
ON THE COMPOSITUM OF WILDLY RAMIFIED EXTENSIONS

MANISH KUMAR

Abstract. The ramification filtration on the compositum of two wildly ram-

ified extensions are computed in various cases. Some positive results towards

Abhyankar’s Inertia conjecture have been also proved.

1. Introduction

The higher ramification filtration of a wildly ramified extension contains vital
information about the extension. For instance the degree of the different is encoded
in this data (Hilbert’s different formula). This in turn helps in computing the genus
of a (wildly ramified) cover of a given curve. For more details see [Pri] where Galois
action on ramification filtration is also studied. But computing ramification filtra-
tion is a difficult task. For cyclic extensions, these computations can be found in
[Gar]. In this manuscript, we compute the ramification filtration for the composi-
tum of two p-cyclic and p2-cyclic extensions in a few of cases (Proposition 3.1, 3.2,
3.3).

For an algebraically closed field k of characteristic p in [Ha1], Harbater showed
that every Galois cover of the local field k((x)) with Galois group a p-group P can
be extended to a P -cover of P1

k branched only at x = 0. This was extended by Katz
to all finite Galois covers of k((x)) in [Kat]. We will call such covers of P1 as the
Harbater-Katz-Gabber cover associated to the local cover.

Let G be a quasi-p group, i.e. a group generated by its Sylow-p subgroups, and
I ≤ G be such that I = P oZ/nZ where P is a p-group whose conjugates generate
G and (n, p) = 1. Abhyankar’s Inertia conjecture asserts that there exists a G-
Galois cover X → P1

k branched only at ∞ such that the inertia group at a point of
X lying above ∞ is I. It is easy to see that the inertia group at any ramified point
of a Galois cover of P1

k branched only at ∞ has the above mentioned property. For
a pair (G, I) as above, we will say that (G, I) is realizable if Abhyankar’s Inertia
conjecture is true for (G, I). This conjecture is largely open though there are some
results in support of the conjecture. For instance Harbater in [Ha1] showed that if
(G,P ) is realizable for a p-subgroup P of G and Q is a p-subgroup of G containing P
then (G,Q) is realizable. There are some positive results for specific Galois groups,
for instance, see [BP], [MP] and [Obu].

It is shown in Corollary 4.6 that if the inertia conjecture holds for every p-
subgroup of a quasi-p group G then the inertia conjecture holds for every p-group
of G×P for any p-group P under the hypothesis that there is no epimorphism from
G to Z/pZ. It is also shown in Theorem 4.8 that if (G,P ) is realizable where P is
a p-subgroup of G then (G × Z/pZ, Q) is also realizable for any index p-subgroup
Q of P × Z/pZ such that the projection of Q on P and Z/pZ are surjective. As a
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consequence it is shown that if the inertia conjecture holds for every p-subgroup of
G then the same is true for G× (Z/pZ)n (Corollary 4.9). Finally in Theorem 4.10
we assume that there is no epimorphism from G→ Z/pZ. We show that if (G,P ) is
realizable where P is any p-subgroup of G with an epimorphism a : P → Z/prZ then
(G×Z/prZ, Q) is realizable where Q is any index p subgroup of P ×Z/pr−1Z Z/prZ
such that the projection of Q on the two factors are surjective. Also in this case
Q is isomorphic to P and the ramification filtration on Q for the new cover can
be computed explicitly in terms of the ramification filtration on P for the given
G-cover. These results use the computation of the ramification filtration of the
compositum of local field extensions, the existence of Harbater-Katz-Gabber covers
and the results of [Kum].

Acknowledgments. The author thanks the referee for his valuable comments and
encouragement which helped in improving this paper significantly. A part of this
work was done while the author was at Universität Duisburg-Essen, where it was
supported by SFB/TR-45 grant.

2. Ramification filtration and Artin-Schreier-Witt theory

Let L/K be a Galois extension of local fields with Galois group G. Let vK and
vL denote the valuation associated to K and L respectively, with the value group
Z. As in [Ser], define a decreasing filtration on G by

Gi = {σ ∈ G : vS(σx− x) ≥ i+ 1, ∀x ∈ S}.
Note that G−1 = G and G0 is the called inertia subgroup of G. This filtration is
called the lower (numbering) ramification filtration. For every i, Gi is a normal
subgroup of G. One extends this filtration to the real line as follows: for u ∈ R, u ≥
−1, let m be the smallest integer such that m ≥ u then Gu = Gm. The upper
(numbering) ramification filtration on G is defined as Gv = Gψ(v) where ψ is the
inverse of the Herbrand function φ given by

φ(v) =

∫
0

v du

[G : Gu]
.

Note that φ is a bijective piece-wise linear function. Let Gv+ = ∪ε>0G
v+ε.

A number u ≥ 0 (respectively l ≥ 0) is called an upper jump (respectively a lower
jump) of the ramification filtration of G if Gu 6= Gu+ (respectively Gl 6= Gl+). Let
u1, . . . , ur be the upper jumps, l1, . . . , lr be the lower jumps and si = [G : Gui ] =
[G : Gli ] for 1 ≤ i ≤ r. Note that G0 is a p-group iff s1 = 1, i.e. L/K is purely
wildly ramified.

Remark 2.1. A straight forward computation shows that if G0 is a p-group and
if we set l0 = u0 = 0 then for i ≥ 1,

ui =

i∑
j=1

lj − lj−1

sj
and li =

i∑
j=1

(uj − uj−1)sj .

Remark 2.2. Note that for i ≥ 0, Gi = G iff Gi = G. Since φ(v) ≤ v, Gv =
Gφ(v) ⊃ Gv. This explains the “if part”. The “only if” is true because for v ≤ i,
φ(v) = v and hence ψ(v) = v.

Lemma 2.3. Let L/K be a finite Galois extension of local fields with the Galois
group G and H be a normal subgroup of G.
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(1) Let u1, . . . , ur be upper jumps of G/H then u1, . . . , ur are also upper jumps
of G.

(2) If H = Gi for some i, and l1, . . . , lr are lower jumps of H then l1, . . . , lr
are also lower jumps of G.

Proof. The statement (1) follows immediately from [Ser, IV, 1, Proposition 14]
by noting that if Gu+H/H ( GuH/H then Gu+ ( Gu. The statement (2) is a
consequence of [Ser, IV, 1, Proposition 2]. �

Corollary 2.4. Let L/K and M/K be Galois extensions of local fields with the
upper jumps of their Galois groups U = {u1, . . . , un} and V = {v1, . . . vm} respec-
tively. Let N be the cardinality of the set U ∪ V . If [LM : K] = pN then U ∪ V is
the set of all the upper jumps of Gal(LM/K).

Proof. Let G = Gal(LM/K). Applying the above lemma with H as Gal(LM/L)
and Gal(LM/M) we see that all the elements of U ∪V are upper jumps of G. Since
[LM : K] = pN , G has at most N upper jumps. �

Corollary 2.5. Let L/K and M/K be Galois extensions of local fields with the
Galois groups G and H respectively. Assume that the upper jumps of G and H are
U = {u1, . . . , un} and V = {v1, . . . vm} respectively. If U and V are disjoint then
U ∪ V is the set of all upper jumps of Gal(LM/K) = G × H. In fact the upper
ramification filtration on G×H is given by (G×H)u = Gu ×Hu.

Proof. Note that since U and V are disjoint, L and M are linearly disjoint over
K. We will prove the result by induction on [LM : K]. By Lemma 2.3 it is
clear that the elements of U ∪ V are upper jumps of Γ = Gal(LM/K) = G × H.
Without loss of generality we may assume that un > vm. Note that {e} = Hun =
(Γ/G)un = ΓunG/G. So we have Γun ⊂ G and hence Gun = (ΓunH)/H = Γun .
Let L1 = LG

un
. Then the extension L1/K is Galois with Galois group G/Gun and

the upper jumps are {u1, . . . , un−1}. By induction hypothesis, the upper jumps of
L1M/K are precisely U ∪ V \ {un} and (Γ/Gun)u = (G/Gun)u × Hu. Moreover
L1M = (LM)Γun

, hence un is the only other upper jump of Γ. This proves that
U ∪ V is the set of all upper jumps of Γ.

Since Hun is trivial, Γu = Gu ×Hu for u ≥ un. For u < un, note that

Γu/Gun = (Γ/Gun)u = (G/Gun)u ×Hu = (Gu ×Hu)/Gun .

Hence Γu = Gu ×Hu for u < un as well. �

Now on it is assumed that the fields under consideration are of characteristic p >
0. For a ring R of characteristic p, Wr(R) denotes the ring of Witt vectors of length
r over R. Let F : Wr(R)→ Wr(R) sending (a0, . . . , ar−1) to (ap0, . . . , a

p
r−1) be the

Frobenius homomorphism and let P denote the group endomorphism F −Identity
of (Wr(R),+).

Definition 2.6. Let L/K be a field extension. We say an element α ∈ L \ K is
an AS-element of L/K if αp − α ∈ K. Moreover if (K, vK) is a local field, L/K
is totally ramified and vK(αp − α) is coprime to p then α is said to be a reduced
AS-element. Also αp − α will be called a reduced element of K.

Definition 2.7. Let (a0, . . . , an−1) ∈ Wn(K). We will say that L/K is a field
extension corresponding to (a0, . . . , an−1) if there exist (α0, . . . , αn−1) ∈ Wn(L)
such that P(α0, . . . , αn−1) = (a0, . . . , an−1) and L = K(α0, . . . , αn−1).
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Remark 2.8. Let L/K be a totally ramified extension of local fields with per-
fect residue field. If α is an AS-element of L/K then there exist x ∈ K such
that α − x is a reduced AS-element of L/K. In fact more generally, for any
(a0, . . . , an−1) ∈ Wn(K) there exist (a′0, . . . , a

′
n−1) ∈ Wn(K) such that vK(a′i) is

coprime to p for all i and (a0, . . . , an−1) −w (a′0, . . . , a
′
n−1) = P(x0, . . . , xn−1) for

some (x0, . . . , xn−1) ∈Wn(K) ([Sch], [Tho, Proposition 4.1]). We will say that the
Witt vector (a′0, . . . , a

′
n−1) is reduced if vK(a′i) is coprime to p for all i.

Lemma 2.9. Let L/K be a pr-cyclic totally ramified extension of local fields with
perfect residue field. Then there exists a Witt vector (a0, a1, . . . , ar−1) ∈ Wr(L)
such that P(a0, a1, . . . , ar−1) = (α0, . . . , αr−1) ∈ Wr(K) is reduced and L =
K(a0, a1, . . . , ar−1). Let ni = −vK(αi). Then the upper jumps of L/K is n0,
max{n0p, n1}, max{n0p

2, n1p, n2}, . . ., max{nipr−1−i−1 : 0 ≤ i ≤ r − 2} and
max{nipr−i−1 : 0 ≤ i ≤ r − 1}.

Proof. The first statement follows from Artin-Schreier-Witt theory and Remark
2.8. Note that n0, n1, . . . , nr−1 are coprime to p. The conclusion on the upper
jumps is the content of [Gar, Theorem 1.1] applied to the Witt vectors a0, (a0, a1),
. . ., (a0, a1, . . . , ar−2) and (a0, a1, . . . , ar−1). �

Definition 2.10. Let L/K be a compositum of Artin-Schreier extensions. A subset
{α1, . . . , αn} ⊂ L\K is an AS-generating set of L/K if α1, . . . , αn are AS-elements
and L = k(α1, . . . , αn). Moreover the above set will be called an AS-basis if [L :
K] = pn.

Lemma 2.11. Let L = K(α1, . . . , αn) be a compositum of Artin-Schreier exten-
sions, where αi ∈ K̄, fi = αpi −αi ∈ K for all i and {α1, . . . , αn} is an AS-basis of
L/K. Let γ ∈ L be such that γp − γ ∈ K then γ = a1α1 + . . . anαn + x for some
a1, . . . , an ∈ Fp and x ∈ K.

Proof. Note that G = Gal(L/K) = (Z/pZ)n. By Galois theory Gal(L/K(γ)) is an
index p subgroup of G. Let γ(a1, . . . , an) = a1α1+. . .+anαn ∈ L where a1, . . . , an ∈
Fp. Then γ(a1, . . . , an)p − γ(a1, . . . , an) ∈ K. Moreover if some ai 6= 0 then
γ(a1, . . . , an) ∈ L \K because 1, α1, . . . αn are linearly independent over K. Hence
Gal(L/K(γ(a1, . . . , an))) is an index p-subgroup of G if (a1, . . . , an) 6= (0, . . . , 0).
From Artin-Schreier theory, we know that for b1, . . . , bn ∈ Fp, K(γ(a1, . . . , an)) =
K(γ(b1, . . . , bn)) iff

γ(a1, . . . , an)p − γ(a1, . . . , an) = c(γ(b1, . . . , bn)p − γ(b1, . . . , bn)) + xp − x
for some c ∈ Fp and x ∈ K. Equivalently, a1f1 + . . . + anfn = c(b1f1 + . . . +
bnfn) + xp − x. This is equivalent to xp − x = (a1 − cb1)f1 + . . . + (an − cbn)fn.
Since for each i, K(αi) and K(αj |1 ≤ j ≤ n, j 6= i) are linearly disjoint over
K, no nontrivial Fp-linear combination of f1, . . . , fn is of the form xp − x. Hence
xp−x = (a1−cb1)f1+. . .+(an−cbn)fn is equivalent to (a1, . . . , an) = c(b1, . . . , bn).

So we have shown that there are (pn − 1)/(p − 1) many distinct p-cyclic in-
termediate extensions of the form K(γ(a1, . . . , an))/K of L/K. Also there are
(pn − 1)/(p − 1) subgroups of index p in G. Hence by Galois theory K(γ) =
K(γ(a1, . . . , an)) for some a1, . . . , an not all zero. But this implies γp − γ =
c(γ(a1, . . . , an)p − γ(a1, . . . , an)) + xp − x for some c ∈ Fp and x ∈ K. Simpli-
fying, we obtain

(γ − (ca1α1 + . . .+ canαn)− x)p − (γ − (ca1α1 + . . .+ canαn)− x) = 0
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Hence γ = (ca1α1 + . . .+ canαn) + x+ d for some d ∈ Fp. �

3. Local theory

The fields considered in this section are local fields of characteristic p with perfect
residue field.

Proposition 3.1. Let L and M be distinct totally ramified Artin-Schreier exten-
sions of K corresponding to f and g respectively, where f, g ∈ K are reduced. Let
i be the upper jump of L/K and j be the upper jump of M/K. The ramification
filtration on the Galois group G = Gal(LM/K) is given as follows:

(1) If i < j then the upper jumps are i and j with Gi = G = (Z/pZ)2 and
Gj = Z/pZ.

(2) LM/K is not totally ramified iff for some a ∈ Fp and x ∈ K, f +ag+xp−
x ∈ k. In this case, i = j, the inertia group is Z/pZ and the only upper
jump is at i.

(3) If i = j and LM/K is totally ramified then there are two cases. If l =
−v(f + ag + xp − x) < i for some a ∈ Fp and x ∈ K then l ≥ 1 and the
upper jumps are l and i with Gl = G = (Z/pZ)2 and Gi = Z/pZ. Other
wise there is only one upper jump at i and Gi = G = (Z/pZ)2.

Proof. Let α, β ∈ K̄ be such that αp − α = f and βp − β = g. Since the upper
jump of L/K is i, v(f) = −i. Similarly, v(g) = −j.

Note that (1) follows from Lemma 2.9 and Corollary 2.4.
For (2) note that if f + ag + xp − x ∈ k for some a ∈ Fp and x ∈ K then

K(α+aβ)/K is an unramified extension of K. Hence LM/K is not totally ramified.
Conversely, if LM/K is not totally ramified then there exist γ ∈ LM \K such that
γp − γ ∈ k, since Gal(LM/K) = (Z/pZ)2 and K is a local field of characteristic
p. Now by Lemma 2.11, γ = aα + bβ + x for some x ∈ K and a, b ∈ Fp. So
γp − γ = a(αp − α) + b(βp − β) + xp − x ∈ k. Hence af + bg+ xp − x ∈ k. If a 6= 0
then dividing by a we get f + a′g + x′p − x′ ∈ k for some a′ ∈ Fp and x′ ∈ K.
Otherwise γ = bβ + x /∈ K, so b 6= 0. Hence v(γp − γ) = v(bg + xp − x) < 0. This
contradicts γp − γ ∈ k. The rest of (2) follows.

For (3) note that if i = j and l = −v(f + ag + xp − x) < i for some a ∈ Fp and
x ∈ K then l ≥ 1. This is because if l = 0 then LM/K will not be totally ramified.
Let h = f + ag + xp − x and γ be such that γp − γ = h then LM = LK(γ). So we
are reduced to (1). Hence the upper jumps are l and i.

Finally in the remaining scenario, if γ ∈ LM is such that γp − γ ∈ K and
(v(γp − γ), p) = 1 then in view of Lemma 2.11, v(γp − γ) = −i. Hence by [Kum,
Proposition 2.7] the first upper jump for LM/K is i. But the highest upper jump
for LM/K is the maximum of upper jumps for L/K and M/K. Hence the only
upper jump is i. �

We will now consider compositum of two p2-cyclic extensions.

Proposition 3.2. Let L and M be linearly disjoint totally ramified p2-cyclic ex-
tensions of K corresponding to the reduced Witt vectors (α0, α1) and (β0, β1) in
W2(K). Let the upper jumps of L/K and M/K be u1, u2 and v1, v2 respectively.
Let the upper jumps of G = Gal(LM/K) be w1, w2, . . .. The following holds:
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(1)

(u1, u2) =

{
(−vK(α0),−vK(α0)(p− 1)), if vK(α1) ≥ vK(α0)p

(−vK(α0),−vK(α1)), otherwise.

(v1, v2) =

{
(−vK(β0),−vK(β0)(p− 1)), if vK(β1) ≥ vK(β0)p

(−vK(β0),−vK(β1)), otherwise.

(2) If u1 6= v1 then w1 = min(u1, v1). Moreover if u1, u2, v1, v2 are all distinct
then these are the four upper jumps of G.

(3) Suppose u1 = v1. If there exist c ∈ Fp and x ∈ K such that l = −vK(α0 +
cβ0 + xp − x) < u1 then w1 = l otherwise w1 = u1. Moreover, if u2 6= v2

then l, u1, u2, v2 are the only upper jumps of G in the first case and w1 =
u1, u2, v2 are the only upper jumps of G with Gw1+ = (Z/pZ)2 in the latter
case.

Proof. Statement (1) is a direct consequence of Lemma 2.9. Without loss of gen-
erality, we may assume u1 ≤ v1.

Note that G = Gal(L/K)×Gal(M/K). Let H1 and H2 be the p-cyclic subgroups
of Gal(L/K) and Gal(M/K) respectively. Let (a0, a1) ∈ W2(L) and (b0, b1) ∈
W2(M) be such that P(a0, a1) = (α0, α1) and P(b0, b1) = (β0, β1). Note that
LH1 = K(a0) and MH2 = K(b0).

If u1 6= v1 then the upper jumps of Gal(K(a0, b0)/K) = G/(H1×H2) are u1, v1 by
Proposition 3.1. By Lemma 2.3, u1 is an upper jump of G which implies w1 ≤ u1.
Also since u1 is the first upper jump of G/(H1 × H2) and (G/(H1 × H2))u1+ is
non-trivial, we have

Gu1(H1 ×H2) = G and

H1 ×H2 ( Gu1+(H1 ×H2) ( G.

Since w1 is the first upper jump of G, by [Ser, IV, 2, Corollary 3] G/Gw1+ is a
group of exponent p. But G = (Z/p2Z)2 so Gw1+ ⊃ H1 × H2. If w1 < u1 then
Gw1+ ⊃ Gu1 . But this implies Gw1+ = G which contradicts that w1 is an upper
jump of G. So w1 = u1. The moreover part of the statement (2) follows from
Corollary 2.4.

For statement (3), we note that by Proposition 3.1, the upper jumps of G/(H1×
H2) = Gal(K(a0, b0)/K) are l, u1 if there exist c ∈ Fp and x ∈ K such that
l = −vK(α0 + cβ0 + xp − x) < u1. So by Lemma 2.3, l, u1, u2, v2 are upper jumps
of G. Also since the upper jumps of G/(H1 ×H2) are l, u1, we are in the previous
setup. Hence w1 = l. Moreover if u1 6= v1 then l, u1, u2, v2 are all distinct. So by
Corollary 2.4 these are all the upper jumps of G.

In the case where no such c and x exist, again by Proposition 3.1, the only upper
jump of G/(H1 × H2) is u1. So (G/(H1 × H2))u1+ = 1 and (G/(H1 × H2))u1 =
G/H1 × H2. But this is equivalent to Gu1+ ⊂ H1 × H2 and Gu1(H1 × H2) = G.
Again Gw1+ ⊃ H1 × H2 and if w1 < u1 then Gw1+ ⊃ Gu1 which would imply
Gw1+ = G contradicting that w1 is an upper jump. Hence w1 = u1. Also Gw1+

has index at most p2 in G. Moreover u2 and v2 are both greater than w1 and they
are upper jumps of G. Hence Gw1+ = H1×H2 is exactly of index p2 and u1, u2, v2

are the only upper jumps of G. �

Proposition 3.3. Let L and M be totally ramified Galois extensions of K. As-
sume that Gal(L/K) = Z/prZ and Gal(M/K) = P is a p-group with a normal
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subgroup N such that P/N ∼= Z/prZ. Suppose L ∩M = L ∩MN is a pr−1-cyclic
extension of K. Let (a0, . . . , ar−2) ∈ Wr−1(L ∩M) be such that (α0, . . . αr−2) =
P(a0, . . . , ar−2) ∈Wr−1(K) is a reduced Witt vector and L∩M = K(a0, . . . , ar−2).
Let u1, . . . , ur and v1, . . . , vs be the upper jumps of L/K and M/K respectively.
Then the following holds:

(1) The Galois group G = Gal(LM/K) ∼= P × Z/pZ.
(2) The upper jumps of Gal(L ∩M/K) = Z/pr−1Z are u1, u2, . . . , ur−1.
(3) Let a ∈ L and b ∈M be such that L = (L∩M)(a), MN = (L∩M)(b) and the

vectors P(a0, . . . , ar−2, a) = (α0, . . . , αr−2, α) and P(a0, . . . , ar−2, b) =
(α0, . . . , αr−2, β) are reduced Witt vectors in Wr(K). Then (a− b)p − (a−
b) = α − β. Set V = −vK(α − β). Suppose V is different from vi for
all 1 ≤ i ≤ s, then the only upper jumps of G are v1, v2, . . . , vs, V and
the ramification filtration on G is given by Gw = Pw × (Z/pZ)w where
(Z/pZ)w = Z/pZ for w ≤ −vK(α1 − cβ1) and trivial otherwise.

Proof. Note that G = Gal(L/K) ×Gal(L∩M/K) Gal(M/K) ∼= P ×Z/pr−1Z Z/prZ
where P → Z/pr−1Z is the epimorphism corresponding to the field extensions
M/L∩M/K. One obtains an explicit isomorphism P ×Z/pr−1Z Z/prZ ∼= P ×Z/pZ
by choosing a section θ of Z/prZ→ Z/pr−1Z and sending (a, b) ∈ P×Z/pr−1ZZ/prZ
to (a, b − θ(φ(a))). Note that L ∩M = K(a0, . . . , ar−2) is the unique pr−1-cyclic
sub-extension of K contained in L. So the only upper jumps of K(a0 . . . , ar−2)/K
are u0, . . . , ur−2. This proves (2).

Finally for (3), note that (0, . . . , 0, α−β) = (α0, . . . , αr−2, α)−w(α0, . . . , αr−2, β).
But the RHS equals P(a0, . . . , ar−2, a) −w P(a0, . . . , ar−2, b) which is same as
[(ap0, . . . , a

p
r−2, a

p)−w (ap0, . . . , a
p
r−2, b

p)]−w (0, . . . , 0, a− b). Simplifying further we
get, (a − b)p − (a − b) = α − β. Hence we obtain that K(a − b)/K is a p-cyclic
extension of K and LM = MK(a − b). The hypothesis that V is different from
vi for 1 ≤ i ≤ s implies that the only upper jumps of G are v1, v2, . . . , vs and V
(Corollary 2.5). The last statement also follows from Corollary 2.5. �

Corollary 3.4. Let the notation and the situation be as in Proposition 3.3(3).
Then the Galois group Q := Gal(LM/K(a− b)) is isomorphic to P and the lower

jump in the ramification filtration of Q are l1, . . . , li−1, l̂i, li+1, . . . , ls+1 where l′js
are as in equation (3.1) and the filtration is given by equation (3.2) below.

Proof. Note that Gal(M/K) = P , Gal(K(a − b)/K) = Z/pZ, LM = MK(a − b)
and M ∩ K(a − b) = K. Hence the Galois group Q = Gal(LM/K(a − b)) ∼= P .
The ramification filtration on LM/K is (P × Z/pZ)w = Pw × (Z/pZ)w for any w.
Note that (Z/pZ)w = Z/pZ for w ≤ V and trivial otherwise. Let sj = [P : P vj ]
for 1 ≤ j ≤ s, ss+1 = |P | and set v0 = l0 = 0. Let i be such that vi−1 < V < vi
if V < vs otherwise set i = s + 1. Note that s1 = 1 because P is a p-group. Let
l1, . . . , ls+1 be the lower jumps of P × Z/pZ. Using Remark 2.1 we obtain that

(3.1) lj =


∑j
h=1(vh − vh−1)sh for 1 ≤ j ≤ i− 1,

li−1 + (V − vi−1)si for j = i,

li + (vi − V )psi for j = i+ 1 and i 6= s+ 1,

li+1 +
∑j−1
h=i+1(vh − vh−1)psh for i+ 1 < j ≤ s+ 1.
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Finally using Lemma 2.3 one obtains that the lower jumps in the ramification

filtration on Q = Gal(LM/K(a− b)) are l1, . . . , li−1, l̂i, li+1, . . . , ls+1 with

(3.2) Qlj = Q ∩ (P × Z/pZ)lj =

{
P vj for 1 ≤ j ≤ i,
P vj−1 for i+ 1 ≤ j ≤ s+ 1.

�

4. Global applications

Let G be quasi-p group and I ≤ G be a subgroup. Recall that we say the pair
(G, I) is realizable if there exists a G-Galois cover X → P1 branched only at one
point ∞ and the inertia group at a point of X above ∞ is I.

Remark 4.1. Note that if (G, I) is realizable then I ∼= P o Z/nZ for n coprime
to p and P a p-subgroup whose conjugates in G generate G. This follows from the
fact that there are no nontrivial tamely ramified covers of P1 branched only at ∞.

Let S be a collection of subgroups of G, we will say that the inertia conjecture
holds for every subgroup of G which belongs to S if for all I ∈ S with the prop-
erty that I ∼= P o Z/nZ for some n coprime to p and some p-subgroup P whose
conjugates in G generate G, we have (G, I) is realizable. In other words, for all
I ∈ S either (G, I) is realizable or I does not satisfy the hypothesis of Abhyankar’s
inertia conjecture.

Theorem 4.2. Suppose (G, I) is realizable by the cover X → P1 and let P be a
p-group then

(1) (G× P, I × P ) is realizable.
(2) (G,Q) is realizable where Q is any p-subgroup of G containing I2 if there

is no epimorphism from G to any nontrivial quotient of I2. Here I2 is the
second lower ramification group of the G-cover X → P1 at the point r ∈ X
where the inertia subgroup is I.

Proof. Since (G, I) is realizable, there exists a G-cover X → P1 branched only at
∞ and the inertia group at a point r ∈ X above ∞ is the subgroup I. This implies
that the Galois group of the field extension QF(ÔX,r)/QF(ÔP1,∞) is I. Since

there are infinitely many linearly disjoint P -extension of QF(ÔP1,∞) [Ha1], there

exists a P -extension L̂/QF(ÔP1,∞) linearly disjoint from QF(ÔX,r)/QF(ÔP1,∞).
Let Y → P1 be the Harbater-Katz-Gabber P -cover Y → P1 associated to the
P -extension L̂/QF(ÔP1,∞). Note that Y → P1 is linearly disjoint to the cover
X → P1. Letting U to be the normalization of X ×P1 Y we note that U → P1

is a G × P cover branched only at ∞. Moreover, the linear disjointness of L̂ and
QF(ÔX,r) over QF(ÔP1,∞) implies that Gal(L̂QF(ÔX,r)/QF(ÔP1,∞)) = I×P . By
[Kum, Lemma 3.1], the inertia group at the point (r,∞) of the cover U → P1 is
I × P .

The second statement is a consequence of [Kum, Theorem 3.7] and [Ha2, Theo-
rem 2]. �

Theorem 4.3. Suppose there is no epimorphism from G to Z/pZ and (G, I) is

realizable. Let P and P̃ be p-groups such that P is a quotient of I and P̃ . Let Q be
the subgroup I ×P P̃ of I × P̃ . Then (G× P̃ , Q) is realizable. Moreover, if P̃ = P
then Q ∼= I and the ramification filtration on Q is same as that of I.
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Proof. As in the previous proof, there exists a G-cover X → P1 branched only at
∞ and the inertia group at a point r ∈ X above ∞ is the subgroup I. The Galois
group of the field extension L/K is I where L = QF(ÔX,r) and K = QF(ÔP1,∞) =

k((x−1)). Let N C I be such that I/N = P . Then LN is a P -Galois extension
of K. Let M/LN be a field extension linearly disjoint from L/LN such that M/K

is Galois with Galois group P̃ . Note that such extensions exist because the pro-p
part of the absolute Galois group of K is pro-p free of infinite rank ([Sha], also see
[MS, Theorem 1]). Let Y → P1 be the Harbater-Katz-Gabber cover associated to
the local fields extension M/K. So k(Y )K = M .

Since there is no epimorphism from G→ Z/pZ and P̃ is a p-group, the extensions
k(Y )/k(x) and k(X)/k(x) are linearly disjoint. Letting U to be the normalization

of X×P1
x
Y we note that U is smooth and irreducible. The cover U → P1

x is a G×P̃ -
cover branched only at ∞ and the inertia group and the ramification filtration at
r′ = (r,∞Y ) ∈ U is given by the extension of local fields LM/K by [Kum, Lemma
3.1]. Hence the inertia subgroup Q = Gal(LM/K) = Gal(L/K) ×Gal(L∩M/K)

Gal(M/K) = I ×P P̃ , i.e. (G,Q) is realizable. Moreover, if P̃ = P then Q is
isomorphic to Gal(L/K) = I and LM = L. Hence the ramification filtration on Q
and I are the same. �

Remark 4.4. Let G and P̃ be as in the above theorem and assume I is a p-sylow
subgroup of G. Then (G, I) is realizable. Let Q ≤ I × P̃ be such that π1(Q) = I

and π2(Q) = P̃ . Then it is clear that the conjugates of Q generate G × P̃ . Also

by Goursat’s lemma there exist normal subgroups N1 C I and N2 C P̃ such that
I/N1

∼= P̃ /N2(= P say) and Q = I ×P P̃ . Hence by the above theorem, (G,Q) is

also realizable. Note that there are many subgroups Q of I × P̃ with π1(Q) = I

and π2(Q) = P̃ . For instance if I is abelian then the number of such subgroups is

at least |Hom(P̃ , I)| − 1.

Corollary 4.5. Suppose (G, I) is realizable by the cover X → P1 and P ≤ G be
any p-group containing I2 where I2 is the second lower ramification subgroup of
I associated to this cover. Also assume that there is no epimorphism from G to
Z/pZ. Then (G× Z/pZ, Q) is realizable where Q = P ×Z/pZ Z/pZ is a subgroup of
P × Z/pZ isomorphic to P .

Proof. It follows from Theorem 4.2 that (G,P ) is realizable and Theorem 4.3 implies
that (G× Z/pZ, Q) is realizable. �

Corollary 4.6. Let G be a quasi-p group such that the inertia conjecture holds for
every p-subgroup of G and P̃ be any p-group. Also assume that there is no epimor-
phism from G to Z/pZ. Then the inertia conjecture holds for every p-subgroup of

G× P̃ .

Proof. Let π1 and π2 be the projections of G × P̃ to G and P̃ respectively. Let
Q be a p-subgroup of G × P̃ such that the conjugates of Q in G × P̃ generate
the whole group. Then the conjugates of π1(Q) in G generate G and π2(Q) = P̃ .
Hence (G, π1(Q)) is realizable by the hypothesis on G and Q is a subgroup of

π1(Q) × P̃ with π2(Q) = P̃ . By Goursat’s lemma, one obtains that there exist

normal subgroups N1 and N2 of π1(Q) and P̃ respectively such that π1(Q)/N1
∼=

P̃ /N2 (= P say) and Q = π1(Q)×P P̃ . Hence (G× P̃ , Q) is realizable by Theorem
4.3. �
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Corollary 4.7. Let G be a finite simple quasi-p such that its order is divisible by
p but not by p2 and let P be any p-group. Then the inertia conjecture holds for
p-subgroups of G×P . In particular, the inertia conjecture holds for p-subgroups of
PSL2(Fp)× P and Am × P for p ≤ m < 2p and any p-group P .

Proof. Note that if G = Z/pZ then G × P is a p-group. So the inertia conjecture
certainly holds for G×P . If G is not a p-cyclic group then it is a non-abelian simple
quasi-p group whose order is not divisible by p2. So the inertia conjecture holds
for p-subgroups of G. Moreover since G is a simple non-abelian group there is no
epimorphism from G to Z/pZ. Hence by the above corollary the inertia conjecture
holds for p-subgroups of G× P . �

Theorem 4.8. Suppose (G,P ) is realizable where P ≤ G is a p-group and let Q
be an index p subgroup of P × Z/pZ ⊂ G× Z/pZ such that π1(Q) = P where π1 is
the projection from P × Z/pZ to P and the conjugates of Q in G× Z/pZ generate
G×Z/pZ. Then (G×Z/pZ, Q) is realizable. Moreover, suppose u1, . . . , um are the
upper jumps of P , u1 > 1 and let si = [P : Pui ] for 1 ≤ i ≤ m. Then the lower

jumps of Q are given by l1 = 1 + (u1 − 1)p, lj = l1 +
∑j
h=2(uh − uh−1)psh for

2 ≤ j ≤ m and Qlj = Puj for 1 ≤ j ≤ m.

Proof. Since (G,P ) is realizable, there exists a G-cover X → P1
x branched only at

x =∞ and the inertia group at a point r ∈ X above ∞ is the subgroup P . So the
Galois group of the field extension QF(ÔX,r)/QF(ÔP1,∞) is P . Let L = QF(ÔX,r)
and K = QF(ÔP1,∞) = k((x−1)).

Note that π1|Q is an isomorphism and the conjugates of Q generate G × Z/pZ
implies that π2(Q) = Z/pZ where π2 is the projection from P × Z/pZ to Z/pZ.
Let Q′ = ker(π2|Q) and P ′ = π1(Q′). Note that π1 is an isomorphism and Q′ is an
index p normal subgroup of Q. Hence P ′ is an index p normal subgroup of P . Then
LP
′

is an Artin-Schreier extension of K. Let α ∈ L be a reduced AS-element such
that LP

′
= K(α) and β = αp−α. Note that β = cnx

n + cn−1x
n−1 + . . . c1x+ c0 +

c−1x
−1 + . . . for some n coprime to p, cn, cn−1, . . . ∈ k and cn 6= 0. Let β′ = β+ cx

for some nonzero c ∈ k such that Zp −Z − β′ is an irreducible polynomial in L[Z].
Let α′ ∈ L̄ be such that α′p − α′ = β′. Then L and K(α′) are linearly disjoint
over K. Let Y → P1 be the p-cyclic Harbater-Katz-Gabber cover associated to the
extension of local fields K(α′)/K and ∞Y be the point lying above x = ∞. Note
that the covers Y → P1

x and X → P1
x are linearly disjoint because k(Y )K = K(α′)

and k(X)K = L.
Let U be the normalization of X ×P1

x
Y . Then U is smooth and irreducible.

The cover U → P1
x is a G × Z/pZ cover branched only at x = ∞. Moreover by

[Kum, Lemma 3.1] the inertia group and the ramification filtration at the point
r′ = (r,∞Y ) ∈ U is given by the extension of local fields L(α′)/K. So the inertia

group is Gal(L(α′)/K) = P × Z/pZ. Note that L(α′)ker(π2) = K(α′) and LP
′

=

K(α). Hence L(α′)Q
′

= K(α, α′). Set γ = α′ − α ∈ L(α′). Then γp − γ = cx.
Since K(γ) ⊂ L(α′), there is an induced epimorphism on the Galois groups φ :
P × Z/pZ → Z/pZ such that L(α′)kerφ = K(γ). Note that ker(φ) is an index p
subgroup of P × Z/pZ such that π1(ker(φ)) = P and π2(ker(φ)) = Z/pZ. Since
K(γ) ⊂ K(α, α′), we have Q′ ⊂ ker(φ). Also notice that Q′ ≤ P × 0 ≤ P × Z/pZ
and (P × Z/pZ)/Q′ ∼= Z/pZ × Z/pZ. Hence after applying an automorphism on
the second factor Z/pZ if necessary, we obtain that Q = ker(φ).



ON THE COMPOSITUM OF WILDLY RAMIFIED EXTENSIONS 11

We note that k(x)(γ) and k(U) are linearly disjoint over k(x). To prove this,
let us assume the contrary. Then k(x)(γ) ⊂ k(U) = k(X)k(Y ) which induces
an epimorphism on Galois groups Φ : G × Z/pZ → Z/pZ. By construction of φ
and Galois theory Φ|P×Z/pZ = φ. It follows that the conjugates of Q = ker(φ) in
G× Z/pZ are contained in ker(Φ). This contradicts the assumption on Q.

Let V → P1
x be the p-cyclic cover corresponding to the extension k(x)(γ)/k(x)

and W be the normalization of U ×P1
x
V . Let ∞V ∈ V be the point lying above

x = ∞ and r′′ = (r′,∞V ). By [Kum, Proposition 3.5], the inertia group of the
cover W → V at r′′ is Q. Since k(U) and k(V ) are linearly disjoint over k(x),
we get that W is connected and Gal(k(W )/k(V )) = Gal(k(U)/k(x)) = G× Z/pZ.
Moreover, W → V is branched only at ∞V . Finally, since V is isomorphic to P1,
we get that (G× Z/pZ, Q) is realizable.

Note that the inertia subgroup Q is the inertia group of the local field extension
L(α′)/K(γ = α′ − α), Gal(L/K) = P and Gal(K(α′)/K) = Z/pZ. Since u1 > 1 =
−vK(γp − γ), none of the upper jumps are equal to 1. So applying Corollary 3.4
with r, s, v1, . . . , vs and V in the corollary as 1, m, u1, . . . , um and 1 respectively, we
note that i = 1 in the notation of the corollary. So by the formula (3.1) in Corollary

3.4 the lower jumps of L(α′)/K are l̃i = l̃1 = l̃0 + (1−u0)s1 = 1 as l̃0 = u0 = 0 and

s1 = 1, l̃i+1 = l̃2 = l̃1 + (u1 − 1)ps1 = 1 + (u1 − 1)p and l̃j = l̃2 +
∑j−1
h=2(uh − uh−1)

for 2 < j ≤ m + 1. Hence the upper jumps of Q are l1 = l̃2 = 1 + (u1 − 1)p and

lj = l̃j+1 = l1 +
∑j
h=2(uh − uh−1) for 2 ≤ j ≤ m. �

Corollary 4.9. Let G be a quasi-p group such that the inertia conjecture holds for
every p-subgroup of G. Then the inertia conjecture holds for every p-subgroup of
G× (Z/pZ)n for any n ≥ 0.

Proof. By induction it is enough to prove for n = 1. Let Q be a p-subgroup
of G × Z/pZ such that the conjugates of Q generate G × Z/pZ. Let π1 and π2

be the projection of G × Z/pZ onto G and Z/pZ respectively. Let P = π1(Q).
Since the conjugates of Q generate G × Z/pZ, conjugates of P generate G. So by
assumption (G,P ) is realizable. If Q = P × Z/pZ then (G×Z/pZ, Q) is realizable
by Theorem 4.2. Otherwise Q is an index p subgroup of P ×Z/pZ and in this case
(G×Z/pZ, Q) is realizable by Theorem 4.8 as π1(Q) = P and the conjugates of Q
generate G× Z/pZ. �

Theorem 4.10. Let P be a p-subgroup of G and suppose that there is no epi-
morphism from G → Z/pZ. Further assume that (G,P ) is realizable and that
P has a pr-cyclic quotient a : P → Z/prZ. Let Q be an index p subgroup of
P ×Z/pr−1Z Z/prZ ⊂ G × Z/prZ such that π1(Q) = P and π2(Q) = Z/prZ where
π1 and π2 are the projection maps from P ×Z/pr−1Z Z/prZ to P and Z/prZ respec-
tively. Then (G × Z/prZ, Q) is realizable. Moreover, suppose u1, . . . , um are the
upper jumps of P , u1 > 1 and si = [P : Pui ] for 1 ≤ i ≤ m. Then the lower jumps

of Q are given by l1 = 1 + (u1 − 1)p, lj = l1 +
∑j
h=2(uh − uh−1)psh for 2 ≤ j ≤ m

and Qlj
∼= Puj for 1 ≤ j ≤ m.

Proof. As in the previous proof, there exists a G-cover X → P1 branched only
at ∞ and the inertia group at a point τ ∈ X above ∞ is the subgroup P .
The Galois group of the field extension L/K is P where L = QF(ÔX,τ ) and

K = QF(ÔP1,∞) = k((x−1)). Let q : Z/prZ → Z/pr−1Z be the quotient map.
Note that π1|Q is an isomorphism. Let Q′ = ker(a ◦ π1|Q) and P ′ = π1(Q′) =
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ker(a). Then LP
′

is an Artin-Schreier-Witt extension of K corresponding to a
reduced Witt vector of length r. Let (α0, α1, . . . , αr−1) ∈ Wr(L) be such that

P(α0, . . . , αr−1) = (β0, . . . , βr−1) ∈ Wr(K) and LP
′

= K(α0, . . . , αr−1). Let
β′r−1 = βr−1+cx for some nonzero c ∈ k such that the Artin-Schreier-Witt extension
of K corresponding to the Witt vector (β0, . . . , βr−2, β

′
r−1) is a Z/prZ extension of

K different from K(α0, . . . , αr−1). Let α′r−1 be such that P(α0, . . . , αr−2, α
′
r−1) =

(β0, . . . , βr−2, β
′
r−1) then K(α0, . . . , αr−1) and K(α0, . . . , αr−2, α

′
r−1) are linearly

disjoint over K(α0, . . . , αr−2). Let Y → P1 be the Harbater-Katz-Gabber cover
associated to the local field extension K(α0, . . . , αr−2, α

′
r−1)/K. So k(Y )K =

K(α0, . . . , αr−2, α
′
r−1).

Since there is no epimorphism from G → Z/pZ, the extensions k(Y )/k(x) and
k(X)/k(x) are linearly disjoint. Letting U to be the normalization of X ×P1

x
Y

we note that U is smooth and irreducible. The cover U → P1
x is a G × Z/prZ

cover branched only at ∞ and the inertia group and the ramification filtration at
τ ′ = (τ,∞Y ) ∈ U is given by the extension of local fields L(α′r−1)/K. Hence
the inertia group is Gal(L(α′r−1)/K) = P ×Z/pr−1Z Z/prZ. By Proposition 3.3(3)
−vK(βr−1 − β′r−1) = 1 is an upper jump of Gal(L(α′r−1)/K). Moreover, letting
γ = αr−1−α′r−1, we note that γp− γ = βr−1−β′r−1 ∈ K and γ /∈ K. So by Galois
theory, the tower of field extensions L(α′r−1)/K(γ)/K induces an epimorphism φ :

P×Z/pr−1ZZ/prZ→ Z/pZ such that L(α′r−1)ker(φ) = K(γ). Note that L(α′r−1)Q
′

=

K(α0, . . . , αr−1, α
′
r−1) hence Q′ ⊂ ker(φ). Moreover, note that K ⊂ Lker(φ) ⊂

K(γ) and γ /∈ L, hence Lker(φ) = K. Similarly K(α0, . . . , αr−2, α
′
r−1)ker(φ) = K.

Hence by Galois theory π1(ker(φ)) = P and π2(ker(φ)) = Z/prZ. Note that both
Q/Q′ and ker(φ)/Q′ are index p subgroups of Z/prZ×Z/pr−1Z Z/prZ such that the
two projections restricted to Q and ker(φ) are surjective. Hence there exists an

automorphism θ of Z/prZ with q ◦ θ = q such that θ̃(Q/Q′) = ker(φ)/Q′ where θ̃ is
the automorphism induced by θ on Z/prZ×Z/pr−1Z Z/prZ. Hence we may assume
Q = ker(φ).

Note that K(γ)/K is a p-cyclic extension with the lower jump at 1. So the
Harbater-Katz-Gabber cover V → P1

x associated to this extension has the prop-
erty that V is isomorphic to P1. Also k(U) = k(X)k(Y ) and k(V ) are linearly
disjoint over k(x). To see this, assume the contrary. Then k(V ) ⊂ k(U) and
since there are no epimorphism from G → Z/pZ, k(V ) ⊂ k(Y ). But this im-
plies γ ∈ K(α0, . . . , αr−2, α

′
r−1), a contradiction. Let W be the normalization of

U ×P1
x
V then W is smooth and irreducible. Again we apply [Kum, Proposition 3.5]

to conclude that (G× Z/prZ, Q) is realizable.
The moreover part also follows in the same way as in proof of Theorem 4.8. �
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