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Abstract. It is shown that the commutator subgroup of the fundamental

group of a smooth irreducible affine curve over an uncountable algebraically

closed field k of positive characteristic is a profinite free group of rank equal
to the cardinality of k.

1. Introduction

The algebraic (étale) fundamental group of an affine curve over an algebraically
closed field k of positive characteristic has a complicated structure. It is an in-
finitely generated profinite group, in fact the rank of this group is same as the
cardinality of k. The situation when k is of characteristic zero is simpler to un-
derstand. The fundamental group of a smooth curve over an algebraically closed
field of characteristic zero is just the profinite completion of the topological funda-
mental group ([SGA1, XIII, Corollary 2.12, page 392]). In positive characteristic as
well, Grothendieck gave a description of the prime-to-p quotient of the fundamental
group of a smooth curve which is in fact analogous to the characteristic zero case.
From now on, we shall assume that the characteristic of the base field k is p > 0.
Consider the following exact sequence for the fundamental group of a smooth affine
curve C.

1→ πc1(C)→ π1(C)→ πab1 (C)→ 1

where πc1(C) and πab1 (C) are the commutator subgroup and the abelianization of
the fundamental group π1(C) of C respectively. In [Ku2], a description of πab1 (C)
was given [Ku2, Corollary 3.5] and it was also shown that πc1(C) is a free profinite
group of countable rank if k is countable [Ku2, Theorem 1.2]. In fact some more
exact sequences with free profinite kernel like the above were also observed [Ku2,
Theorem 7.1]. Later using somewhat similar ideas and some profinite group theory
Pacheco, Stevenson and Zalesskii claim to find a condition for a closed normal
subgroup of π1(C) to be profinite free of countable rank [PSZ] but unfortunately
there seems to be a gap in their argument as Example 3.16 suggests.

A consequence of the main result of this paper generalizes [Ku2, Theorem 1.2]
to uncountable fields.

Theorem 1.1. Let C be a smooth affine curve over an algebraically closed field
k (possibly uncountable) of characteristic p then πc1(C) is a free profinite group of
rank card(k).

This answers a question of Harbater and Zalesskii who had asked the author
in an email communication if the above is true or at least whether there exist a
closed subgroup of π1(C) which is free of rank same as card(k). Let Pg(C) be the
intersection of all index p normal subgroups of π1(C) corresponding to étale covers
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of C of genus at least g (see Definition 3.4). In the main theorem (Theorem 3.6) it
is shown that if Π is a closed normal subgroup of π1(C) of rank card(k) such that
π1(C)/Π is abelian, Π ⊂ Pg(C) for some g ≥ 0 and for every finite simple group S
there exist a surjection from Π to card(k) copies of S then Π is profinite free.

As a consequence we get the following result.

Corollary 1.2. Let Π be a closed normal subgroup of Pg(C) for some g ≥ 0. If
rank of Pg(C)/Π is strictly less than card(k) then Π is profinite free of rank card(k).

Proof. Note that Pg(C) is a profinite free group of rank card(k) by Corollary 3.15.
So the corollary follows from Melnikov’s result on freeness of a normal subgroup of
a profinite free group ([RZ, Theorem 8.9.4]). �

The existence of wildly ramified covers is the primary reason why so little is
known about fundamental groups of affine curves. More precisely, there is a posi-
tive dimensional configuration space of p-cyclic Artin-Schreier covers of the affine
line (see [Pri]), and while this family is relatively well understood, the structure of
π1(A1) remains elusive. This is because we do not know how the various wildly
ramified covers fit in with the tamely ramified covers in the tower of covers over A1.
This also suggests that the fundamental group of an affine curve in positive charac-
teristic contains much more information about the curve than in characteristic zero
case. In fact Harbater and Tamagawa have conjectured that the fundamental group
of a smooth affine curve over an algebraically closed field of characteristic p should
determine the curve completely (as a scheme) and in particular one should be able
to recover the base field. Harbater and Tamagawa have shown some positive results
supporting the conjecture. See [Ku1, Section 3.4], [Ha5], [Ta1] and [Ta2] for more
details.

The above theorem on the commutator subgroup can also be interpreted as an
analogue of the Shafarevich’s conjecture for global fields. The Shafarevich con-
jecture says that the commutator subgroup of the absolute Galois group of the
rational numbers Q is a profinite free group of countable rank. David Harbater
[Ha3], Florian Pop [Pop] and later Dan Haran and Moshe Jarden [HJ] have shown,
using different patching methods, that the absolute Galois group of the function
field of a curve over an algebraically closed field is profinite free of the rank same as
the cardinality of the base field. See [Ha4] for more details on these kind of results
and questions.

Though the profinite group structure of the fundamental group of a smooth
affine curve is not well understood, a 1994 proof of Abhyankar’s 1957 conjecture
provides a characterization for a finite group to be a quotient of the fundamental
group of a smooth affine curve. For a finite group G, let p(G) denote the subgroup
of G generated by all the Sylow-p subgroups of G. The conjecture was proved by
Raynaud for the affine line [Ray] and by Harbater in general [Ha1].

Theorem 1.3. (Harbater, Raynaud) Let C be a smooth affine curve of genus g over
an algebraically closed field of characteristic p. Let D be the smooth compactification
of C and card(D \C) = n+ 1. Then a finite group G is a quotient of π1(C) if and
only if G/p(G) is generated by 2g + n elements.

Section 2 consists of definitions and results on profinite groups. This section
also reduces Theorem 1.1 to solving certain embedding problems. The last section
consists of solutions to these embedding problems.
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2. Profinite group theory

Notation and contents of this section are inspired from [RZ] and [FJ]. For a finite
group G and a prime number p, let p(G) denote the subgroup of G generated by
all the p-Sylow subgroups of G. The subgroup p(G) is called the quasi-p subgroup
of G. If G = p(G) then G is called a quasi-p group.

A family of finite groups C is said to be almost full if it satisfies the following
conditions:

(1) A nontrivial group is in C.
(2) If G is in C then every subgroup of G is in C.
(3) If G is in C then every homomorphic image of G is in C.
(4) If G1, G2, . . . , Gn are in C then the product G1 ×G2 × . . .×Gn is in C.

Moreover C is called a full family if it is closed under extensions, i.e., if G1 and G3

are in C and there is a short exact sequence

1→ G1 → G2 → G3 → 1

then G2 is in C.

Example. The family of all finite groups is full. For a prime number p, the family
of all p-groups is full.

Let C be an almost full family of finite groups. A pro-C group is a profinite
group whose finite quotients lie in C. Equivalently, it is an inverse limit of an
inverse system of groups contained in C. If C is the family of all p-groups then
pro-C groups are also called pro-p groups.

Let m be an infinite cardinal or a positive integer. A subset I of a profinite
group Π is called a generating set if the smallest closed subgroup of Π containing
I is Π itself. A generating set I is said to be converging to 1 if every open normal
subgroup of Π contains all but finitely many elements of I. The rank of Π is the
infimum of the cardinalities of all the generating sets of Π converging to 1.

Let m be an infinite cardinal, I be a set of cardinality m and FI be the free group
over I. A profinite group Π is called a free pro-C group of rank m if Π is isomorphic
to the inverse limit F̂I of the inverse system obtained by taking quotients of FI by
finite index normal subgroups K which contain all but finitely many elements of I
and FI/K ∈ C. The image of I under the natural map FI → F̂I ∼= Π is a generating
set converging to 1. When C is the family of all finite groups then free pro-C groups
are same as free profinite groups.

For a group Π and a finite group S, let RS(Π) denote the maximal cardinal m
such that there exist a surjection from Π to Sm. The intersection of all the proper
normal maximal subgroups of Π is denoted by M(Π).
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An embedding problem consists of surjections φ : Π� G and α : Γ� G

Π
ψ

���
�

�
�

φ

��
1 // H // Γ

α
// G //

��

1

1

where G, Γ and Π are groups and H = ker(α). It is also sometimes called an
embedding problem for Π. It is said to have a weak solution if there exists a group
homomorphism ψ which makes the diagram commutative, i.e., α◦ψ = φ. Moreover,
if ψ is an epimorphism then it is said to have a proper solution (or a solution). It
is said to be a finite embedding problem if Γ is finite. An embedding problem
is said to be a split if there exists a group homomorphism from G to Γ which is
a right inverse of α. Two proper solutions ψ1 and ψ2 are said to be distinct if
ker(ψ1) 6= ker(ψ2).

Let C be an almost full family and Π a profinite group of rank m. If every
embedding problem for Π

Π

�����
�

�
�

1 // H̃ // Γ̃ // G̃ //

��

1

1

with Γ̃ a pro-C group of rank less than or equal to m, G̃ a pro-C group of rank
strictly less than m, H̃ ∈ C a minimal normal subgroup of Γ̃ and H̃ contained in
M(Γ̃) has a solution then Π is called C-homogeneous. Moreover, if C is the class of
all finite groups then Π is called homogeneous.

Note. In view of [RZ, Lemma 3.5.4], the above definition of homogeneous is equiv-
alent to the definitions given in [RZ] and [FJ].

Let m denote an infinite cardinal and C be an almost full family. The following
is an easy generalization of [FJ, Lemma 25.1.5]. The proof is exactly the same but
is reproduced here for the sake of completion.

Lemma 2.1. Let Π be a profinite group such that every nontrivial finite embedding
problem φ : Π � G,α : Γ � G with Γ in C and H = ker(α) a minimal normal

subgroup of Γ has m solutions. Let Γ̃ be a pro-C groups with rank(Γ̃) ≤ m. Let

H̃ ∈ C be a minimal normal subgroup of Γ̃ such that the quotient G̃ = Γ̃/H̃ has
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rank strictly less than m. Then the following embedding problem has a solution.

(2.1) Π

�����
�

�
�

1 // H̃ // Γ̃
α̃
// G̃ //

��

1

1

Moreover, if the existence of solutions to only those embedding problems with
H̃ ⊂ M(Γ̃) is desired then the hypothesis can be weakened to the existence of m
solutions to finite embedding problems in which H = ker(α) is contained in M(Γ).

Proof. Consider the embedding problem (2.1). Since H̃ ∈ C, it is finite. So there

exist an open normal subgroup N of Γ̃ such that N ∩ H̃ = {1}. Taking quotient by
N , we get a finite embedding problem

Π

�����
�

�
�

1 // H // Γ
α
// G //

��

1

1

where Γ = Γ̃/N , G = G̃/α̃(N), the subgroup H of Γ is isomorphic to H̃ and Γ is

in C. If we assume that H̃ ⊂ M(Γ̃) then H ⊂ M(Γ) since every maximal normal

subgroup of Γ is a quotient of a maximal normal subgroup of Γ̃ containing N . The
rest of the proof is same as that of [FJ, Lemma 25.1.5]. We have the following
scenario:

Π
φ

'' ''OOOOOOOOOOOOOO

�� ��/
/

/
/

/
/

/
/

H̃
� � // Γ̃

α̃
// //

����

G̃

����
H
� � // Γ

α
// // G

By assumption there exist β : Π� Γ which makes the above diagram commutative.
In fact there are m choices for β. If ker(φ) ⊂ ker(β) then β factors through G̃. By

[FJ, Lemma 25.1.1], there are at most rank(G̃) < m surjections from G̃ to Γ. Hence

we can choose β so that kerβ does not contain kerφ. Since Γ̃ is the fiber product
of G̃ and Γ over G, the maps β and φ induce a map γ : Π→ Γ̃ so that the following
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diagram commutes:

Π
φ

"" ""
β

�� ��

γ
>>>>

��>>>>

Γ̃
α̃
// //

����

G̃

����
Γ

α
// // G

By [FJ, Lemma 24.4.1] there exist a group G′ which fits in the following diagram:

Im(γ)
α̃ // //

����

G̃

ζ′

����

�� ��

Γ
α′
// //

α ,, ,,

G′

θ
AAAA

    AAAA

G

the maps from Im(γ) are the restriction of maps from Γ̃ and Im(γ) is the fiber

product of G̃ and Γ over G′. Since H = ker(α) is a minimal normal subgroup of Γ,
one of θ or α′ is an isomorphism. If α′ where an isomorphism then β = α′−1 ◦ ζ ′ ◦φ
contradicting ker(φ) is not a subset of ker(β). Hence θ is an isomorphism. So again

by [FJ, Lemma 24.4.1], Im(γ) = Γ̃ solves the embedding problem (2.1). �

The following proposition may be attributed to Melnikov and Chatzidakis (cf.
[HS, Remark 2.2]) and a variant of it appeared in [HS, Theorem 2.1]

Theorem 2.2. Let Π be a profinite group of rank m. Suppose:

(1) Π is projective.
(2) Every nontrivial finite embedding problem

(2.2) Π

�����
�

�
�

1 // H // Γ // G //

��

1

1

with H a quasi-p group, minimal normal subgroup of Γ and H ⊂M(Γ) has
m solutions.

(3) Every nontrivial finite split embedding problem (2.2) with H prime-to-p
group and minimal normal subgroup of Γ has m solutions.

Then Π is homogeneous. Moreover, if RS(Π) = m for every finite simple group S
then Π is a profinite free group.

Proof. First of all, let us observe that (1), (2) and (3) allow us to assume that every
finite nontrivial (not necessarily split) embedding problem (2.2) with H ⊂ M(Γ)
has m solutions. The proof is via induction on |H|.
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Note that p(H) is a normal subgroup of Γ. Since H is a minimal normal subgroup
of Γ, either p(H) = H or p(H) is trivial. If p(H) = H then (2) guarantees m
solutions to the embedding problem (2.2)

If p(H) is trivial then H is a prime-to-p group. The embedding problem (2.2)
has a weak solution φ since Π is projective. Let G′ ≤ Γ be the image of φ. The
subgroup G′ acts on H via conjugation so we can define Γ′ = H oG′ and get the
following embedding problem:

(2.3) Π

φ

��~~}
}

}
}

1 // H // Γ′ // G′ //

��

1

1

Also Γ′ surjects onto Γ under the homomorphism sending (h, g) 7→ hg. So it is
enough to find m solutions to the embedding problem (2.3). Now if H is not a
minimal normal subgroup of Γ′ then there exist H ′ proper nontrivial subgroup of
H and normal in Γ′. Quotienting by H ′ we get the following embedding problem:

Π

φ

��||x
x

x
x

1 // H/H ′ // Γ′/H ′ // G′ //

��

1

1

which has m solutions by induction hypothesis (since |H/H ′| < |H|). For each
solution θ′ to the above, the following embedding problem:

Π

θ′

��||y
y

y
y

y

1 // H ′ // Γ′ // Γ′/H ′ //

��

1

1

also has m solutions by induction hypothesis as |H ′| < |H|. Let θ be solution to
this embedding problem then it is in fact a solution to (2.3) as well. Note that
distinct solutions for (2.3) induce distinct solutions for (2.2) by [HS, Lemma 2.4].
Finally if H is a minimal normal subgroup of Γ′ then hypothesis (3) guarantees m
solutions to (2.3). Lemma 2.1 yields Π is homogeneous. The rest of the statement
follows from [RZ, Theorem 8.5.2] and [RZ, Lemma 3.5.4]. �

Let Γ be a finite group, H a normal subgroup of Γ contained in M(Γ), G = Γ/H
and α : Γ → G be the quotient map. Let Π be a closed normal subgroup of a
profinite group Θ.
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Lemma 2.3. Suppose we have a surjection ψ from Θ → G which restricted to Π
is also a surjection.

0 // Π //

�� ��@@@@@@@ Θ

ψ
��������~~~~~~~~

0 // H // Γ
α
// G // 0

Let φ be a surjection of Θ onto Γ such that ψ = α ◦ φ. Then the restriction of φ to
Π is a surjection onto Γ.

Proof. Let us first note that φ(Π) is a normal subgroup of Γ and α(φ(Π)) = G.
Suppose φ(Π) is a proper normal subgroup of Γ, then there exists a maximal normal
proper subgroup Γ′ of Γ containing φ(Π). Since H is contained in M(Γ), H ⊂ Γ′.
Also α(Γ′) = G, so Γ′ = Γ contradicting that Γ′ is a proper subgroup of Γ. Hence
φ(Π) = Γ. �

3. Solutions to embedding problems

A morphism of schemes, Φ: X → Y , is said to be a cover if Φ is finite, surjective
and generically separable. For a finite group G, Φ is said to be a G-cover (or a
G-Galois cover) if in addition there exists a group monomorphism G → AutY (X)
which acts transitively on the geometric generic fibers of Φ. Let k0 ⊂ k be fields.
For a k0-scheme X, X ×Spec(k0) Spec(k) will also be denoted by X ⊗k0 k. For an
integral k0-scheme X, k(X) will denote the function field of X ⊗k0 k. We begin
with a few results on Galois theory.

Lemma 3.1. Let A be a field. All the algebraic extensions of A will be considered
in some fixed algebraic closure of A. Let B/A be a Galois extension. Let L/A be a
finite Galois extension such that B ∩ L = A. Let M/L be a finite Galois extension
with Galois group H. If M ⊂ BL then there exists a finite H-Galois extension E/A
such that EL = M and E ∩ L = A.

Proof. First we shall reduce to the case when B/A is a finite Galois extension. Since
M/L is a finite extension, M ⊂ BL and a vector space basis of B over A generates
BL over L, there exists a finite extension B′/A with B′ ⊂ B such that M ⊂ B′L.
Also Galois closure B′′ of B′/A is a subfield of B since B/A is Galois. So replacing
B by B′′ we may assume B/A is a finite Galois extension.

Now we shall reduce to the case where M/A is a Galois extension. Let M ′ be the
Galois closure of M/A. Also note that BL/A is a Galois extension. So M ⊂ BL
implies M ′ ⊂ BL. Suppose we know the conclusion of the lemma holds for M ′,
i.e., suppose there exists a finite Galois extension E′/A such that Gal(E′/A) =
Gal(M ′/L)(= H ′ say), E′L = M ′ and E′ ∩ L = A. We will find a subfield E of
E′ such that E/A is an H-extension and EL = M . Since M/L is a sub-Galois
extension of M ′/L, H is a quotient of H ′ by some normal subgroup N of H ′ and
M is the subfield of M ′ fixed by N . Let E be the subfield of E′ fixed by N . Then
Gal(E/A) = H ′/N = H. Also the field L is fixed by the action of H ′ and hence
by the action of the subgroup N . So EL is a subfield of M ′ fixed by the action of

N which means EL ⊂M = M ′
N

. But E′ ∩ L = A implies E ∩ L = A. The linear
disjointness of E and L over A implies that [EL : L] = [E : A] = |H| = [M : L].
So EL = M . Hence we are reduced to showing the case where M/A is a Galois
extension.
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Let G1 = Gal(B/A) and G2 = Gal(L/A), so Gal(BL/A) = G1 × G2. The
inclusions A ⊂ M ⊂ BL implies that there is an epimorphism a : G1 × G2 →
Gal(M/A). Hence there is a group homomorphism b : G2 → Gal(M/A) given by
b(g) = a(eG1

, g), where eG1
is the identity of G1. This gives an action of G2 on the

field M whose restriction to the subfield L agrees with the action of Gal(L/A) = G2

on L. This is because for c ∈ L, b(g) · c = a(eG1 , g) · c = (eG1 , g) · c = g · c. So b is
injective and G2 can be viewed as a subgroup of Gal(M/A). We have the following
split short exact sequence of groups.

1→ H = Gal(M/L)→ Gal(M/A)→ G2 = Gal(L/A)→ 1

Let E = M b(G2) be the fixed subfield of M then [E : A] = |H|. Also E = M b(G2) ⊂
BL{eG1

}×G2 = B. Hence E ∩ L = A and E ⊂ B ∩M . Also we have

[B ∩M : A] ≤ [(B ∩M)L : L]

≤ [M : L] as (B ∩M)L ⊂M
= |H| = [E : A]

Hence E = B∩M . But B/A and M/A are Galois extensions, so E/A is also Galois
extension. Moreover EH = (M b(G2))H = MGal(M/A) = A. Hence Gal(E/A) =
H. �

Lemma 3.2. Let H be a minimal normal subgroup of Γ with G = Γ/H and let B/A
be a G-Galois extension. Suppose D1/A, D2/A be two distinct Γ-Galois extensions
containing B. Then D1 ∩D2 = B.

Proof. First note that Gal(D1/B) = H. Let E = D1 ∩D2. Then E/A is a Galois
extension and we have D1 ) E ⊃ B ⊃ A. So Gal(D1/E) is a nontrivial normal
subgroup of Γ and Gal(D1/E) ≤ H = Gal(D1/B). Since H is a minimal normal
subgroup of Γ, we must have Gal(D1/E) = Gal(D1/B). This implies E = B. �

Lemma 3.3. Let k0 be an algebraically closed field of characteristic p > 0. Let k be
an algebraically closed field with k0 ( k. Let X be a k0-curve. All fields considered
will be subfields of a fixed algebraic closure of k(X). Let f ∈ k(X) be such that the
polynomial g(z) = zp − z − f is irreducible over k(X) and f − hp + h /∈ k0(X) for
any h ∈ k(X). Let L/k(X) be the Z/pZ-extension given by adjoining roots of g(z)
to k(X). Let M0 be an algebraic extension of k0(X). Then L is not contained in
the compositum kM0.

Proof. Suppose L ⊂ kM0, we will obtain a contradiction. Since L/k(X) is finite and
a k0(X)-vector space basis of M0 generates k(X)M0 = kM0 as vector space over
k(X), there exists a finite extension M ′0/k0(X) such that L ⊂ kM ′0. So replacing
M0 by M ′0 we may assume M0/k0(X) is finite. Further passing to the Galois closure
of M0/k0(X), we may assume M0/k0(X) is a finite Galois extension.

Also note that M0 ∩ k(X) = k0(X) and k(X)M0 = kM0. So Gal(M0/k0(X)) =
Gal(kM0/k(X)). Let N be the Galois group of kM0/L and L0 = MN

0 be the fixed
subfield. Since L/k(X) is a Z/pZ-Galois extension, N is a normal subgroup of
Gal(kM0/k(X)) with Gal(kM0/k(X))/N ∼= Z/pZ. So L0 is a Z/pZ-extension of
k0(X). Moreover, since k(X) ( kL0 ⊂ (kM0)N = L, L = kL0. By Artin-Schreier
theory L0 is obtained by adjoining roots of the polynomial zp− z− f0 to k0(X) for
some f0 ∈ k0(X). So the Artin-Schreier extensions of k(X) given by polynomials
zp − z − f0 and zp − z − f are same. But this implies f = cf0 + hp − h for some
h ∈ k(X) and nonzero c ∈ Fp. This contradicts the hypothesis of the lemma. �
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Let k be an algebraically closed field of characteristic p and cardinality m. Let
C be a smooth affine k-curve. Let Kun denote the compositum (in a fixed algebraic
closure Ω of k(C)) of the function fields of all Galois étale covers of C. In these
notations π1(C) = Gal(Kun/k(C)).

Definition 3.4. For each g ≥ 0, let

Pg(C) = ∩{π1(Z) : Z → C is an étale Z/pZ-cover and genus of Z ≥ g}

be an increasing sequence of closed normal subgroups of π1(C).

Remark 3.5. Let Kg be the fixed subfield of Kun under the action of Pg(C).
The definition of Pg(C) implies that the étale pro-cover of C corresponding to Kg

dominates all p-cyclic étale covers of C of genus at least g. The profinite subgroups
of π1(C) we shall consider will be subgroups of Pg(C), so the pro-cover associated
to such a subgroup will also dominate a all p-cyclic étale covers of C of genus at
least g.

The main objective of this section is to prove the following.

Theorem 3.6. Let Π be a closed normal subgroup of π1(C) of rank m such that
π1(C)/Π is an abelian group and Π is a subset of Pg(C) for some g ≥ 0. Then Π
is a homogeneous profinite group. Moreover if RS(Π) = m for every finite simple
group S then Π is a free profinite group of rank m.

More precisely, in view of Theorem 2.2, it will be shown that the finite embedding
problem

Π

�����
�

�
�

1 // H // Γ // G //

��

1

1

has m solutions in the following situations:

(1) The kernel H is a quasi-p minimal normal subgroup of Γ contained in M(Γ)
(Theorem 3.12).

(2) The embedding problem is split and H is a prime-to-p minimal normal
subgroup of Γ (Theorem 3.9).

Let Kb be the fixed subfield of Kun under the action of Π. So by Galois theory
Gal(Kun/Kb) = Π and Gal(Kb/k(C)) = π1(C)/Π is abelian. Note that the surjec-
tion from Π to G corresponds to a Galois extension M ⊂ Kun of Kb with Galois
group G. Since Kb is an algebraic extension of k(C) and M is a finite extension
of Kb, we can find a finite extension L ⊂ Kb of k(C) and L′ ⊂ Kun a G-Galois
extension of L so that M = KbL′. Let πL1 = Gal(Kun/L).

Let D be the smooth completion of C, X be the normalization of D in L and
Φ′X : X → D be the normalization morphism. Then X is an abelian cover of D
étale over C and its function field k(X) is L. Let WX be the normalization of X in
L′ and ΨX be the corresponding normalization morphism. Then ΨX is étale away
from the points lying above D \ C and k(WX) = L′. The following figure provides
a summary.
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Figure 1

Since k is an algebraically closed field, k(C)/k has a separating transcendence
basis. By a stronger version of Noether normalization (for instance, see [Eis, Corol-
lary 16.18]), there exist a finite generically separable surjective k-morphism from
C to A1

x, where x denotes the local coordinate of the affine line. The branch lo-
cus of such a morphism is codimension 1, hence this morphism is étale away from
finitely many points. By translation we may assume none of these points maps to
x = 0. This morphism extends to a finite surjective morphism Θ : D → P1

x. Let
ΦX : X → P1

x be the composition Θ ◦ Φ′X . Let {r1, . . . , rN} = Φ−1
X ({x = 0}), then

ΦX is étale at r1, . . . , rN . Also note that Θ−1({x =∞}) = D \ C.
Let k0 be a countable algebraically closed subfield of k such that X and WX are

defined over k0 and the morphisms ΦX and ΨX are base change of k0-morphisms
to k. We shall denote the corresponding k0-curves and k0-morphisms as well by X,
WX , ΦX and ΨX to simplify notation.

3.1. Prime-to-p group. Let Γ be a finite group, H a prime-to-p nontrivial normal
subgroup of Γ and G a subgroup of Γ such that Γ = HoG. Let ΦY : Y → P1

y be the

smooth Z/pZ-cover ramified only at y = 0 given by zp−z−y−r where r is coprime to
p and can be chosen to ensure that the genus of Y is as large as desired. Recall that
Π ⊂ Pg(C) for some g ≥ 0. The r above is chosen so that the genus of Y is at least g
and greater than the number of generators for H. Let F be the locus of t−xy = 0 in
P1
x×k P1

y ×k ×k Spec(k[[t]]). Let YF = Y ×P1
y
F , where the morphism from F → P1

y

is given by the composition of morphisms F ↪→P1
x ×k P1

y ×k Spec(k[[t]]) → P1
y.

Similarly define XF = X ×P1
x
F . Let T be the normalization of an irreducible

dominating component of the fiber product XF ×F YF . The situation so far can be
described by the following picture:
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Lemma 3.7. In the above setup, let L1 = k((t))(X) and L2 be the p-cyclic ex-
tension of k((t))(D) given by zp − z − (x/t)r where r is as in the definition of Y
above. Let Z be the normalization of D ⊗k k((t)) in L2. Then the function field
k(T ) = L1L2. In particular k(T ) is an abelian extension of k((t))(D), a p-cyclic
extension of k((t))(X) and the genus of Z is at least the genus of Y .

Proof. By construction of T , we observe that the function field of T is the com-
positum of k(X)⊗k k((t)) = k((t))(X) = L1 and the function field of a dominating
irreducible component of (Y ⊗k k((t))) ×P1

y⊗kk((t)) (D ⊗k k((t))). Here the mor-

phism D⊗k k((t))→ P1
y ⊗k k((t)) is the composition of D⊗k k((t))→ P1

x⊗k k((t))

with P1
x ⊗k k((t)) → P1

y ⊗k k((t)) where the later morphism is defined in local
co-ordinates by sending y to t/x. Now using the defining equation of Y , we get
that this function field is k((t))(D)[z]/(zp − z − (x/t)r). Hence k(T ) = L1L2 =
k((t))(X)[z]/(zp − z − (x/t)r).

Note that L1 ∩ L2 = k((t))(D). Also k(X)/k(D) is an abelian extension, so
Gal(L1L2/k((t))(D)) = Gal(L1/k((t))(D))×Gal(L2/k((t))(D) is also abelian. The
morphism Z → D⊗k k((t))→ P1

y⊗k((t)) factors through Y ⊗k k((t)). So the genus
of Z is greater than the genus of Y . �

Let ΨY : WY → Y be an étale H-cover of Y . Note that this is possible because H
is a prime-to-p group and the genus of Y is greater than the number of generators of
H (Grothendieck’s lifting [SGA1, XIII, Corollary 2.12, page 392]). Let TX and TY
be the open subschemes of T given by x 6= 0 and y 6= 0 respectively. Let WXF and
WXT be the normalized pullback of WX → X to XF and TX respectively. Similarly
define WY F and WY T to be the normalized pullback of WY → Y . The following
result (Proposition 3.8) assumes the above setup and uses the above construction
of F , T , WXT , WY T etc explicitly. Note that the construction of these objects
depend on the given curve X and the choice of the curve Y . This is also the basic
setup of [Ku2, Proposition 6.4] which is used in the proof of Proposition 3.8.

Note that every set of ordinals is a well-ordered set, so there exist an ordinal I of
infinite cardinality m such that for any β ∈ I, Iβ = {α ∈ I|α ≤ β} has cardinality
strictly less than m. Such an I is called the initial ordinal of cardinality m.

Proposition 3.8. Let I be the initial ordinal of cardinality m. Let the groups
G, Γ and H be as in the setup of this subsection. There exists a set F of alge-
braically closed subfields kα, k0 ⊂ kα ⊂ k indexed by I such that the card(kα) ≤
max(card(Iα), card(N)), for α < β ∈ I, kα ⊂ kβ ∈ F and for each kα ∈ F there
exists an irreducible Γ-cover Wα → Tα of kα-curves with the following properties:
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(1) Tα is a Z/pZ-cover of X unramified over the preimage of C in X, the
composition Wα → Tα → D is unramified over C and the G-cover Wα/H →
Tα is isomorphic to the cover WX ×X Tα → Tα.

(2) Tα is an abelian cover of D with Π ⊂ Gal(Kun/k(Tα)), i.e., k(Tα) ⊂ Kb.
(3) Let H ′ 6= {e} be a quotient of H. If V → WX is an H ′-cover étale over

the preimage of C in WX then k(V )k(Tα) and k(Wα) are linearly disjoint
over k(WX)k(Tα).

(4) Let α < β ∈ I and Mα/kα(X) be an algebraic extension. Then k(Tβ) and
the compositum kMα are linearly disjoint over k(X).

Proof. The above setup mentioned in this subsection will be used in this proof. In
particular we shall use the construction of T above for various choices of Y . First
we shall show that for any algebraically closed field kα, k0 ⊂ kα ⊂ k, there are
“many” choices for Wα → Tα which satisfy (1), (2) and (3) of the proposition. The
existence of Wα → Tα satisfying (1) and (2) relies on [Ku2, Proposition 6.4] and
[Ku2, Proposition 6.9]. For it to satisfy (3) as well one tweaks the argument slightly
to get linear disjointness. Finally using transfinite induction, we will construct F
and for each kα ∈ F , we will choose a Wα → Tα which satisfy property (4) as well
This uses a bit of set theory and Galois theory.

By [Ku2, Proposition 6.4] there exist an irreducible normal Γ-cover W → T of
k[[t]]-schemes such that over the generic point Spec(k((t))), W g → T g is ramified
only over the points of T g lying above x =∞. This cover can be specialized to kα
to obtain Wα → Tα satisfying (1) and (2). But we shall apply this argument in a
slightly modified setup to obtain the morphism Wα → Tα which satisfy (3) as well.

Since H is a prime-to-p group, so is any quotient H ′ of H. By Grothendieck’s
lifting there are only finitely many H ′-covers of WX which are étale over the preim-
age of C. So there are only finitely many subcovers of these H ′-covers of WX .
Also, since H is a finite group, it has only finitely many quotients. We fix l to be
greater than the total number of all the subcovers of H ′-covers of WX étale over
the preimage of C, for all the quotients H ′ of H.

Let Γ(l) = H l oG, where the action of G on H l is given by the component-wise
action of G on each copy of H. Increasing r in the definition of Y to increase the
genus of Y , we may assume that there exists an étale H l-cover W ′Y → Y . Since

H l is still a prime-to-p group and Γ(l) = H l o G, we can apply [Ku2, Proposition
6.4] to obtain an irreducible normal Γ(l)-cover W ′ → T of k[[t]]-schemes such that
W ′g → T g is ramified only over the points of T g lying above x =∞.

Now this cover can be specialized to obtain covers of kα-curves using [Ku2,
Proposition 6.9]. In fact in the proof of [Ku2, Proposition 6.9] it was shown that
there exists an open subset S of the spectrum of a k[t, t−1]-algebra such that the
coverings W ′g → W g

XT → T g → X ⊗k k((t)) descend to covers of S-schemes
W ′S → WXT,S → TS → X ×k S. Moreover, the fiber over every closed point in
S leads to covers of smooth k-curves with the desired ramification properties and
Galois groups same as that over the generic point Spec(k((t))).

In view of Lemma 3.7, the fiber over a kα-point of S provides a Z/pZ-cover Tα →
X of kα-curves and Tα → D is an abelian cover. Let Z be as in Lemma 3.7. Since
Tα is a specialization of T to k at a kα-point and k(T ) = k(Z)k((t))(X), k(Tα) is the
compositum of k(X) and k(Zα) where Zα is the corresponding specialization of Z to
k at that kα-point. Since the genus of Z is greater than the genus of Y which in turn
is at least g, the genus of Zα is at least g. Also Zα → D is unramified over C because
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Tα dominates Zα. The extension k(Z)/k((t))(D) is p-cyclic. So the same is true
for k(Zα)/k(D). So we obtain that the Galois group Gal(Kun/k(Zα)) ⊃ Pg(C).
Hence Π ⊂ Gal(Kun/k(Zα)). Also Π is clearly contained in πL1 = Gal(Kun/k(X))
(see Figure 1). So Π ⊂ Gal(Kun/k(X)k(Zα)) = Gal(Kun/k(Tα)).

The fiber over any kα-point of S provides a Γ(l)-cover W ′α → Tα of kα-curves.

Moreover, let Hi = H × . . . H × Ĥ ×H × . . . H be the subgroup of Γ(l) where the
ith factor of H is replaced by the trivial group. Then the quotients W ′α/Hi → Tα
are Γ-covers satisfying (1) and (2). Let W i

α = W ′α/Hi. Note that for each i, k(W i
α)

is linearly disjoint with the compositum
∏
j 6=i k(W j

α) over k(WX)k(Tα).

We claim that at least one of these W i
α satisfy (3) as well. Suppose not, then for

each i there exists an H ′ 6= {e} a quotient of H and an H ′-cover V i → WX étale
over the preimage of C such that k(V i)k(Tα) and k(W i

α) are not linearly disjoint
over k(Tα)k(WX). We already saw k(Tα) ⊂ Kb, Gal(k(Tα)/k(X)) = Z/pZ and Kb

and k(WX) are linearly disjoint over k(X). So Gal(k(Tα)k(WX)/k(WX)) = Z/pZ.
Since k(V i)/k(WX) is a prime-to-p extension, k(Tα)k(WX) and k(V i) are linearly
disjoint over k(WX). We have the following picture:

k(V i)k(W i
α)

k(V i)k(Tα)

77ooooooooooo
k(W i

α)

ffMMMMMMMMMM

k(V i)

Z/pZ
99rrrrrrrrrr

k(Tα)k(WX)

H′

ggOOOOOOOOOOOO

88qqqqqqqqqqq

k(WX)

H′

eeLLLLLLLLLL

Z/pZ
77oooooooooooo

If k(V i)k(Tα) and k(W i
α) are not linearly disjoint over k(Tα)k(WX) then k(V i)

and k(W i
α) are not linearly disjoint over k(WX). Hence Mi := k(V i) ∩ k(W i

α) )
k(WX). Note that Mi defines a nontrivial subcover of the H ′-cover V i → WX

and k(WX)k(Tα) ( Mik(Tα) ⊂ k(W i
α). But linear disjointness of k(W i

α) with the
compositum

∏
j 6=i k(W j

α) over k(WX)k(Tα) tells us that Mi 6= Mj for i 6= j. So
we have produced l distinct covers of WX such that each one is a subcover of some
H ′-cover of WX étale over the preimage of C where H ′ is a quotient of H. This
contradicts the choice of l. Hence for some 1 ≤ i ≤ l, W i

α satisfy (3) as well. We
let Wα to be this W i

α.
Now to construct F along with the choice ofWα → Tα for every kα ∈ F satisfying

(1), (2), (3) and (4), we use transfinite induction. Let γ ∈ I and suppose for all
α ∈ I, α < γ, we have constructed algebraically closed fields kα, k0 ⊂ kα ⊂ k, with
card(kα) ≤ max(card(Iα), card(N)) and chosen Wα → Tα satisfying (1), (2) and
(3). Moreover for β ∈ I, with α < β < γ, (4) is also satisfied.

Let k′ = ∪α<γkα, we claim that card(k′) ≤ max(card(Iγ), card(N)). If Iγ is a
finite set then k′ is a finite union of countable fields and hence itself is countable.
Now assume Iγ is an infinite set. Note that for α < γ, we have card(kα) ≤
max(card(Iα), card(N)) ≤ card(Iγ). But k′ = ∪α∈Iγ\{γ}kα, so card(k′) ≤ card(Iγ).
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We shall construct an algebraically closed subfield kγ of k and choose Wγ → Tγ
such that card(kγ) ≤ max(card(Iγ), card(N)), k′ ⊂ kγ and the set {kα ∈ F : α ≤ γ}
along with the choices Wα → Tα for α ≤ γ satisfies (1), (2), (3) and (4). More
precisely, we shall show that there exists an irreducible smooth Γ-cover Wγ → Tγ
of kγ-curves satisfying (1), (2) and (3). Moreover, for any α < γ and Mα/kα(X)
algebraic extension, k(Tγ) and kMα are linearly disjoint over k(X).

Note that the function field of T is an Artin-Schreier extension of k((t))(X)
given by the polynomial zp − z − (x/t)r. Recall that S is an open subset of the
spectrum of a k[t, t−1]-algebra such that the fibers over any point of S of the covers
WS → TS → X ×k S lead to covers of k-curves satisfying (1), (2) and (3). Since k
has a transcendence basis of cardinality m over k0, there exists B = {ai|i ∈ I} ⊂ k
of cardinality m such that B is a part of a transcendence basis of k/k0 and t = a
defines a point Pa of S for all a ∈ B. Let Wa → Ta be the fiber over the point Pa
of WS → TS → X ×k S for a ∈ B. Then k(Ta) = k(X)[z]/(zp − z − (x/a)r). Note
that for a 6= c ∈ B, k(Ta) and k(Tc) are distinct subfields of Kb.

Claim. There exists a ∈ B such that given any algebraic extension M ′/k′(X),
k(Ta) is not contained in kM ′.

Proof of the claim: Suppose not, then by Lemma 3.3, for each a ∈ B there exists
ha ∈ k(X) such that fa = (x/a)r−hpa+ha ∈ k′(X). Let ua in Ω, the fixed algebraic
closure of k(C), be such that upa − ua = fa. Since k(X)[ua] and k(Ta) are both
Z/pZ-extensions of k(X) and (ua + ha)p − (ua + ha) = (x/a)r, k(X)[ua] = k(Ta).
Note that if a 6= c ∈ B then k(Ta) 6= k(Tc) and hence fa 6= fb ∈ k′(X). So
there is an injective set map from B to k′(X). The cardinality of B is m but
card(k′(X)) = card(k′) ≤ max(card(Iγ), card(N)). Since I is the first ordinal of
cardinality m, card(Iγ) < m which provides a contradiction. �

We let kγ to be the algebraic closure of k′(a) in k and Wγ → Tγ be the morphism
Wa → Ta. Then Wγ → Tγ satisfies (1), (2) and (3). Let α ∈ I be such that
α < γ then kα ⊂ k′. Let Mα/kα(X) be an algebraic extension then k′Mα/k

′(X)
is also an algebraic extension. So by the above claim k(Tγ) is not contained in
kk′Mα = kMα. Since k(Tγ)/k(X) is of degree p, we get that k(Tγ)∩ kMα = k(X).
Also card(kγ) = card(k′) ≤ max(card(Iγ), card(N)). This completes the proof. �

Theorem 3.9. Let Π be a closed normal subgroup of π1(C) of rank m such that
π1(C)/Π is abelian and Π ⊂ Pg(C) for some g ≥ 0. The following finite split
embedding problem has card(k) = m proper solutions

Π

�����
�

�
�

1 // H // Γ // G //

��

1

1

Here H is a nontrivial prime-to-p group and a minimal normal subgroup of Γ.

Proof. First we note that translating the problem to Galois theory using Figure
1, our objective is to find m distinct Γ-extensions of Kb, contained in Kun and
containing M (or equivalently k(WX)). By Proposition 3.8, we have a collection of
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fields F indexed by a set I of cardinality m, such that for each kα ∈ F , there exist
Wα and Tα with Gal(k(Wα)/k(Tα)) = Γ. Also k(WX) and Kb are linearly disjoint
over k(X) and by Proposition 3.8(2) k(Tα) ⊂ Kb. So Gal(k(WX)k(Tα)/k(Tα)) =
Gal(k(WX)/k(X)) = G and Gal(k(Wα)/k(WX)k(Tα)) = H.

Claim. For every kα ∈ F , the fields Kbk(WX) and k(Wα) are linearly disjoint over
k(WX)k(Tα) and Gal(Kbk(Wα)/Kb) = Γ.

Proof of the claim. Let A = Kbk(WX) ∩ k(Wα) then A/k(Tα)k(WX) is an H ′-
extension where H ′ is a quotient of H. Since Kbk(WX)/k(WX) is an abelian
extension, so is A/k(WX). Also k(Tα)/k(X) is a Z/pZ-extension by Proposition
3.8(1), so Gal(k(Tα)k(WX)/k(WX)) = Z/pZ. Since H ′ is a prime-to-p group,
Gal(A/k(WX)) = H ′ × Z/pZ. So there exists an H ′-cover V → WX étale over
the preimage of C such that k(V ) ⊂ A. Hence k(WX)k(Tα) ⊂ k(V )k(Tα) ⊂
k(Wα). But Proposition 3.8(3) forces H ′ to be {e}. Hence Kbk(WX) and k(Wα) are
linearly disjoint over k(WX)k(Tα). But this implies Gal(Kbk(Wα)/Kbk(WX)) =
Gal(k(Wα)/k(Tα)k(WX)) = H. Also Gal(Kbk(WX)/Kb) = G, so [Kbk(Wα) :
Kb] = |Γ|. Hence comparing degrees, we get that k(Wα) and Kb are linearly
disjoint over k(Tα) and Gal(Kbk(Wα)/Kb) = Γ. �

To complete the proof, it is enough to show that for kα ( kβ ∈ F , k(Wα)Kb 6=
k(Wβ)Kb as subfields of Kun. Let L0 = k(Tα)k(Tβ). Note that k(X) ⊂ L0 ⊂ Kb,
so by the above claim Gal(k(Wα)L0/L0) = Γ. We will first show the following:

Claim. The fields k(Wα)L0 and k(Wβ)L0 are linearly disjoint over k(WX)L0.

Proof of the claim. Let Mα be the Galois closure of kα(Wα) over kα(WX). By
Proposition 3.8(4), k(Tβ) and kMα are linearly disjoint over k(X). So k(Tβ)k(WX)
and kMα are linearly disjoint over k(WX). Suppose k(Wβ)L0 = k(Wα)L0. Then
k(Wβ) ⊂ kα(Wα)k(Tβ) ⊂Mαk(Tβ). So applying Lemma 3.1, with A, B, L and M
of the lemma as k(WX), kMα, k(Tβ)k(WX) and k(Wβ) respectively, we obtain an
H-extension E/k(WX) such that Ek(Tβ) = k(Wβ). But this contradicts Proposi-
tion 3.8(3). So k(Wβ)L0 6= k(Wα)L0. Since H is a minimal normal subgroup of Γ
by Lemma 3.2 we obtain the claim. �

Let Kb
p be the compositum of all Z/pZ-extension of k(X) contained in Kb.

Claim. The fields k(Wα)Kb
p and k(Wβ)Kb

p are linearly disjoint over k(WX)Kb
p.

Proof of the claim. Since Kb
p/k(X) is a pro-p extension, so is k(WX)Kb

p/k(WX)L0.
By the above claim Gal(k(Wα)k(Wβ)/k(WX)L0) = H × H, which is a prime-to-
p group. Hence k(Wα)k(Wβ) and k(WX)Kb

p are linearly disjoint over k(WX)L0.

So Gal(k(Wα)k(Wβ)Kb
p/k(WX)Kb

p) = H × H. Also Gal(k(Wα)Kb
p/k(WX)Kb

p) =

H = Gal(k(Wβ)Kb
p/k(WX)Kb

p), since k(WX)Kb
p ⊂ k(WX)Kb. So k(Wα)Kb

p and

k(Wβ)Kb
p are linearly disjoint over k(WX)Kb

p. �

Finally we will show that there exists a subset of I of cardinality m such that
for any γ 6= δ in this subset, k(Wγ)Kb 6= k(Wδ)K

b.
Since H is a prime-to-p group, by Grothendieck’s lifting there are only finitely

many H-extensions of k(X) contained in Kun. Let LH denote their compositum.
Then LH/k(X) is a finite extension. For α, β ∈ I, we say α ∼ β if k(Wα)Kb

pLH =

k(Wβ)Kb
pLH . Clearly, ∼ is an equivalence relation on I. Moreover, each equivalence
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class is finite because k(Wα)Kb
pLH/K

b
p is a finite extension and if α ∼ β then

Kb
p ⊂ k(Wβ)Kb

p ⊂ k(Wα)Kb
pLH , so only finitely many k(Wβ)Kb

p is contained in

k(Wα)Kb
pLH . So there are m different equivalence classes.

Finally to complete the proof, it is enough to show that if α and β are in different
equivalence class then k(Wα)Kb 6= k(Wβ)Kb. Suppose k(Wα)Kb = k(Wβ)Kb. Let
L1 = k(Wα)k(Wβ)∩Kb. Then Gal(k(Wα)k(Wβ)/L1) = Gal(k(Wα)k(Wβ)Kb/Kb).
But k(Wα)k(Wβ)Kb = k(Wα)Kb, hence Gal(k(Wα)k(Wβ)/L1) = Γ. Also note
that [k(Wα)k(Wβ) : L0] = |G||H|2 because [k(WX)L0 : L0] = |G| and, k(Wα)L0

and k(Wβ)L0 are linearly disjoint H-extensions of k(WX)L0. We have the following
tower of fields where the labels of the arrow denote the degree:

k(Wα)Kb = k(Wβ)Kb

Kb

|G||H|
77ooooooooooooo

k(Wα)k(Wβ)

iiSSSSSSSSSSSSSS

L1

|G||H|

55kkkkkkkkkkkkkkkkk

ggPPPPPPPPPPPPPPP

L0 = k(Tα)k(Tβ)

|H|

OO

|G||H|2

II

k(X)

p2

OO

From the above figure we also conclude that [L1 : L0] = |H|. Also observe that
[L0 : k(Tα)] = p, so [L1 : k(Tα)] = p|H|. Since L1 ⊂ Kb, L1 and k(Wα) are
linearly disjoint over k(Tα). So we have [k(Wα)L1 : k(Tα)] = p|G||H|2. More-
over [k(Wα)k(Wβ) : k(Tα)] = p|G||H|2 since [L0 : k(Tα)] = p. So the inclusion
k(Wα)L1 ⊂ k(Wα)k(Wβ) is in fact the equality k(Wα)L1 = k(Wα)k(Wβ). Simi-
larly k(Wβ)L1 = k(Wα)k(Wβ).

Note that L1 ⊂ Kb and Kb/k(X) is an abelian extension, so L1/k(X) is also
abelian. Since L0/k(X) is (Z/pZ)2-extension and (|H|, p) = 1, there exists a prime-
to-p Galois extension L2/k(X) such that L1 = L2L0 and L2, L0 are linearly disjoint
over k(X). Now using various linear disjointness we get that

Gal(L2/k(X)) = Gal(L1/L0)

= Gal(L1k(Wα)/L0k(Wα)) (since L0k(Wα) ∩ L1 = L0)

= Gal(k(Wα)k(Wβ)/k(Wα)L0) (since L1k(Wα) = k(Wα)k(Wβ))

= Gal(k(Wβ)L0/k(WX)L0) (∵ k(Wα)L0 ∩ k(Wβ)L0 = k(WX)L0)

= H

Hence L2 ⊂ LH . Since L0 ⊂ Kb
p, we have L1 ⊂ Kb

pLH . Since k(Wα)L1 = k(Wβ)L1,

k(Wα)Kb
pLH = k(Wβ)Kb

pLH . Hence α ∼ β. �

Remark 3.10. Note that the assumption Π ⊂ Pg(C) for some g means that the
étale pro-cover of C corresponding to the field Kb dominates all p-cyclic covers of
C of genus at least g. If we relax the above assumption on Π by asking that the
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pro-cover corresponding to Kb dominates all but a “small set” of p-cyclic covers of
C of genus at least g then also Theorem 3.9 holds with slight modifications in the
proof. Here a “small set” means a set of cardinality strictly less than m.

3.2. Quasi-p group. Now the embedding problem with quasi-p kernel contained
in the M(Γ) will be shown to have m distinct solutions.

Proposition 3.11. Let Π be a closed normal subgroup of π1(C) of rank m such
that π1(C)/Π is abelian then RS(Π) = m for all finite p-groups S.

Proof. We observe that the pro-p quotient of π1(C) is isomorphic to the pro-p free
group of rank m by [Ha2, Theorem 5.3.4], Lemma 2.1 and [RZ, Theorem 8.5.2]. So
the pro-p quotient of Π is also pro-p free of rank m by [RZ, Corollary 8.9.3]. Hence
RS(Π) = m for every finite p-group S. �

Theorem 3.12. Suppose Π is closed normal subgroup of π1(C) of rank m such that
π1(C)/Π is abelian. Then the following finite embedding problem has card(k) = m
proper solutions

(3.1) Π

�����
�

�
�

1 // H // Γ // G //

��

1

1

Here H is a quasi-p group, a minimal normal subgroup of Γ and it is contained in
M(Γ).

Proof. Let us recall Figure 1 and the setup just before subsection 3.1. In the nota-
tion of Figure 1, let X0 be the normalization of C in L, i.e., X0 is the open subset
of X lying above C. Hence π1(X0) contains Π and the surjection Π → G extends
to π1(X0). Also note that π1(X0) is a subgroup of π1(C). By a result ([Pop],[Ha2,
Theorem 5.3.4]) first proved by F. Pop, the following embedding problem has m
distinct solutions

π1(X0)

��||x
x

x
x

x

1 // H // Γ // G //

��

1

1

Let I be an indexing set of cardinality m and θ̃i, i ∈ I denote the m distinct
solutions to the above embedding problem. Let θi be the restriction of θ̃i to the
normal subgroup Π. By Lemma 2.3 we know that every θi is a solution to the
embedding problem (3.1).

Now we shall show that the embedding problem (3.1) has m distinct solutions.

For each solution θ̃i of the above embedding problem for π1(X0), let Li be the fixed

subfield of Kun by the group ker θ̃i. Note that Gal(Li/L) = Γ. Moreover, since θi
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is a solution to the embedding problem (3.1), we have Gal(LiK
b/Kb) = Γ. Let us

summarize the situation in the following diagram.

K LiK
boo

M

ddIIIIIIIIII
L′Kb

jjVVVVVVVVVVVVVVVVVVVVVVVV
H

88qqqqqqqqqq

Kb

Π

ZZ6666666666666666

OO

G

77ooooooooooooo
Li

OO

k(WX) = L′
H

88rrrrrrrrrrr

OO

k(X) = L

Θ

LL

OO

G

77ooooooooooo Γ

DD

Note that Li and L′Kb are linearly disjoint over L′ for all i ∈ I. Let i and
j be two distinct elements of I. Since Li and Lj are distinct Γ-extensions of L
containing L′ and H is a minimal normal subgroup of Γ, we must have Li∩Lj = L′

by Lemma 3.2. In particular, Gal(LiLj/L
′) = H×H and Gal(LiLj/L) = Γ×GΓ =

{(γ1, γ2)|γ1, γ2 ∈ Γ and γ̄1 = γ̄2 ∈ G}. Since H is a minimal normal subgroup of
Γ, H = S× S× . . . S for some simple group S.

If S is not abelian then H and hence H ×H is perfect (i.e. it has no non-trivial
quotient group that is abelian). But L′Kb/L′ is an abelian extension since Kb/L is
an abelian extension. Hence L′Kb and LiLj are linearly disjoint over L′. Therefore
[LiLjK

b/Kb] = |G||H|2. In particular, LiK
b 6= LjK

b and hence θi for i ∈ I are all
distinct.

Now suppose S is abelian. Since H is a quasi-p group S = Z/pZ. Hence H is a
p-group. If LiK

b 6= LjK
b for every i, j ∈ I, i 6= j then clearly θi for i ∈ I are all

distinct solutions to the embedding problem (3.1) and we are done again.
So we may assume there exist i, j ∈ I, i 6= j, LiK

b = LjK
b. In this case as

well we shall construct m distinct solutions. Let L1 = Kb ∩ LiLj . Since L1 is the
intersection of Galois extensions of L, L1/L is a Galois extension. Note that Kb and
LiLj are linearly disjoint over L1 so [LiLj : L1] = [LiK

b : Kb] = |Γ| = |G||H|. Also
[LiLj : L] = |Γ×G Γ| = |G||H|2. Hence [L1 : L] = |H|. The following summarizes
the situation.

LiK
b = LjK

b

Kb

|G||H|
99sssssssssss

LiLj

ffLLLLLLLLLLL

L1

|G||H|

88qqqqqqqqqqqq

ffLLLLLLLLLLLL

L

|H|

OO

|G||H|2

NN
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We have already observed that Li and Kb are linearly disjoint over L and L1 ⊂
Kb, hence Li and L1 are linearly disjoint over L. So [LiL1 : L] = |G||H|2 =
[LiLj : L]. Hence the inclusion LiL1 ⊂ LiLj is in fact the equality LiL1 = LiLj .
Linear disjointness of Li and L1 also tells us that Gal(LiL1/L) = Γ ⊕ H1 where
H1 = Gal(L1/L). So we have Γ ⊕ H1 = Gal(LiL1/L) = Gal(LiLj/L) ∼= Γ ×G Γ.
Also note that |H1| = |H| hence H1 is a p-group.

Fix an i ∈ I. Since LiK
b/Kb is a finite extension, there are only finitely many

intermediate field extensions. We choose l to be greater than this number. Let I ′ be
another indexing set of cardinality m. Using Proposition 3.11 we have RHl1(Π) = m.

So there are m H l
1-extensions M ′α of Kb indexed by α ∈ I ′ such that M ′α ⊂ Kun

and M ′α is linearly disjoint with
∏
β∈I′\{α}M

′
β over Kb. Taking fixed subfields of

M ′α by various copies of H l−1
1 , we get l distinct H1-extensions of Kb contained

in M ′α such that any one of them is linearly disjoint with the compositum of the
remaining ones over Kb. By choice of l, one of these extensions must be linearly
disjoint with LiK

b over Kb. We will denote this field by Mα. So for each α ∈ I ′
there exist Mα ⊂ M ′α such that LiK

b and Mα are linearly disjoint over Kb and
Gal(Mα/K

b) = H1. In particular, Gal(MαLi/K
b) = Γ⊕H1

∼= Γ×G Γ. Moreover,
every α ∈ I ′, Mα and

∏
β∈I′\{α}Mβ are linearly disjoint over Kb.

Let Lα ⊂ MαLi be a Γ-extension of Kb different from Li and containing L′Kb.
Then Lα provides a solution to the embedding problem (3.1). Again using the fact
that H is a minimal normal subgroup of Γ, by Lemma 3.2 we observe that LiK

b and
Lα are linearly disjoint over L′Kb. Therefore, [LαLi : Kb] = |G||H|2 = [MαLi : Kb]
and hence LαLi = MαLi.

For α, β ∈ I ′, we say α ∼ β, if MαLi = MβLi. This is clearly an equivalence
relation. Since MαLi/K

b is a finite extension, there can be only finitely many
intermediate fields. So only finitely many Mβ ’s are contained in MαLi. Hence each
equivalence class is finite. Finally if α and β are in two different equivalence classes
then LαLi and LβLi are distinct, which implies Lα and Lβ are distinct. Since there
are m distinct equivalence classes, we obtain m distinct solutions to the embedding
problem (3.1). �

Remark 3.13. Note that the hypothesis Π ⊂ Pg(C) is not necessary in the above
result.

Proof. (of theorem 3.6) The étale fundamental group π1(C) is projective so Π,
being a closed subgroup of π1(C), is also projective ([FJ, Proposition 22.4.7]). The
result now follows from Theorem 2.2, Theorem 3.9 and Theorem 3.12. �

Let C be a smooth affine curve as above. Recall that πc1(C) is the commutator
subgroup of π1(C).

Proposition 3.14. Let S be a finite simple group. Then RS(πc1(C)) = m and
RS(Pg(C)) = m for all g ≥ 0.

Proof. Note that πc1(C) and Pg(C) for all g ≥ 0 are closed normal subgroups of
π1(C) of rank m and πc1(C) is contained in P0(C). Moreover, π1(C)/πc1(C) and
π1(C)/Pg(C) are abelian groups. Let S be a finite simple group. If S is a prime-
to-p group then the result follows from Theorem 3.9 by taking H = Γ = S. If p
divides |S| then S is a quasi-p simple group. Moreover if S is also non-abelian group
then the result follows from [Ku2, Theorem 5.3]. Finally if S is an abelian simple
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quasi-p group then S ∼= Z/pZ. Since π1(C)/πc1(C) and π1(C)/Pg(C) are abelian
groups, the result follows from Proposition 3.11. �

Corollary 3.15. The commutator subgroup πc1(C) of π1(C) is a profinite free group
of rank m for any smooth affine curve C over an algebraically closed field k of
characteristic p and cardinality m. The subgroups Pg(C) of π1(C) are also free
profinite group of rank m for all g ≥ 0.

Proof. As observed earlier, πc1(C) is a closed normal subgroup of π1(C) of rank m
contained in P0(C). Also π1(C)/πc1(C) and π1(C)/Pg(C) are abelian groups. So
the result follows from Theorem 3.6 and Proposition 3.14. �

The restriction that Π ⊂ Pg(C) for some g can not be dropped completely as
the following example suggests. Though it could be somewhat relaxed (see Remark
3.10).

Example 3.16. Let C be the affine line and Π = ∩{π1(Z)|Z → C an étale cover
and Z is again the affine line}. Clearly Π is a closed normal subgroup of π1(C) and
π1(C)/Π is an infinite abelian pro-p subgroup. But Π has no non-trivial prime-to-p
quotients. To see this, assume there is one. Then there exists a prime-to-p finite
field extension M/Kb with M ⊂ Kun. Using finiteness of this field extension, one
could get a prime-to-p extension of L where L ⊂ Kb is a finite extension of k(C).
But the normalization of C in L is also an affine line, so it can not have a prime-to-p
étale cover by Theorem 1.3.

Let Kpn denote the intersection of all open normal subgroups of π1(C) so that the
quotient is an abelian group of exponent at most pn. Let Gpn = π1(C)/Kpn then
Gpn = lim

←−
Gal(k(Z)/k(C)) where Z → C is a Galois étale cover of C with Galois

group (Z/pnZ)l for some l ≥ 1. The group Gpn has a description in terms of Witt
rings of the coordinate ring of C. In factGpn ∼= Hom(Wn(OC)/P (Wn(OC)),Z/pnZ)
by [Ku2, Lemma 3.3]. Here Wn(OC) is the ring of Witt vectors of length n and P
is a group homomorphism from Wn(OC) to itself given by “Frobenius - Identity”
(see Section 2 of [Ku2] for details). Hence for any n ≥ 1, we get the following exact
sequence:

1→ Kpn → π1(C)→ Hom(Wn(OC)/P (Wn(OC)),Z/pnZ)→ 1

Corollary 3.17. Kpn is a profinite free group of rank m

Proof. Note that Kpn is a closed normal subgroup of π1(C) and it is contained in
P0(C). The quotient π1(C)/Kpn is clearly an abelian group. Proposition 3.14 is
also true when πc1(C) is replaced by Kpn and the proof is the same. Hence Kpn is
also profinite free of rank m in view of Theorem 3.6. �
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