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By the Riemann inequality the Jatter spaces keep on
growing n dimension and eventually, for n>»0 the
space (D + no) has dimension n. We can also vary D by
adding divisors D' of the following form. For some
pomt p of X we can consider the divisor which has
a,=—1and a,=1, g, =0 for all points X other than
o and p. By doing this many times we have an infinite
parameter variation of the data.

The space E(D) can be identified with a subspace of
k((T)). This lies in the class of subspaces V' with the
property that for all m sufficiently large there are

exactly m linearly independent Laurent series in ¥ of
the form

fT)=a T+ a gy T4 e

The collections of all such spaces forms the infinite
Grassmannian. Replacing D by D+ D" gives another
such subspace. As D" approaches the trivial divisor this
oives an infinitesimal action. This infinitesimal action is
the iso-spectral flow. We note here that 1n the case of
rank 1 the integral manifold of this flow is the Jacobian
of the curve X.

The infinite Grassmannian and the assoclated group
action is a purely combinatorial construction, involving
the symmetric functions and associated polynomials.
Since all pointed Riemann surfaces occur on the infinite
Grassmannian we can now attempt toe study the

collections of all curves in a purely combinatornal
fashion.

5. Further reading and references

A much more complete historical sketch of the theory
of Riemann surfaces (and algebraic geometry in general)
may be found in the book: Shafarevich, 1. R., Basic
Algebraic Geometry, Springer—-Vertag, Berlin, 1977. This
book also contains more details about sections 3.2 and
4.1.

For the formalism of Lax operators (section 2.1)
and their use in solving the 1so-spectral problem
(section 2.2) we have followed the exposition of:
Motohico Mulase, J. Diff. Geom., 1984, 19, 403-430.
Much of the formalism comes from the original papers
of Burchnall and Chaundy.

The defimtion of Riemann surfaces arising out of one
variable function theory (section 3.1) can be studied
from chapter 8 of the book: Lars Ahlfors, Complex
Analysis, McGraw-Hill Kogakusha, International stu-
dent edition, 2nd edition, 1966.

The geometry of projective curves is a well-developed
subject and the book (Arabarello, E, Cornalba, M.,
Grifiiths, P. A. and Harris, )., Grundlehr. Math. Wiss.,
1985, 267) covers all the unproved assertions of section
4.1 and much more. Section 4.2 is adapted from a
Hilbert space approach of Segal and Wilson: Wilson,
G., in Geometry Today, Proceedings of Giornata di
Geometnia, Rome 1984, Birkhiuser, Boston, 1984,
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1. Diophantine equations

In number theory, one of the problems of basic interest
is to find all integer solutions of an cquation

J(Xy,..., X)=0,

where [ 1s a polynomial with integer coclficients; such
problems are known as Diophantine problems. Tt 1s also
of interest to study systems of such equations, and to
consider alpebraic integer solutions  {for  example,
solutions with X=X a,,{’, where { is a primitive nth
root of unity, and the 4,, are integers)

As a first step, one may imstead Jook for ntegers X,
such that f(X,,....X,) is divisible by « giren prime
nundher p, Since O is divisible by p, this is certainly an
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‘easier’ problem to solve, In the sense that if it has no
solution, neither does the original Diophantine problem,
Equivalently, onc considers ¥, the integers modulo
p; onc description of these s as follows—-17, = (0.1,
o p=13}, where we define the sum of two such
numbers to be the remainder obtained on dividing their
sum (as integers) by p, Their product is simidarly delined
as the renmnder obtained on dividing the integer
product by p. These modificd operations produce a

field, ie. an alpebraie system in which one can perform

the usual operations of addition, muluplication and
division by nen-zero elements, and these operatons
have the standard properties. This s an example of g
finite ficld. There s a mapping Z-+17, (called ‘reduction
madulo  p') which  associates  to each Intewer  the
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remainder on dividing 1t by p. Similariy, 2 polynomial f
(or system of polynomialsy yiclds a polynomial f (or
system) with coclficients in F,. Now our problem of
finding values of f which are divisible by p is equivalent
to solving the equation f{x,,....x,J=0for x, in F,,

For example. consider the Diophantine equations
Ivi—pi4+2=0, and 7\*—)*+2=0. We see by simple
computations that the first equation has no solution
over F,. the integers modulo 3, while the second
eguation has no solution in F,. Hence neither equation
has intcger solutions. A more complicated example 18
the following, Consider the equation x*+yp?—a=0,
where a is a given integer; in simple language, we are
asking if a is a sum of two squares. Let p be an odd
prime; the corresponding equation over F, is x2+y?—d
=0, where aeF, is the image of aeZ. Write the
equation as x?—d=—j° Let 4 < ¥, denote the set of
possible values of x* —d, and B  F, the set of possible
values of — y2; then one sees easily that A, B each have
exactly (p+1)'2 elements. Since F, has p elements, the
two sets 4. 8 must have a non-trivial intersection.
Hence the equation 4+y*—a=0 always has a
solution in F . The situation for the original Diophant-
ine equation is much more complicated. The odd prime
numbers are all of the form 4g+1 or 4¢+3 for smtable
g; for example. §, 13. 17 are of the form 4q+ 1, while 3,
7, 11 are of the form 44+ 3. One can show the equation
x?+ y2=g has an integer solution precisely when either
a=0, or «>0, and any prime factor p of a, where
p=4dg+3, dividcs a to an eten power. The key step here
s Fermat's two squure theorem, that any prime
p=4g+1 1s a sum of two squares.

In a similar fashion, the first approximauons to
solving problems over rings of algebraic integers are
analogous problems over finite ficlds.

An excellent troduction 1o theory of polynomial
equations over finite ficlds, assuming a minimal back-
ground, is given by Ircland and Rosen’.

2. Finite fields

We first recall a few lacts about finite fields, which may
help the uninitiated reader. First, any finite held k
contains one of the fields ¥, for some prime p. Then
for every x&h, we have

px=x+x+ --» +x {with p terms)=0,

We express this by saying that k has characteristic p (in
contrast, a field contuining the field Q of rational
numbers s sald to be of characteristic Q). Then k 15 a
finite dimensional vector space over F,. If & has
dimension n as an F-vector space, and ¢,...,0, 15 @
basis, then any element of A v uniquely expressible as
Z;a,t; with g e ¥ There are p choices for cach a,, so k
must have ¢ =p” clements The non-zero elements of &
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thus form a multiplicative group of p"— 1 clements. An
elementary theorem in group theory now implies that
any non-zero x in k satisfies x*~!'=1. Hence the
elements of A are precisely the roots of the polynomaal
x” —x. This forces any two finite fields with p” elements
to be isomorphic, 1.e. there 1s essentially only one field
F. with p” elements. Further, if g=p", the finite field F_
is contained in each of the ficlds F~ m2=1, and no
others.

Another tmportanl property of finite fields &k of
characteristic p 18 the Frobenius mapping F k—k,
F(x)=xP?. This clearly satisfies F{xy)=F(x}F(y); mira-
culously, it also satisfies F(x+y)=F(x)+ F(y) (this
follows from the fact that the binomal coeflicients (7},
with 0<r<p, are all divisible by p). One can also
consider the powers of F. If k contains F ., then the
subfield F . is precisely the set of elements of k fixed by
the n-fold composition F"=F CF O+« O F. This is
just a restatement of the fact that the elements of F ,
are precisely the roots of x¥ —x=0.

Let F, be the finite field with g elements, and
consider a system of polynomial equations.

f,‘(Xl,...,Xd}.=0

. ves (#)
S (X, X =0

where the {, have coeflicients in ¥, .

Problem: How many solutions does the system (%)
have with X el ?

Even for equations in 1 variabie, there 1s no simple
answer {for example, consider the equation X"=g),

Howcver, it turns out that a more reasonable problem
is the following:

Problem’: Let

a,=the number of solutions of the system () with
X;€ Fq,..

Find "good properties’ of the sequence a,,a;,...,a,,

The ‘good properties’ of the sequence a, are given by
the Heil conjectures. These are stated in terms of the
zeta function, which we now discuss,

3. Zeta functions

We define the zeta function of the system (x) to be the
formal power scries

L4

Z(r]=exp( i anﬂ)-
n

-"=1
This ‘encodes” (he whole collection of numbers
VIO U Uyoenon ',

e may ask
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-—

(1} isn't it more natural to consider instead the ‘usual’
generating function

fin= 21 a, 1
(which 1s essentially the loganthmic derivative of Z (¢))?
() why should Z(t) be called a ‘zeta function™
To understand why the zeta function defined above is
the ‘correct’ one, we recall first the dcfinition of the
famous Riemann zeta function

4

1
{(s)= ) —,where .25>1.
n=1
By a theorem of Euler, this can be rewritien as

Lis)= ]I

p prime

|
i—p™*

Euler's formula is essentially equivalent to the unique
factorization of positive integers into products of prime
numbers. Riemann showed that this function can be
analytically continued to C with 1 singularity, a pole at
s=1, and satisfies a functional equation (where I'(s) is
the gamma function)

T )

(=9 = ~przey 16O

The famous Riemann hypothesis, which is still unproved,
i1s the assertion that all zeroes of this function in the halif
plang .#s>0 lie on the line £s5=1/2.

From the standpoint of algebra, prime numbers are
just the generators of maximal ideals in the ring of
integers. A ring is, roughly speaking, a systcm in which
we can perform operations analogous to addition.
subtraction and muitiplication, but division may not be
possible; an ideal is a subset [ which is closed under
addition, and under multiplication by any.element of
the nng —lor example, the integers Z form a ring, and
the multiples of a fixed integer n form an ideal, denoted
by (n); these are the only possible ideals in Z. An 1deal
(n} contains {m) precisely if n divides m; hence maximal
ideals (ideals I#£Z not contained in any larger such
ideals} correspond to prime numbers.

Another example of a ning is A{X,,..., X,]), the k-
algebra of polynomials in X, ,..., X, with coeflicients in
k. Any ideal Iin k{X,,..., X,] is finitely gencrated, i.c.
there exist polynomials f,....,f, such that | consists of
all polynomials expressible in the form a,f, + -+ a,/,,
where a,,...,a, are arbitrary polynomials; this is called
the ideal generated by f,,....1., and denoted {f,,... 1.}
This finite generation theorem 1s the Hilhert busis
theorem.

Anzalogous to the integers modulo n, one can form
the quotient ring of the polynomial ning modulo an
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ideal I-—here two polynomials are considered equivalent
if their difference lies in I, and the defining properties of
an 1deal ensure that addition and muitiplication are
well defined on equivalence classcs. The polynomials
vanishing at a point form a maximal ideal, as one casily
sees; conversely, if the cocflicient field k 1s algebraically
closed, then any maximal ideal s the ideal of
polynomials vanishing at a point (this assertion is a
special case of the famous Hilbert Nullstellensatz). By
analogy, if k 1s arbitrary, we may try to regard maximal
ideals as ‘points’ In some sense. If & is finite, then the
maximal ideals are precisely those ideals whaose
quotient ring is a finite field.
Now consider the nng

Fqi:xlt---&xd]

R = e
-er)'*‘-'sf;i(‘rli'“‘Xﬂ))

(fl(Xlr

naturally associated with the svstem of equations ().

Then one can prove that the zeta function satisfies the
product formula

1_1 ]

_4R.e F L
wH o R (I I[ ‘ )

A maximal ideal

Z(t) =

where [R/ #:F_]=un if card R/ # = q". Hence if we
substitute t=¢g"°, where s is a complex variable, then

|
(1—(card R/. # }™%)

Z@q )= []
f R
A mavamal idea)

Thisisanalogous to Euler's product formula for the
Riemann zeta function,

I ‘

[(s) = (I~ (card Z/ #)°9)"

P A

& maxanral ideal

4. Computing the zeta function: some examples

FExample I Consider the ‘empty’ system of equations in
d variablcs; then

a,=card F j: d= g,

R=¥F [X,...,\,]

and so
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Now a system of gquations {#) defines an affine
algebraic vartety over the ficld F, (see Mohan Kumar's
accompanying articlc, page 218} The F_-algebra we
associated to (=) is then the ring of polynomial
functions (or regular functions) on this variety.

More generally, one can define an ‘abstract’ algebraic
variety over a field & as something obtammed by
‘patching’ together open subsets which are affine
aleebraic varieties over k (examples are given by
projective varieties, discussed In my accompanying
article, page 222). In parsticular, for k=F,, it makes
sense to speak of the zeta function Zy (1) of a variety X
defined over F,

Zx(r)=exp( i a,,(X)EI-),

=1

where

a, (X)=number of ‘F_-valued points’ of X.

Then example 1| above corresponds to the case
X =AY, the affine space over F,. Clearly, if

\
X - ]_I X i
1=
is a disjoint union of subvarieties delined over ¥, then

0 ()= ¥ 0,(X)
Z5 () = E[lle(n,

Example 2. Llet P be the projective d-space over
F.. Then '

P =

ArLIAE ' L 11Ar LLAE,

(where A} is a over F); hence
1

Example 3. Let X=GF1 (k,d), the Grassmannian of k-

dimensional sub-spaces of a d-dimensional space Af
(see my article on Projective algebraic varietics, this
issue). Then X has a natural structure as a vanety over
F., and one has a deccomposition of X as a disjoint
union of afline spaces of various dimensions, the so-
called Schubert cells.

Let

b,, ={number of Schubert cells = A",
242

——"

One knows that N=k{d—k) 1s the dimension of Gk, d),
and so

Over the complex number field C, the analogous
Schubert cells give a cell decomposition* of the
complex Grassmannian G, (k,d) with cells A~
C' >~ R* only in even dimensions; hence b, equals
the 2i th Betti number of the complex Grassmannian,
from standard theorems in topology.

Since Gg(k,d) is a compact complex manifold of
dimension n, hence a compact, oriented topological
manifold of dimension 2n, the Poincaré duality theorem
gives that b;;=b; - Hence:

] A 1 No(—q
A = - =
X(qﬂt) ;];[D ] 1 b, il;[[,(l__qﬁ-:r)bh
qN"It

=—I£lbIE,N"‘fbl L
( ) 2:4 ( ) 2 ll‘—_'[ﬂ(l'"—qﬂ_it)bn

But

(@) by, =b, -y, SO that the last product is just Zy(f)
(b) Z,(N—Dby=1/2(Z,(N—} by, + L,1b,)=N/2(2,by,)

For any space X with a cell decomposition with
finitely many cells, the topological Euler characteristic is
> (— 1) n; where n, is the number of cells of dimension i
this number is a topological invanant of the space X.
This generalizes the familiar Euler formula V—E+ F=1
for any triangulation of the 2-sphere, where V, E, £ are
the numbers of vertices {=0-cells), edges (= 1-cells) and
faces {=2-cells).

Hence, if x=1I. b,; is the topological Euler charact-
eristic of the complex Grassmannian, then we have

Zx(;i??) = (—g""* 1y Z, (1)
1 we write

Cx (5)=2Zx(q@™")
we may rewrite the above as

{x (N=3s)y=(—g"2 7Y {4 {s)

i.e. {,(s) satisfies a functional equation, analogous to
that satisfied by the Riemann zeta function,

Example 3. Let X be a non-singular projective curve

*A sort of generalized tnangulation,
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of gerus g over F,. One can show its zeta function has
the form

_ Pyit)
O T

where P, (t) has the following properties.

(1) Py(t)=t2g°+c 1?9714+ «o. ¢, 1+l for some
('EEZ
(1) If & 1s a root of P, (t)=0, then 1/ga is also a root;
hence

Pe(®) = [T~ (Bt B g2 1+ qt?)

i=1

(the roots are the numbers 8 X' g~ 1/2; this is equivalent
to a functional equation between Z,{t) and Z,{1/gt), or
equivalently, between {, (5} and {x (1 —s)).

(1) for any root a of Py (t)=0,

el = [1/ga} =g~ 1%,

Thus, the zeroes of {,(s) lic on the line Re s=1/2;
equivalently, the quadratic factors 1—(8;+ 8 1) q"* ¢+
gt* have real coeflicients. Note the analogy with the
Riemann hypothesis.

5. The Weil conjectures

The Weil conjectures are a generalization of the above

properties to arbitrary varieties. We first state the
conjectures.

5.1 The conjectures

1. (Rationality) Let X be an algebraic variety over the

finite field ¥ . Then the zeta function Zx (¢} 1s a rational
function,

with P(1), Q(tye | +1Z[t] (re.
term | and integer coefficients).

have constant

P,

2. Suppose X is a non-singular, complete G.e. ‘compact’)
variety of dimension N over ¥ {for example, X is a non-
singular projective varicty). Then

(a) (Functional equation) Z, (1) satisfies a lTunctional
equation
. ! — Nrdsr -
Z; N — ("q ' ) /:I(I)
g [
for some integer y (which we may cull the ‘uler
characteristic' of X);
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(b) there is a factorization

IN vt Pi@ Py (8- Pay-q (8)
7 (1) = (=Dt o 3
x (1) LLP'-(I) Po(t) P, (1) --- Pyx(2)

where

() Pi(t)el +tZ[1]
(1) Po()=1—1t, Py ()=1—g"t

] —1 '\,
(i) Pi(ﬁ) - (tq”"”z) Pyy-i(t) where b,=deg

P,=deg P,y_;; In particular, b; is even if i 1s odd (we
may call b; the ‘ith Betti number’ of X; this formula
imphlies the functional equation, with y=Z (—1)'b)

(1v) if @ is a root of P;(t)=0, then
o =g~

(this statement 1s known as Weil's Riemann hypothesis);
equivalently, P;(t) has a factorization

b
Pit) =[] (1~ay;0)

i=1
where |«;|=q"2.

From Weil’'s Riemann hypothesis, it follows that the

factors P.(t) are pairwise relatively prime over Z, so
such a factorization of Z, (1), if it exists, is unique;

(¢} (Comparison) If X is obtained by ‘reduction modulv
p’ from a non-singular, complete varicty Y 1n
characteristic zero, and Y. is the corresponding

complex variety, then in the factorization of Z, (1),
deg P (1)=b, (Y,

where b;(Y.) denotes the ith Bettt number of the
complex manifold Y.

5.2 Some history

The Weil conjectures are stated in the paper of Weil®; he
had earlicr proved them for curves and abchan
varictics, extending carlier results of Artin, Hasse and
others. The paper? contains a proof for hy persurfaces of
the form X a, X{=0 (for a sclf-contamed account of
Weil's proof in this case, sce the book!') Weil's
computation generalizes one made by Hardy and
Littlewood for the hypersurface defined by X5 + A4+

+ + Xt=01in the course of their solution of the famous
Waring problem, wing the Hardy Ramanujin circle
method (the Waring Problem v to show that for any
posilive integer A, every positive infeger can be wrilten
as o sum of sgh-thy powers, for some pufliciently large)
fixed »; for example, ¢very positine steper s @ sum ol 4
squitres, of 9 cubes, of 19 fourth powers, ¢tc)

AS R
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The rationality of the zeta function was first proved
by Dwork (1960). The rationality and functional
equation follow 1n a ‘formal® way from the existence of
a "Weil cohomology theory’ {we discuss this below), as
was remarhed by Weil himsell; such a theory is
Grothendieck’s étale cohomology, developed by him
along with M. Artin. Another Weil cohomology theory
15 Grothendieck’s crystalline cohomology.

Independently, the rationality and functional equa-
tion were proved by Lubkin in 1968 for varieties
obtained by ‘reduction modulo p’.

The Riemann hypothesis was first proved by Deligne
in 1973; he gave a second proof, published in 1980, and
a third proof using Deligne’s ‘I-adic Fourier transform’
was given by Laumon in 1984 (ref. 3).

A more or less self-contained proof of the Weil
conjectures, including Dehgne's first proof of the
Riemann hypothesis, may be found in the book of
Freitag and Kiehl®. An expository account of Deligne’s
first proof, assuming some background, may be found
in Katz's article®. Dieudonné has given another
expository account, giving some history, and assuming
less background of the reader (ref. 6); this is reprinted in
the book by Freitag and Kiehl*,

5.3 An application: the Ramanujan conjecture

Let
fe=z ] (-2
= i t(n)z".

The function A{f)=f(e*™) is the so-called -ellipric
modular function; the numbers 7(n) are thus interpreted
as its Fourier coefficients. Ramanujan? conjectured* in
a paper 1n 1912 that

lt{p) < 2p't/2

for any prime number p. Deligne? showed that
Rumanujan’s conjecture follows from Weil's Riemann
hypothesis. In fact, A(f) is an example of a modular form
for SL,(Z), there 1s a generalization of Ramanujan’s
conjecture to certain other modular forms that was
stated by Petersson, which also follows from Weil's
Riemann hypothesis.

*In lfact what Ramanujan comectured was that the quadratic
polynomeal 1+ 27{p)x+p'"x? has roots p7 "% {cos 041 sin &), for a
real angle 6, this polynomial is related to the Euler factor at p of the
asxocialed Dinchiel senes.
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6. Weil cohomology theories

We have already observed that the Weil conjectures
secem to have a topological flavour. One can make this
more precise, and give them a ‘topological’ interpreta-
fion.

We begin with the property stated earlier that an
clement a of the algebraic closure F, of F, lies in the
subfield F o precisely if it satisfies

a?l =a.

Next, if
R=Fq[xlp"':Xd]/(fl:'"ifk] »

where the f; have cocflicients in F_, then there is an F -
algebra mapping

F:R—=R,

a—at,

the Frobenius homomorphism. To see that F is well
defined, note that it is well defined on the polynomial
ring F, [ X, ', X, and satisfies F(f}=f7,s0 maps the
ideal (f],---,/i) generated by the f into itself. The above
definition can be extended to varieties defined over
F,—given such a variety X, there is an algebraic map
of varicties F: X — X, the Frobenius mapping. It 1s easy
10 see A2t Fopresenves the s of ¥ yaned points o X,
further, a point over the algebraic closure of F, has
coordinates in K. precisely if it is a fixed point or
F'"=FO F O - O F, the n-fold composite.

Suppose now that Y is a non-singular projective
vanety over C of dimension N, and that f:Y—>Y 1s a
map of varieties such that f/* has isolated fixed points
for each ». Then we may apply the Lefschetz fixed point
formula in algebraic topology to compute the number of
fixed points of f”, in terms of the action of the mapping
f on the cohomology groups of Y

Let H'(Y,C) denote the ith cohomology group of Y,
which ts a finite dimensional vector space over C. Any
mapping f: Y=Y of varieties induces a linear transfor-
mation f* on each of the cohomologies H'{Y, C), whith
we may regard as a matrix. From standard properties
of cohomology (basically, that it is a ‘functor’) the
matrix representing the action of f* is the nth power of
that representing f.

The Lefschetz formula states that the number of fixed
points of f" is an alternating sum of traces of linear
transiormations {1.e. matrices),

2N
Y (= 1\ Te (" H(Y,0)
In particular, this alternating sum, which is a priori a
complex number, is actually a positive integer. If
.= number of fixed points of f*,
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then
& t" o 2N . _
D, Gy = ), —-( > (—1)‘TrU""IH‘(KC)))
w=1 L n=1 01\ (=0
2N o T n Hi C
— ,Ztﬂ{_l)i( ;1 I'(f |n (}’; DI")

Now if V is a vector space of dimension 4 over C,

A: V-V a linear transformation with eigenvalues
Xys---y %y, then

Tr(A"lV]

i 2 e i

=log P(4,V;0)7},
where
P(A,V;t)=det(I—-tA|V)

is {essentially) the characteristic polynomial of A acting
on V (I is the identity transformation).

Hence, the ‘zeta function’ of the self-map f:¥Y->Y
satisfies

N

Z{1) = ﬂ (det (I —ft} H{Y,C) V"

This is clearly a rational function with complex
coeflicients; since its Taylor series hag rational co-
efficients, the rational function itself 1s a ratio of
polynomials with rational coeflicients.

A Weil cohomology theory is a rule which associates
to each non-singular projective variety X of dimension
N over a finite field F, a finite collechion of fmite
dimensional vector spaces H'(X) over a field K of
characteristic zero, such that if f: X - X is any sell-map
of X with only a finite number of fixed points (in
particular, f is the Frobenius mapping F, or a power of
F), then the number of fixed points is given by the
Lefschetz fixed point formula. If this 1s the case, the
rationality of the zeta function follows easily (except
that the rational function has coefficients in the ficld K
of characteristic zero which forms the ‘coefficients’ [or
the cohomology; but this implies the assertion with Q
coefficients, as before).

Suppose further that the cohomology groups satisfy a
Csversion of Poincaré duality. This will mean that HH{X)
and [{2dm X4 ¥X) have the same dimendsions over K,
and the matrices associated to the action of F on H'(X)
and MP¥TUX) are (up 1o appropriate scalars) the
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transpose inverse of each other. The functional
equation then reduces to the fact that if a linear
transformation has eigenvalues rxl, ..,o%,, then ifs
transpose inverse has eigenvalues o7 ?,..., 0,7 ",

In Grothendieck’s étale cnhﬂmalogy, K=4Q,, the
field of l-adic numbers, where [ 1s a prime¢ number
different from p, the characteristic of F_. All of the
above properties hold for étale cohomology, so that the

rationality conjecture and the functional equation are
vahd.

7. Weil’s Riemann hypothesis

The Riemann hypothesis does not seem to be ‘purely
topological’. Serre had proved a ‘Riemann hypothesis’
for the ‘zeta function’ of a self-map f: Y- Y of a variety
Y over C, using properties of the cohomology groups,
like the Hodge decomposition (and other {acts from what
is called Hodge theory). Some of these properties of
cohomology were stated, and ‘proved’, by Lefschetz;
however, his proofs of soms of them (notably what is
called the Hard Lefschetz theorem) are considered
insufficiently rigorous by modern standards.

Grothendieck observed that one can rephrase Serre’s
argument cleverly so as to omit any explicit reference to
Hodge theory, and instead use properties of certain
‘natural’ operations and structures on cohomology
(including the Hard Lefschetz theorem). The properties
of these ‘natural’ operations, however, at present can
only be partly proved; for example, the Hard Lefschetz
theorem can only be proved at present using Hodge
theory, or, ironically, deduced as a consequence of
Weil’s Riemann hypothesis.

The analogous properties for Grothendieck’s €tale
cohomology are essentially Grothendieck’s standard
conjectures, formulated by him in his article in the
Bombay Colloguium on Algebraic Geometry in 1968,

These are as yet unproven, Grothendieck ends his
article with the statement:

Alongside the problem of resolution of singularities, the prool of the

standard conjectures scems 10 me o be the most urgent task 1
algebraic geometry.

Deligne’s two proofs of the Riemann hypothesis use
the techniques of vanishing cycles and monodromy,
introduced by Lelschetz in his ‘proofs” mentioned
above, In the first proof, Deligne also uses the *Rankin
trick’ and a lemma of Kashdan and Moargulis. The
sccond proof (sce ref. 9) instead uses a vaoant (due to
Deligne) of the ‘method of Hadumard and de la Vallce
Poussin’, originally used in the proof of the famous
prime number theorem; in particular, Deligne gives a
‘conceptual’ proof, using the unitary representation
theory of compact topological groups (hke Galos
groups!), that viarious zeta functions have no zeroes on

A
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a ccrtain hne, which corresponds to {and includes) the
classical statement (proved by Hadamard and de la
Vallee Poussin) that the Riemann zeta function has no

zeroes on Re s= 1.
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Some thoughts on Srinivasa Ramanujan

Srinivasa Ramanujan was a mystic, a
true mystic in the full significance of the
term. He was intensely religious, almost
superstitious in some datly observances
— he will not take food unless cooked
by people he approved; he was a very
strict vegetarian. While in England he
practicaily cooked his own meal. Some
persons said that this was largely
responsible for [atal failure in his health.
[ am not quite so sure.

That he was highly intuitive and got
at the truth of things as in a flash
cannot be denied. He saw truth and
knew it though he found it difficult to
explain it to others in terms of logical
sequence. When I was in Trivandrum, ]
used to go to Madras often on Univers-
ity and other business. Mr Ramanujan
was then a Clerk in the Madras Port
Trust Office. Somehow he took a fancy
to me and used {o visit me whenever I
was at Madras; perhaps he found a
sympathetic listener to what he intended
to say. He used to show his notes to me,

but I was rarely able to make head or
tail of at least some of the things he had
written. One day he was explaining a
relation to me; and he suddenly turned
round and said, “Sir, an equation has
no meaning for me unless it expresses a
thought of God”. I was simply stunned.
I had meditated over this remark times
out of number since. To me, that single
remark was the essence of Truth about
God, Man and the Universe. In that
statement | saw the real Ramanujan,
the philosopher-mystic-mathematician.

¥ % ¥

Childlike simplicity was his dominant
feature. He gave me the impression of a
God-centred man, to whom every event
down here was only an outer expression
of an idea in the Cosmic Mind. A true
philosopher tries to get at the Mind of
God through such expressions in the
manifested world. To him every pheno-
menon here is a window through which
to gaze at the typical thought in the

Giraud, ¥ er af ), North Holland, 1968, vol. 3.

Mind of God, where everything exists
beyond time and space. Down here we
are aware of things only in relationship
in space and time. To Ramanujan God
1s the fountain-source of all ideas; all
our sciences and philosophies are in-
tended only to link up this phenomenal
world with the noumenal! world in the
Cosmic Mind.

To him all the religious observances
had not only a spintual aspect, but a
disciplinary aspect as well. These tramned
one in self-control without which there
can be no development of the higher,
spiritual stde of human nature. Hence
he clung to these observances so rigidly;
they meant so much more to him than
mere forms,

[ Extracts from a note written by
Ramanuja Snimivasan {1887-1975), Pro-
fessor of Mathematics, Maharajah’s
College, Trivandrum (1910-1942). This
was written in the early twenties (almost

immediately after Stinivasa Ramanujan
died)].

=N,

Mathematics conference

His Excellency the Governor of Madras
opened today the first conference of the
Indian Mathematical Society at the Pre-
sidency College which was attended by
a large number of leading mathemati-
cians from various parts of the Presi-
dency, besides several from Bombay.

In the course of his speech in
declaning the Conference open, His
Excellency said: The methods of mathe-
matics play an increasing and important
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part in the discussion and elucidation of
numerous problems 1n sociology, econo-
mics and other studies in the expanding
complex of our environment, and it is a
matter of great moment that among
those who have to deal with these
studies should be a body of men who
are accustomed to the rigorous princi-
ples of mathemaucal proof, and who
find intellectual relaxation and refesh-
ment i keeping themselves Informed of

modern developments in what is, [
suppose, the oldest science in the world.
Moreover, it 15 at any rate a science
which has always made a strong appeal
to the Indian intellect, and has received
from it important contributions. It is,
for example, 1 suppose probable that to
India we owe the decimal notation and
the invention of Algebra, and Tndia can
potnt to a lcast one epoch in which 1t
produced a number of brilliant mathe-

{ See page 276)
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