11/16/21, 10:29 PM

Commutative Algebra and Algebraic Geometry page 1

http://dx.doi.org/10.1090/conm/390/07289

Contemporary Mathematics
Volume 390, 2005

Simultaneous Surface Resolution in Quadratic and
Biquadratic Galois Extensions

Shreeram S. Abhyankar and Manish Kumar

ABSTRACT. We show that simultaneous surface resolution is always possible
in a quadratic extension, and if the characteristic is different from two then
in every compositum of such extensions. We also construct examples to show
that the latter is not always possible if the characteristic is two.

1. Introduction

Let K be a two dimensional algebraic function field over an algebraically closed
ground field k. Recall that K/k has a minimal model means that amongst all
the nonsingular projective models of K/k there is one which is dominated by all
others (basic reference [A09]). Also recall that K/k has a minimal model if and
only if it is not a ruled function field, i.e., K is not a simple transcendental field
extension of a one dimensional algebraic function field over k (see [Z02]). A finite
algebraic field extension L/K is said to have a simultaneous resolution if there exist
nonsingular projective models V and W of K/k and L/k, respectively, such that
W is the normalization of V in L. Given any prime number ¢ # char(K), where
char denotes characteristic, in [A02] it was shown that if ¢ < 3 and L/K is a cyclic
Galois extension of degree ¢ then it has a simultaneous resolution, whereas if ¢ > 3
and K/k has a minimal model then there exists a cyclic Galois extension L/K
of degree ¢ which has no simultaneous resolution. At the September 2003 Galois
Theory Conference in Banff (Canada), Ted Chinberg asked whether simultaneous
resolution was always possible if L/ K was Galois with Galois group a direct sum of
any finite number of copies, say m, of a cyclic group Z; of order 2. The purpose of
this note is to prove yes if either char(K) # 2 or m = 1, and no if char(K) =2 =m
and K/k has a minimal model. This also provides a negative answer to the question
which David Harbater raised at that conference and which asks if a positive answer
for two Galois groups implies a positive answer for their direct sum. It may be
noted that our yes answer remains valid also in the arithmetic case and in fact for
surfaces over any excellent domain.
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NOTATION. By M(R) we denote the maximal ideal in a (always noetherian)
local ring R. By a quadratic transform of a regular local domain R, with maximal
ideal M(R) and quotient field K, we mean a domain R’ which, for some nonzero
element X in M(R), can be expressed as a localization of R[(Y/X)yecar(r)) at
some prime ideal containing M(R); note that then R’ is a regular local domain
with quotient field K and the dimension of R’ is < the dimension of R. By a two
dimensional quadratic sequence we mean an infinite sequence (R;)i=01,2, .. of two
dimensional regular local domains such that R; is a quadratic transform of R;_;
for all © > 0. By a two dimensional regular semilocal domain we mean a noetherian
domain S having at least one and most a finite number of maximal ideals such that
the localization of S at any maximal ideal in it is a two dimensional regular local
domain. For any element A in a local ring R we put ordgA = oo if A = 0, and if
A # 0 then

ordr A = the largest nonnegative integer e with A € M(R)®.

Moreover, for any polynomial
F(Z)=Y_ AZ
i

in an indeterminate Z with coefficients A; in R we put ordgF(Z) = oo if 4; =0
for all 4, and if A; # 0 for some ¢ then

ordgF(Z) = min(i + ordg4;)

where the min is taken over all those 7 for which A; # 0.

A ring (always commutative with 1) R is said to be pseudogeometric if for any
prime ideal P in R, the integral closure of R/P in any finite algebraic field extension
of its quotient field is a finite (= finitely generated) (R/P)}-module. Obviously any
field is pseudogeometric and any homomorphic image of any pseudogeometric ring is
pseudogeometric. It is also well-known that: every affine ring over (= finitely gener-
ated ring extension of) a pseudogeometric ring is pseudogeometric, the localization
of any pseudogeometric ring at any multiplicative set in it is pseudogeometric, and
every complete local ring is pseudogeometric

2. Local Theory

NOTATION FOR LEMMA 1 AND THEOREM 1. Let R be a two dimensional
regular local domain with quotient field K and M(R) = (X,Y)R. For 1 < j <n,
where n is a positive integer, let

F; =Fj(Z)=2Z*+ A;Z + B,

be a monic quadratic polynomial in an indeterminate Z with A;, B; in R. Let

C; = A — 4B;
and
J={j:1<j<nwith C; # 0}
with
c=]]c¢
jeJ
and
F=F2z)= ][] Fi(2.
1<5<n
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Let L be a splitting field of F' over K, and let S be the integral closure of R in L.

LEMMA 1. For 1 < j < nlet L; be the splitting field of F; over K in L, and
let S; be the integral closure of R in L;. Then we have the following.
(1.0) Assume that char(K) # 2 and for every j € J we have

Cj = Djer Y@

with D; € R\ M(R) and nonnegative integers r;, s;. For any integer r, let ¥ denote
the residue of r modulo 2, i.e., 7 is the unique integer in {0,1} such that r — 7 is
even. Then for every j € J there exists H; € L with

H} =D;X7Y%
and, for any such H;, upon letting
J={jeJ:(7.5)=(01)}
J'={jeJ:(7,5)=(10)}
J"={jeJ:(7,5)=(1,1)}

we have the following:

(1) f JJUJ”"UJ" = then S is a two dimensional regular semilocal domain
and for its localization 7" at any maximal ideal in it we have M(T) = (X,Y)T.

(i’) For every j € J' we have S; = R[H;] = a two dimensional regular local
domain with M(S;) = (X, H;).

(i) For every | € J” we have S; = R[H,] = a two dimensional regular local
domain with M(S;) = (H,,Y).

(i) If J # @ = (J"UJ") then S is a two dimensional regular semilocal domain
and for its localization T at any maximal in it we have with M(T") = (X, H;) where
j is any element of J'.

("I J" # 0= (J'UJ"”) then S is a two dimensional regular semilocal domain
and for its localization 7" at any maximal ideal in it we have with M(T") = (H,,Y)
where | is any element of J”.

(iii) If J #£ @ # J” then S is a two dimensional regular semilocal domain and
for its localization T at any maximal ideal in it we have with M(T) = (H;, H;)
where j and [ are any elements of J' and J” respectively.

(iii") If J' # 0 # J"” then S is a two dimensional regular semilocal domain and
for its localization 7" at any maximal ideal in it we have with M (T} = (H./H;, H;)
where j and u are any elements of J' and J"' respectively.

(iii”) If J £ @ £ J" then S is a two dimensional regular semilocal domain and
for its localization T at any maximal ideal in it we have with M(T) = (H;, H,/H;)
where [ and u are any elements of J” and J"/ respectively.

(iv) If (J'UJ") # @ or J” = () then S is a two dimensional regular semilocal
domain.

(v) If (JUJ") =0 and J” # 0 and R’ is any two dimensional quadratic
transform of R, then the integral closure S’ of R’ in L is a two dimensional regular
semilocal domain.

(1.1) Assume that char(K) # 2 and for every j € J we have

C,=D;X"Y"%
with D; € R\ M(R) and nonnegative integers r;, s;. Then either S is a two dimen-
sional regular semilocal domain, or for every two dimensional quadratic transform
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R’ of R we have that the integral closure S’ of R’ in L is a two dimensional regular
semilocal domain.

(1.2) Assume that n =1 and there exists 0 # a € K together with 3 € K such
that for

Fl=F{(Z)=a?F(aZ+B)=2Z*+AZ+ B

we have F{(Z) € R[Z] with ordgF](Z) = 1. Then S is two dimensional regular
semilocal domain.

(1.3) Assume that char(K) =2 =n and

A;=XY* and A,=XY°FE with B =By=Y
where
a = a positive integer

and

E = X*'Y™ with nonnegative integers ¢, u at least one of which is positive.

Let H be a root of Fy in L;. Then 57 is a two dimensional regular local domain
with M(S;) = (X,H)S1, and S is a two dimensional nonregular local domain.
Moreover, L/K is Galois with Galois group Z; @ Z,.

PROOF. To prove (1.0) note that L; = K(H;). Also note that (i) follows from
the discriminant theory given in [A03], (i) and (i”) are straightforward, and, in
view of (i) (resp: (i")), (ii’") (resp: (ii”)) follows by taking

(Rj, Lj,X, Hj) and (Fl, ey Fj_l, Fj+1, caay Fn)
(resp: (Rlv Lh HE,Y) and (Fl’ v 9F1[715I?l+13 BRI Fn))
for (R,K,X,Y) and (Fy,...,F,) in (i). Likewise, in view of ('), (iii) follows by
taking
(Rj,Lj,X, Hj) a.nd (Fl, ey Fj_l, Fj+1, e ,Fn)
for (R,K,X,Y) and (F,..., F,) in (i"). Likewise, in view of (i') (resp: (i")), (iii’)
(resp: (iii”)) follows by taking
(Rj, Lj,X, HJ) and (Fl, ey FJ‘*]_, Fj+1, ee s ,Fn)
(resp: (Ry, Ly, H,,Y) and (Fy,...,Fi_1, Fiy1,.-., F))
for (R, K, X,Y) and (F1,...,F,) in (ii") (resp: (ii')). (iv) follows from (ii’), (ii"),
(iii), (iii’), and (iii”). To prove (v) suppose that (J' U J"”) = @ and J" £ 0 and let
R’ is any two dimensional quadratic transform of R. Suitably relabelling X,Y we
may assume that Y/X € R'. Now f Y/X € M(R') then M(R') = (X,Y/X}R' and
for all j € J we have
C, = D; X"5Y*s
where D; € R'\ M(R') with r; = r; + s; and s} = s;, and hence r} = 0 with
s—; = 0 or 1, and so we are reduced to (iv). Likewise if Y/X ¢ M(R') then
M(R) = (X,Y")R' for some Y' € M(R'), and for all j € J we have
Cj = DiX"i(Y")%
where D} = D;(Y/X)* € R'\ M(R') with r; = r; + s; with s; = 0, and hence
7"_3 + ¥ = 0, and so we are again reduced to (iv).
(1.1) follows from parts (iv) and (v) of (1.0).
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To prove (1.2) it suffices to note that L is a splitting of F} over K.

To prove (1.3), since A; € M(R) with B =Y € M(R)\ M(R)?, we see
that S; is a two dimensional regular local domain with M(S;) = (X, H}S;. Also
Y = H? + XY*H and substituting this in

F)Z)=Fy(Z+H)=2*+XY*EZ+ (Y + H* + XY"EH)

we get

Fy(Z)=Z°+ XY°EZ + XY°H(1 + E)
where

Ye = (H?+ XY*H)®

= (H?+ X[H?+ XY°H|°H)"

= (H? 4+ X[H?* + X(H? + XY°H)*H|H)"

= H?*D* with D*e€ R\ M(R)
and hence

Fy(Z)=Z? + XH**ED*Z + XH***'D** with D** € R\ M(R)
and therefore
F)(Z)=H *F)(ZH*) = Z*+ XH®ED*Z + XHD**.

Consequently “the irreducible surface Fj'(Z) = 0 is devoid of singular curves” and
hence, by the following Normality Theorem 3, we see that S = S;[I] where [ is a
root of £’ in L. Since the coefficients of Z! and Z° in F3/(Z) belong to M(R) and
M(R)? respectively, it follows that S is a two dimensional nonregular local domain.
Since F1(Z) and FY(Z) are irreducible, we also see that L/K is Galois with Galois
group Zo & Zs.

THEOREM 2. Let (R;);=0,1,2,... be a two dimensional quadratic sequence with
Ry = R, and let S; be the integral closure of R, in L. Then we have the following.

(2.1) If char(K) # 2 and R is pseudogeometric, then S; is a two dimensional
semilocal regular domain for infinitely many 1.

(2.2) If n = 1 with R pseudogeometric and R/M (R) algebraically closed, then
S; is a two dimensional semilocal regular domain for infinitely many .

(2.3) If char(K) = 2 = n with F; and F5 as in Lemma (1.3) and for 1 =
0,1,2,... we have R; = R[X/Y"]|p, where P; is the prime ideal in R[X/Y"] gen-
erated by X/Y* and Y, then S, is a two dimensional nonregular local domain for
every 1, and L/K is Galois with galois group Z, & Zs.

PROOF. To prove (2.1), by applying the following Total Embedded Curve
Resolution Theorem 4 to “the plane curve C' = 0,” for all sufficiently large 7 we
can write C = DX]Y®, with D € R; \ M(R;) and nonnegative integers r, s, where
M(R;) = (X;,Y;)R;. This amounts to writing C; = D; X;’Y;” for all j € J with
D; € R;\ M(R;) and nonnegative integers r;,s;. Now we are done by Lemma
(1.1).

To prove (2.2), in view of Lemma (1.2) and Theorem (2.1), it suffices to show
that, assuming char(K) = 2 with R pseudogeometric and R/M(R) algebraically
closed, given any irreducible F(Z) = Z? + AZ + B € R[Z], for infinitely many i
there exists 0 # a; € K and f3; € K such that for F/(Z) = a; *F(a;Z + ;) we have
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F{(Z) € R;[Z] with ordg, F(Z) = 1. But this is Abhyankar’s Thesis Theorem 5
cited below.

To prove (2.3) note that, for every 1, relative to the basis (X/Y*,Y) of M(R;)
we have

A = (XYY and Ay = (X/Y;)YTE
with 0 # £ € M(R;) and positive integer a -+ 7. So we are done by Lemma (1.3).

NORMALITY THEOREM 3. This refers to the well-known theorem which
says that if N is a nonzero nonunit irreducible element in a regular local domain
2 such that, for every height one prime ideal P in Q/(NQ), the localization of
Q/(NQ) at P is regular, then Q/(NQ) is normal; for instance see (Q15)(T69),
(Q15)(T70), (Q19)(T86), and (Q19)(T88) of Lecture L5 of [A09]. In our case
Q = the localization of R[Z] at the maximal ideal generated by M(R) and Z, and
N = F}(Z).

TOTAL EMBEDDED CURVE RESOLUTION THEOREM 4. In (10.7) on
page 44 of [A07] and again in (5.12) on page 1595 of [A08] it is proved that if
(' is any nonzero element in a two dimensional pseudogeometric local domain R
and (R;)i=0,1,2,... is any two dimensional quadratic sequence with Ry = R then for
all large enough 7 we have C = DX]Y?, with D € R; \ M(R;) and nonnegative
integers r, s, where M(R;) = (X, Y))R;.

ABHYANKAR’S THESIS THEOREM 5. See §8 and §9 of [A01], Proposition
10 of [A05], and Theorems 1 to 12 of [A04].

3. Global Theory

Let K/k be a two dimensional excellent function field, i.e., K is a finitely
generated field extension of the quotient field of an excellent domain k£ such that
the transcendence degree of the said extension plus the (Krull) dimension of k
equals two. In [A05] and [A06] it was shown that then there exists a nonsingular
projective model of K /k and moreover, after applying a finite number of successive
quadratic transformations to such a model, it can be made to dominate any given
projective model of K/k. For the case of algebraically closed ground fields, this was
proved in [Z01] for zero characteristic and in [A01] for nonzero characteristic.

Note that if V' is a model of K/k which is obtained by applying a finite number
of successive quadratic transformations to a nonsingular projective model V of K/k
then V' is again a nonsingular projective model of K/k. We call V'’ an iterated
quadratic transform of V. Note that in applying a quadratic transformation to V
we are permitted to simultaneously blow up a “finite number of points of V.” Also
note that, since we have adopted the model view point, a “point” of V" actually
means a two dimensional regular local domain R whose residue field is R/M(R).

THEOREM 6. For any two dimensional excellent function field K/k we have
the following.

(6.1) If char(K) # 2 then, given any nonsingular projective model V' of K /k and
any finite Galois extension L/K whose Galois group is the direct sum of a finite
number of copies of a cyclic group of order 2, there exists an iterated quadratic
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transform V' of V such that the normalization W' of V' in L is a nonsingular
projective model of L/k.

(6.2) If char(K) = 2 then, given any nonsingular projective model V' of K/k
such that the residue field of any point of it is algebraically closed and given any
algebraic field extension L/K of degree 2, there exists an iterated quadratic trans-
form V' of V such that the normalization W’ of V'’ in L is a nonsingular projective
model of L/k.

(6.3) If char( K') = 2 with algebraically closed ground field k such that K/k has
a minimal model then there exists a Galois extension L/K, with Galois group a
direct sum of 2 copies of a cyclic group of order 2, such that there does not exist
any nonsingular projective model V' of K/k whose normalization W’ in L is a
nomnsingular projective model of L/k.

PROOF. In case of (6.1) and (6.2) let V be the given nonsingular projective
model of K/k, and in case of (6.3) let V be the minimal model of K/k. In a moment
we shall construct a sequence of nonsingular projective models (V;);—o,1,2,... of K/k,
with Vo = V, such that V; is an iterated quadratic transform of V;_; for all 7 > 0.
In case of (6.1) and (6.2) let L/K be the given Galois extension, and in case of
(6.3) let L/K be the Galois extension with Galois group a direct sum of 2 copies
of a cyclic group of order 2, which is to be constructed.

In all the cases let (W;)i=0,1,2,... be the sequence of projective models of L/k
such that W; is the normalization of V; in L for all i > 0. Let H(W;) be the set of
all singular points of W;. Let G(V;) be the set of all those points R of V; for which
there is a point S of H(W;) such that S dominates R. For each i > 0, since W; is
a “normal surface,” H(W,) is a finite set, and hence so is G(V;). For each i > 0,
we decree that V; be the quadratic transform of V;_; obtained by quadratically
blowing up G(V;—1). Note that for each i > 0, clearly G(V;) is contained in the
inverse image of G(V;_1) under the domination map V; — V;_;. What we need to
show is that, in case of (6.1) and (6.2), G(V;) is empty for all large enough ¢ and,
in case of (6.3), G(V;) is nonempty for all 1.

If G(V;) is nonempty for all 7 then we can take a point R; in G(V;) such that
R; is a two dimensional quadratic transform of R;_; for all ¢ > 0. In case of (6.1)
and (6.2) this is impossible by (2.1) and (2.2) respectively.

In case of (6.3) let R be any point of V, let X,Y be any generators of M(R),
let Fy and F, be as in Lemma (1.3), let L be a splitting field of FyF; over K,
and for i = 0,1,2,... let R; = R[X/Y"|p, where P; is the prime ideal in R[X/Y?]
generated by X/Y* and Y. Then by (2.3) we know that L/K is Galois with Galois
group Zq @ Zo and, for all 4, the integral closure S; of R; in L is a two dimensional
nonregular local domain for every <. It follows that, for all ¢, the point R; belongs
to G(V;) and hence G(V;) is nonempty.

4. Problems

PROBLEM 7. In (6.2), how far can you remove the assumption that the residue
fields are algebraically closed.

PROBLEM 8. In (6.3), how far can you remove the assumption that K/k has
a minimal model.
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