
KILLING WILD RAMIFICATION

MANISH KUMAR

Abstract. We compute the inertia group of the compositum of wildly rami-
fied Galois covers. It is used to show that even the p-part of the inertia group

of a Galois cover of P1 branched only at infinity can be reduced if there is a

jump in the lower ramification filtration at two and a certain linear disjointness
statement holds.

1. Introduction

Let k be a field of characteristic p > 0. Let X → Y be a finite G-Galois cover
of regular irreducible k-curves branched at τ ∈ Y . Let I be the inertia subgroup
of G at a point of X above τ . It is well known that I = P o µn where P is a
p-group, µn is a cyclic group of order n and (n, p) = 1. Abhyankar’s lemma can be
viewed as a tool to modify the tame part of the inertia group. For instance, suppose
k contains the nth-roots of unity. Let y be a regular local parameter of Y at τ .
Let Z → Y be the Kummer cover of regular curves given by the field extension
k(Y )[y1/n]/k(Y ) and τ ′ ∈ Z be the unique point lying above τ . Then the pullback
of the cover X → Y to Z is a Galois cover of Z branched at τ ′. But the inertia
group at any point above τ ′ is P . Our main result, Theorem 3.6, is a wild analogue
of this phenomenon.

Assume k is also algebraically closed field and let X → P1 be a G-Galois cover
of k-curves branched only at∞. Let I be the inertia subgroup at some point above
∞ and P be the sylow-p subgroup of I. Then noting that the tame fundamental
group of A1 is trivial, it can be seen that the conjugates of P in G generate the
whole of G. Abhyankar’s inertia conjecture states that the converse should also be
true. More precisely, any subgroup of a quasi-p group G of the form P oµn, where
P is a p-group and (n, p) = 1, such that conjugates of P generate G should be the
inertia group of a G-cover of P1 branched only at ∞.

An immediate consequence of a result of Harbater ([Ha2, Theorem 2]) shows that
the inertia conjecture is true for every sylow-p subgroup of G. In fact Harbater’s
result shows that if a p-subgroup P of G occurs as the inertia group of a G-cover of
P1 branched only at ∞ and Q is a p-subgroup of G containing P then there exists
a G-cover of P1 branched only at ∞ so that the inertia group is Q. In Theorem
3.7, it is shown that if there is a jump in the lower ramification filtration at two
and there is no epimorphism from G to any nontrivial quotient of P then the given
G-cover of P1 can be modified to obtain a G-cover of P1 branched only at∞ so that
the inertia group of this new cover is smaller than P . The proof is via Theorem 3.6
and a study of higher ramification filtration (Proposition 2.7).

So far the inertia conjecture is only known for some explicit groups. See for
instance [BP, Theorem 5] and [MP, Theorem 1.1].
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2. Filtration on ramification group

For a complete discrete valuation ring (DVR) R, vR will denote the valuation
associated to R with the value group Z. Let S/R be a finite extension of complete
DVRs such that QF(S)/QF(R) is a Galois extension with Galois group G. The
lower ramification filtration on G is a decreasing filtration defined for i ≥ −1 in the
following way:

Gi = {σ ∈ G : vS(σx− x) ≥ i+ 1, ∀x ∈ S}
Note that G−1 = G and G0 is the inertia subgroup. For every i, Gi is a normal
subgroup of G. One extends this filtration to the real line as follows: for u ∈ R, u ≥
−1, define Gu = Gm where m is the smallest integer greater than or equal to u.
The Herbrand function φ is defined as

φ(v) =

∫ v

0

du

[G0 : Gu]

Note that φ is a bijective piece-wise linear function. The upper ramification fil-
tration on G is defined as Gv = Gψ(v) for v ≥ 0 where ψ is the inverse of φ. Let

Gv+ = ∪ε>0G
v+ε. The following are some well-known results.

Proposition 2.1. [Ser, IV, 1, Proposition 2 and 3] Let S/R be a finite extension of
complete DVRs such that Gal(QF(S)/QF(R)) = G. Let H be a subgroup G. Let K
be the fixed subfield of QF(S) under the action of H. Let T be the normalization of R
in K. Then T is a complete DVR, Gal(QF(S)/K) = H and the lower ramification
filtration on H is induced from that of G, i.e. Hi = Gi ∩H. Moreover, if H = Gj
for some j ≥ 0 then (G/H)i = Gi/H for i ≤ j and (G/H)i = {e} for i ≥ j.

The upper ramification filtration behaves well with quotients of G rather than
subgroups.

Proposition 2.2. [Ser, IV, 1, Proposition 14] In the above setup if we assume H
is a normal subgroup of G then the upper filtration on G/H is induced from G, i.e.
(G/H)v = GvH/H.

Remark 2.3. Note that for any i ≥ 0, Gi = G iff Gi = G. Since φ(v) ≤ v,
Gv = Gφ(v) ⊃ Gv. This explains the “if part”. For the “only if” part, one notes
that for v ≤ i, by definition, φ(v) = v and hence ψ(v) = v.

Proposition 2.4. [Ser, IV, 2, Corollary 2 and 3] The quotient group G0/G1 is a
prime-to-p cyclic group and if the residue field has characteristic p > 0 then for
i ≥ 1, Gi/Gi+1 is an elementary abelian group of exponent p. In particular G1 is
a p-group.

Lemma 2.5. [FV, Chapter III, Section 2, 2.5] Let R be a complete DVR over a
field k of characteristic p > 0 with perfect residue field. Let L/QF (R) be an Artin-
Schrier extension given by the polynomial Zp − Z − x, for some x ∈ QF(R) such
that vR(x) < 0 and (vR(x), p) = 1. Then L/QF(R) is a Z/pZ-Galois extension
with the upper (and lower) ramification jump at −vR(x).
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Lemma 2.6. Let S/R be a totally ramified extension of complete DVRs over a field
k of characteristic p > 0. Suppose QF(S) is generated over QF(R) by α1, . . . , αr ∈
QF(S) with αpi −αi ∈ QF(R) and vR(αpi −αi) = −1 for 1 ≤ i ≤ r. Then the degree
of the different dS/R = 2|G| − 2.

Proof. Let Li = QF(R)(αi) ⊂ QF(S) for 1 ≤ i ≤ r. Then for all i, Hi =
Gal(Li/QF (R)) = Z/pZ. It follows from Lemma 2.5 that the upper ramification
filtration on Hi is given by Hv

i = Z/pZ for 0 ≤ v ≤ 1 and Hv
i = {e} if v > 1. From

Proposition 2.2, it is easy to see that the highest upper jump of the compositum
of Galois extensions is the maximum of the upper jumps of these extensions. So
if we let G = Gal(QF(S)/QF(R)) then Gv = {e} for v > 1. Since G is a p-group
and S/R is totally ramified Gv = G for v ≤ 1. Hence G1 = G and G2 = {e}. Now
dS/R = 2|G| − 2 follows from Hilbert’s different formula [Sti, Theorem 3.8.7]. �

For a finite Galois extension M/K of local fields, let M<i, M≤i and M=i denote
the compositum of subfields L of M such that the largest upper numbering jump
in the ramification filtration of L/K is “< i”, “≤ i” and “= i′′ respectively.

Proposition 2.7. Let i ≥ 1 and S/R be a finite extension of complete DVRs
over a perfect field k of characteristic p such that Gal(QF(S)/QF(R)) = G = Gi.
Let L be the subfield of QF(S) generated over QF(R) by {α ∈ QF(S)|αp − α ∈
R, vR(αp − α) = −i}. Then Gi+1 = Gal(QF(S)/L).

Proof. Let L′ = QF(S)Gi+1 and H = Gal(QF(S)/L) ≤ G. Since Gi+1 is a normal
subgroup of G, the extension L′/QF(R) is Galois and Gal(L′/QF(R)) = G/Gi+1(=
Ḡ say). Moreover, by Proposition 2.1, the lower ramification filtration on Ḡ is
given by Ḡi = Ḡ and Ḡi+1 = {e}. So we have Ḡi = Ḡ and Ḡi+ = {e}. Hence
L′ ⊂ QF(S)=i. By Lemma 2.5, L ⊂ QF(S)=i. Since Gi = G, we have that
QF(S)<i = QF(R). Hence QF(S)≤i = QF(S)=i. From Proposition 2.2 and Gi =
G, it also follows that i is the only jump in the upper ramification filtration of
the Galois extension QF(S)=i/QF(R). So by Remark 2.3 and Proposition 2.4,
the Galois group Gal(QF(S)=i/QF(R)) is isomorphic to (Z/pZ)r for some r ≥ 1.
So by Artin-Schrier theory we obtain that QF(S)=i is generated over QF(R) by
α1, . . . , αr ∈ QF(S) \QF(R) such that βj = αpj − αj ∈ R for 1 ≤ j ≤ r.

Let x be a uniformizing parameter of R then R = k[[x]]. If vR(βj) > 0 then

αj = c − βj − βpj − βp
2

j − . . . ∈ R for some c ∈ Fp. So vR(βj) ≤ 0. Moreover

since G0 = G, S/R is totally ramified. So vR(βj) 6= 0 and hence vR(βj) < 0. If
vR(βj) is a multiple of p then βj = c0x

pl + c1x
pl+1 + . . ., for some integer l < 0.

Let c ∈ k be such that cp = c0 and let α′j = αj − cxl. Then β′j := α′pj − α′j =

βj − c0xpl + cxl, vR(β′j) > vR(βj) and QF(R)(αj) = QF(R)(α′j). Hence by such

modifications we may assume the negative integer vR(αpj − αj) is coprime to p. So

by Lemma 2.5 the upper jump of the ramification filtration of QF(R)(αj)/QF(R)
is −vR(αpj − αj). Since QF(R)(αj) ⊂ QF(S)=i we must have vR(αpj − αj) = −i
(by Proposition 2.2). Hence we have that L = QF(S)=i. By [Yos, Proposition 5.4]
Gal(QF(S)/QF(S)≤i) = Gi+ = Gi+1, which means QF(S)≤i = L′. Hence L = L′,
i.e., Gi+1 = Gal(QF(S)/L)). �

Corollary 2.8. Let L/K be a purely wildly ramified Galois extension of local fields
of characteristic p and perfect residue field with Galois group G. Then LGi+1 =
LGi(α|vi(αp − α) = −i) for i ≥ 1 where vi is the valuation associated to the local
field LGi .
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Proof. Note that the extension L/LGi is Galois with Galois group H = Gi ≤ G.
Moreover, by Proposition 2.1 the ramification filtration on H is induced from that
of G. So Hj = H ∩Gj = Gi ∩Gj and hence, Hj = Gi = H for j ≤ i and Hj = Gj
for j ≥ i. Since Hi = H, we can apply the above result to conclude that

Gi+1 = Hi+1 = Gal(L/LGi(α|vi(αp − α) = −i)
Hence LGi+1 = LGi(α|vi(αp − α) = −i). �

3. Reducing Inertia

For a local ring R, let mR denote the maximal ideal of R. In this section we shall
show that the wild part of the inertia subgroup of a Galois cover can be reduced.
We begin with the following lemma.

Lemma 3.1. Let R be a DVR and K be the quotient field of R. Let L and M be
finite separable extensions of K and Ω = LM their compositum. Let A be a DVR
dominating R with quotient field Ω. Note that S = A ∩ L and T = A ∩M are
DVRs. Let K̂, L̂, M̂ and Ω̂ be the quotient field of the complete DVRs R̂, Ŝ, T̂
and Â respectively. If A/mA = S/mS then Ω̂ = L̂M̂ . Here all fields are viewed as

subfields of an algebraic closure of K̂.

Proof. Note that L̂ and M̂ are contained in Ω̂. So L̂M̂ ⊂ Ω̂. Let πA denote a
uniformizing parameter of A. Then πA ∈ LM ⊂ L̂M̂ . So it is enough to show that
Ω̂ = L̂[πA]. Note that Ŝ[πA] is a finite Ŝ-module, hence it is a complete DVR [Coh].

Also Ŝ ⊂ Ŝ[πA] ⊂ Â and πA generate the maximal ideal of Â, hence πAS is the

maximal ideal of Ŝ[πA]. Moreover, the residue field of Ŝ is equal to S/mS = A/mA

which is same as the residue field of Â. Hence the residue field of Ŝ[πA] is also same

as the residue field of Â. So Ŝ[πA] = Â (by [Coh, Lemma 4]). Hence the quotient

field of Ŝ[πA] is Ω̂. But that means L̂[πA] = Ω̂. �

Corollary 3.2. Let the notation be as in the above lemma. If L̂ ⊂ M̂ then A/T is
an unramified extension.

Proof. Since Ω/M is a finite extension, so is Ω̂/M̂ . Hence Â is a finite T̂ -module.

The above lemma and the hypothesis implies that Ω̂ = M̂ . So Â = T̂ , i.e. A/T is
unramified. �

Remark 3.3. The above corollary can be viewed as a field theoretic generalization
of Abhyankar’s lemma which applies to wildly ramified extensions as well. In fact
in the above corollary if it is also assumed that L/K is tamely ramified then L̂ ⊂ M̂
is equivalent to saying that the ramification index of L/K divides the ramification
index of M/K.

Let k be any field.

Theorem 3.4. Let X → Y and Z → Y be Galois covers of regular k-curves
branched at a closed point τ in Y . Let τx and τz be closed points of X and Z re-
spectively, lying above τ . Suppose k(τz) = k(τ). Let W be an irreducible dominating
component of the normalization of X×Y Z containing the closed point (τx, τz). Then
W → Y is a Galois cover ramified at τ and the decomposition subgroup of the cover
at τ is the Galois group of the field extension QF(ÔX,τx) QF(ÔZ,τz )/QF(ÔY,τy ).

Note that all fields here can be viewed as subfields of QF(ÔW,(τx,τw)).
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Proof. Let R = OY,τ . Note that R is a DVR and let K be the quotient field of
R. Let L and M be the function field of X and Z respectively and Ω = LM be
their compositum. By definition W is an irreducible regular curve with function
field Ω and the two projections give the covering morphisms to X and Y . Let τw
denote the closed point (τx, τz) ∈W and A = OW,τw . Since τw lies above τx under
the morphism W → X and above τz under the morphism W → Z, we have that
A ∩ L = OX,τx(= S say) and A ∩M = OZ,τz (= T say). Since k(τz) = k(τ) and
k(W ) = k(X)k(Z) we get that k(τw) = k(τz)k(τx) = k(τx). But this is same as

A/mA = S/mS . So using Lemma 3.1, we conclude that L̂M̂ = Ω̂.
The decomposition group of the cover W → Y at τw is given by the Galois

group of the field extension Ω̂/K̂ ([Bou, Chapter 6, Section 8.5, Corollary 4]).

This completes the proof because Ω̂ = L̂M̂ = QF (ÔX,τx)QF (ÔZ,τz ) and K̂ =

QF (ÔY,τ ). �

Proposition 3.5. Let Φ : X → Y be a G-cover of regular k-curves ramified at
τx ∈ X and let τ = Φ(τx). Let Gτ and Iτ be the decomposition subgroup and
the inertia subgroup respectively at τx. Let N ≤ Iτ be a normal subgroup of Gτ .
Suppose there exist a Galois cover Ψ : Z → Y of regular k-curves ramified at τz ∈ Z
with Ψ(τz) = τ and k(τz) = k(τ) such that the fixed field QF(ÔX,τx)N is same as

the compositum QF(ÔZ,τz )k(τx). Let W be an irreducible dominating component
of the normalization of X ×Y Z containing (τx, τz). Then the natural morphism
W → Z is a Galois cover. The inertia group and the decomposition group at the
point (τx, τz) are N and an extension of N by Gal(k(τx)/k(τ)) respectively.

Proof. Let τw ∈ W be the point (τx, τz). Applying Theorem 3.4, we obtain that
the decomposition group of the Galois cover W → Y at τw is isomorphic to
Gτw = Gal(QF(ÔX,τx) QF(ÔZ,τz )/QF(ÔY,τ )). Since QF(ÔZ,τz ) ⊂ QF(ÔX,τx),

we have Gτw = Gτ = Gal(QF(ÔX,τx)/QF(ÔY,τ )). Since k(τz) = k(τ), the in-
ertia group and the decomposition group of the cover Z → Y at τz are both
Gal(QF(ÔZ,τz )/QF(ÔY,τ )). Since QF(ÔX,τx)N = QF(ÔZ,τz )k(τx), we also ob-

tain that Gal(QF(ÔZ,τz )k(τx)/QF(ÔY,τ )) = Gτ/N . Moreover, we have Gτ/Iτ =

Gal(k(τx)/k(τ)) = Gal(k(τx) QF(ÔY,τ )/QF(ÔY,τ )). Since ÔZ,τz/ÔY,τ is totally

ramified, QF(ÔZ,τz ) and k(τx) QF(ÔY,τ ) are linearly disjoint over QF(ÔY,τ ).

QF(ÔX,τx)

QF(ÔZ,τz )k(τx)

N

OO

QF(ÔZ,τz )

Gτ/Iτ
77nnnnnnnnnnn

QF(ÔY,τ )k(τx)

hhQQQQQQQQQQQQQ

QF(ÔY,τ )

Gτ/N

OO

Gτ/Iτ

66mmmmmmmmmmmmm

ggPPPPPPPPPPP

So Gal(QF(ÔZ,τz )k(τx)/QF(ÔZ,τz )) = Gal(k(τx)/k(τ)). Hence the decompo-

sition group of W → Z at the point τw is Gal(QF(ÔX,τ )/QF(ÔZ,τz )). But
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this group is an extension of N by Gal(k(τx)/k(τ)). Finally, the inertia group

is Gal(QF(ÔX,τ )/QF(ÔZ,τz )k(τx)) = N . �

From here onwards, let k be an algebraically closed field of characteristic p > 0.

Theorem 3.6. Let Φ : X → Y be a G-Galois cover of regular k-curves. Let τx ∈ X
be a ramification point and τ = Φ(τx). Let I be the inertia group of Φ at τx. There
exists a cover Ψ : Z → Y of deg |I|, such that the cover W → Z is étale over
τz where W is the normalization of X ×Y Z and τz ∈ Z is such that Ψ(τz) = τ .
Moreover if there is no epimorphism from G to any nontrivial quotient of P where
P is the p-sylow subgroup of I then W → Z is a G-cover of irreducible regular
k-curves.

Proof. Since I is the inertia group, it is isomorphic to P oµn where (p, n) = 1 and
µn is a cyclic group of order n. First we shall reduce to the case I = P . Let y be
a local coordinate of Y at τ such that k(Y )[y1/n] ∩ k(X) = k(Y ). Let Z1 be the
normalization of Y in k(Y )[y1/n]. Then Z1 → Y is a µn-cover branched at τ such
that k(Z1) and k(X) are linearly disjoint over k(Y ). Let τz1 ∈ Z1 be a point lying
above τ . Let X1 be the normalization of X ×Y Z1. Then by the above proposition,
Φ1 : X1 → Z1 is a G-cover of irreducible regular k-curves and the inertia group at
(τx, τz1) is P .

Let Y1 = Z1, τx1 = (τx, τz1) and τ1 = τz1. Then Φ1 : X1 → Y1 is a G-
cover with Φ1(τx1) = τ1 and the inertia group of this cover at τx1 is P . Once
we obtain a cover Z → Y1 satisfying the conclusions of the theorem for the cover
Φ1 : X1 → Y1 and closed points τx1 and τ1, then the cover Z → Y , obtained by
the composition Z → Y1 → Y , satisfies the conclusions of the theorem. This is
because the morphism X ×Y Z → Z is same as X1 ×Y1

Z → Z and the degree
of the morphism Z → Y is |P |n = |I|. So replacing Φ : X → Y , τx and τ by
Φ1 : X1 → Y1, τx1 and τ1 respectively, we may assume that I = P .

Let y be a regular parameter of Y at τ . Then k(Y )/k(y) is a finite extension.
Since Y is a regular curve, we get a finite morphism α : Y → P1

y such that α(τ) is

the point y = 0 and α is étale at τ (as ÔY1,τ = k[[y]]).

Note that QF(ÔX,τx)/k((y)) is a P -extension. By [Ha1, Cor 2.4], there exist a
P -cover V → P1

y branched only at y = 0 (where it is totally ramified) such that

QF(ÔV,θ) = QF(ÔX,τx) as extensions of k((y)). Here θ is the unique point in V
lying above y = 0. Since V → P1

y is totally ramified over y = 0 and Y → P1
y is

étale over y = 0, the two covers are linearly disjoint. Let Z be the normalization
of V ×P1

y
Y . Then the projection map Z → Y is a P -cover. Let τz ∈ Z be the

closed point (θ, τ). By Lemma 3.1, QF(ÔZ,τz ) = QF(ÔV,θ) QF(ÔY,τ ) = QF(ÔX,τx).
Applying Proposition 3.5 with N = {e}, we get that an irreducible dominating
component W of the normalization of X ×Y Z is a Galois cover of Z such that the
inertia group over τz is {e}. Hence the normalization of X ×Y Z is a cover of Z
étale over τz.

Moreover, there is no epimorphism from G to any nontrivial quotient of P implies
that k(Z) and k(X) are linearly disjoint over k(Y ). Hence W → Z is a G-cover. �

Theorem 3.7. Let Φ : X → P1 be a G-Galois cover of regular k-curves. Suppose
Φ is branched only at one point ∞ ∈ P1 and the inertia group of Φ over ∞ is I. Let
P be a subgroup of I such that I1 ⊃ P ⊃ I2. Suppose there is no epimorphism from
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G to any nontrivial quotient of P . Then there exists a G-cover W → P1 ramified
only at ∞ and the inertia group at ∞ is P .

Proof. Let n = [I : I1] be the tame ramification index of Φ at ∞. Let x be a local
coordinate on P1 such that the point ∞ is x = ∞. Let P1

y → P1
x be the Kummer

cover obtained by sending yn to x. Since Φ is étale at x = 0 and the cover P1
y → P1

x

is totally ramified at x = 0 the two covers are linearly disjoint. So letting W to
be the normalization of X ×P1

x
P1
y, we obtain a G-cover Φ1 : W → P1

y of regular
k-curves. Moreover, by Abhyankar’s lemma, Φ1 is ramified only at y =∞ and the
inertia group of Φ1 at y = ∞ is the subgroup I1 of I. So replacing Φ by Φ1, we
may assume I = I1. Also since I1/I2 is abelian, P is a normal subgroup of I.

Let τ ∈ X be a point above x = ∞. Let S = ÔX,τ and R = ÔP1,∞ then

R = k[[x−1]] and Gal(QF (S)/QF(R)) = I. Let L = QF(S)P . Then by Proposition
2.7, L = QF(R)(α1, . . . , αl) where αi ∈ QF(S) is such that vR(αpi − αi) = −1 for
1 ≤ i ≤ l. Let T be the normalization of R in L. Then Spec(T ) is a principal
P -cover of Spec(R). By [Ha1, Corollary 2.4], this extends to a P -cover Ψ : Z → P1

x

ramified only at x =∞, where it is totally ramified. Let τz ∈ Z be the point lying
above x = ∞, then QF(ÔZ,τz ) = L = QF(S)P . By Lemma 2.6, dT/R = 2|P | − 2.
So by Riemann-Hurwitz formula, the genus of Z is given by

2gZ − 2 = |P |(0− 2) + dT/R

Hence gZ = 0. So Z is isomorphic to P1.
Since there is no epimorphism from G to any nontrivial quotient of P , Φ and Ψ

are linearly disjoint covers of P1
x. Let W be the normalization of X ×P1

x
Z. Now we

are in the situation of Proposition 3.5. Hence the G-cover W → Z is branched only
at τz and the inertia group at τz is P . This completes the proof, as Z is isomorphic
to P1. �

Remark 3.8. Note that if G is a simple group different from Z/pZ then the group
theoretic hypothesis of the above results are satisfied.

Corollary 3.9. Let Φ : X → P1 be a G-Galois cover of regular k-curves branched
only at one point ∞ ∈ P1 and the inertia group of Φ over ∞ is I. Suppose there
is no epimorphism from G to any nontrivial quotient of I2. Then the conjugates of
I2 generate G.

Proof. Applying the above theorem with P = I2, we get an étale G-cover of A1

with the inertia group I2 at ∞. Let N be the normal subgroup of G generated
by the conjugates of I2. By Galois theory, N leads to a G/N -Galois cover of P1

which is étale over A1 and has trivial inertia group at ∞. So N = G, as P1 has no
nontrivial étale cover. �
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