between 1 and 10%, over a selected period of time.

Because the VaR represents a hypothetical loss, it is usually a positive number.
The α Value-at-Risk (VaR) of a portfolio is defined as the largest number such

that the probability that the loss in portfolio value over some period of time is greater
than the VaR is α, that is P (−Rt > V aR) = α where Rt = Wt−Wt−1 is the change
in the value of the portfolio, Wt and the time span depends on the application (e.g.
one day or two weeks).

Let rt represents the return on a portfolio, that is, rt = (Pt − P0)/P0 with Pt
denoting the price at time t. The α-VaR is −qα(rt) where qα(rt) is the α-quantile of
the portfolio’s return. In most cases α is chosen to be some small quantile eg, 1, 5
or 10%, and so VaR should generally be positive.

Expected Shortfall (ES) is defined as the expected value of the portfolio loss given
a Value-at-Risk exceedance has occurred. That is

ES = E(rt|rt < −V aR).

7.2 Estimation

Parametric Estimation The simplest form of VaR specifies a parametric model for
the distribution of returns and derives the VaR from the α-quantile of this distribu-
tion. For example, if rt ∼ N (µ, σ2), the α-VaR is −µ−σΦ−1(α) and the parameters
can be directly estimated using Maximum likelihood with the usual estimators,

In a general parametric VaR model, some distribution for returns which depends
on a set of unknown parameters θ is assumed,that is rt ∼ F(θ) and parameters
are estimated by maximum likelihood. The VaR is then −F−1α where F−1α is the
α-quantile of the estimated distribution.

The models are parsimonious and the parameters estimates are precise yet find-
ing a specification which necessarily includes the true distribution is difficult (or
impossible).
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7.3 Nonparametric Estimation

At the other end of the spectrum is a pure nonparametric estimate of the VaR using
the α-quantile of the empirical distribution of rt

These estimates are rough and a single new data point may produce very different
VaR estimates. Smoothing the estimated quantile using a kernel density generally
improves the precision of the estimate when compared to one calculated directly on
the sorted returns. This is particularly true if the sample is small.

The advantage of nonparametric estimates of VaR is that they are generally
consistent under very weak conditions and that they are trivial to compute. The
disadvantage is that the VaR estimates can be poorly estimated – or equivalently that
very large samples are needed for estimated quantiles to be accurate – particularly
for 1% VaRs (or smaller).

Extreme Value Theory (EVT) in finance
EVT has two significant results. First, the asymptotic distribution of a series of
maxima (minima) is modelled and under certain conditions, the distribution of the
standardized maximum of the series is shown to converge to the Gumbel, Frechet,
or Weibull distributions. A standard form of these three distributions is called the
generalized extreme value (GEV) distribution. The second significant result concerns
the distribution of excess over a given threshold, where one is interested in modelling
the behaviour of the excess loss once a high threshold (loss) is reached. This result
is used to estimate the very high quantiles (0.999 and higher). EVT shows that the
limiting distribution is a generalized Pareto distribution (GPD).

Fisher Tippet Theorem: Let X1, · · · , Xn be a sequence of independent and iden-
tically distributed (iid) random variables. and Mn = Max(X1, · · · , Xn). If there
exist constants cn > 0, dn ∈ R, and some non-degenerate distribution H such that
c−1n (Mn − dn) converges in law (weakly) to H, then H belongs to the type of one of
the following dfs:

Φα(x) = exp[−x−α]I(x > 0) for α > 0 Frechet

Ξα(x) = exp[−(−x)α]I(x ≤ 0) for α > 0 Weibull

Λ(x) = exp[−exp(−x)] Gumbel

In this case we say that F belongs to the maximum domain of attraction of H and
write F ∈MDA(H). This result is very significant, since the asymptotic distribution
of the maximum always belongs to one of these three distributions, whatever the
original distribution. The asymptotic distribution of the maximum can be estimated
without making any assumptions about the nature of the original distribution of the
observations (unlike with parametric VaR methods), that distribution being generally
unknown.

The Frechet distribution corresponds to fat-tailed distributions and has been
found to be the most appropriate for fat-tailed financial data.
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For a cumulative distribution function (cdf) F , let us introduce the following
notations:

1. F (x) = 1− F (x)

2. Fu(x) = Pr[X − u ≤ x|X > u] = (F (x+ u)− F (u))/(1− F (u))

A positive function L is slowly varying if, for any t > 0, limx→∞
L(tx)
L(x)

= 1. Next

we define regularly varying (RV) cdfs. For ξ > 0, F ∈ RV (ξ) if for some slowly
varying function L,

F (x) = x−1/ξL(x)

Theorem (3.3.7 Embrechts et al) The df F belongs to the maximum domain of
attraction of Φα if and only if F ∈ RV (α)

For ξ > 0, the cdf of a generalized Pareto distribution (GPD) is given by

Gξ,β(x) = 1− (1 +
ξx

β
)−1/ξ

THEOREM (Pickands - Balkema - de Haan) F ∈ RV (ξ) if and only if there
exists a function β(u) such that

limu→∞sup0≤x<∞|Fu(x)−Gξ,β(u)(x)| = 0

The EVT uses PBD Theorem in order to find an approximation to the tail of
the loss data. Given a loss data set, one selects a threshold u for which a GPD is a
good approximation of the tail. The losses below the threshold are modeled using an
empirical distribution; the losses above the threshold are modeled using the GPD.

Now we proceed to discuss the convergence required for quantiles and shortfall
estimation.

For a cdf F , denote by EV T [F, u] the approximation to F obtained by using the
EVT tail:

EV T [F, u](x) = F (x) x ≤ u

F (u) + (1− F (u))Gξβ(u)(x− u) x > u

EVT approximation leads to uniform relative quantile (URQ) convergence if, for
any ε > 0, there exists a threshold u0 such that for any u ≥ u0 and any quantile q,

(1− ε)Quantile(EV T [F, u], q) ≤ Quantile(F, q) ≤ (1 + ε)Quantile(EV T [F, u], q)

For F ∈ RV (ξ) , EVT approximation leads to the URQ convergence only if
0 < limx→∞F (x)x1/ξ <∞.

URQ convergence implies convergence in mean. That is, URQ convergence of
EVT approximation implies

(1− ε)Mean(EV T [F, u]) ≤Mean(F ) ≤ (1 + ε)Mean(EV T [F, u])
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8 Multivariate

1. Chapter 17 of Hardle for Copula

2. chapter 11.4 of Hardle for CAPM

3. Chapter 4.8 of Carmona for Term Structure

9 Univariate Time Series

1. chapter 11.6 for Unit root

2. Chapter 13 of Hardle for ARCH/GARCH models

3. chapter 8.3 of Carmona for Stochastic Volatility models

10 Multivariate Time Series

1. chapter 7.1.3 of Carmona for Vector AR

2. chapter 7.1.6 of Carmona for Cointegration

3. chapter 13.4 of Hardle for multivariate GARCH

11 High Frequency data

pages 4,5,7,10,16-18,24,44,45,46,47, 53 of The Econometrics of High Frequency Data
by Myklnd and Zhang
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Homework 5

1. Obtain the optimal allocation for stratified sampling (pg 217 Glasserman)

2. Prove Thm 17.3 of Hardle

3. 1.3 of Carmona

4. 1.6 of Carmona

5. Refer to Fig 1.13 of Carmona. Using S&P500 weekly log returns report Q-Q
plot, kernel density and histogram.

6. Fit bivariate normal with Gumbel copula to utilities.asc Then simulate 1000
observations from tis distribution. Report the q-percentile with q = 2 for X+Y
under (1) bivariate normal MLE, (2) Simulation.

7. Repeat previous problem with GPD marginals.
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Homework 6

From Carmona R book 4.12, 6.11, 7.7, 8.4
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