
FUNDAMENTAL GROUP IN NONZERO CHARACTERISTIC

MANISH KUMAR

Abstract. A proof of freeness of the commutator subgroup of the fundamen-
tal group of a smooth irreducible affine curve over a countable algebraically
closed field of nonzero characteristic. A description of the abelianizations of
the fundamental groups of affine curves over an algebraically closed field of
nonzero characteristic is also given.

1. Introduction

The algebraic fundamental group of smooth curves over an algebraically closed
field of characteristic zero is a well understood object, thanks to Grothendieck’s
Riemann existence theorem [SGAI, XIII, Corollary 2.12, page 392] . But if the
characteristic of the base field is p > 0 and the curve is affine then there may be
wild ramification over the points at infinity. So computing the algebraic fundamen-
tal group in this scenario is not as simple. Though Grothendieck gave a description
of the prime-to-p part of the fundamental group. The prime-to-p part is analogous
to the characteristic zero case. But the structure of the whole group is still elusive
in spite of the fact that all the finite quotients of this group are now known. A
necessary and sufficient condition for a finite group to be a quotient of the fun-
damental group of a smooth affine curve was conjectured by Abhyankar (see the
theorem below) and was proved by Raynaud [Ra1] (in the case of the affine line)
and Harbater [Ha2] (for arbitrary smooth affine curves). For a finite group G and
a prime number p, let p(G) denote the subgroup of G generated by all the p-Sylow
subgroups. p(G) is called the quasi-p part of G.

Theorem 1.1. (Raynaud, Harbater) Let C be a smooth projective curve of
genus g over an algebraically closed field of characteristic p > 0 and for some
n ≥ 0, let x0, · · · , xn be some points on C. Then a finite group G is a quotient of
the fundamental group π1(C \ {x0, · · · , xn}) if and only if G/p(G) is generated by
2g + n elements. In particular a finite group G is a quotient of π1(A1) if and only
if G = p(G), i.e., G is a quasi-p group.

The “if part” of the above theorem is the nontrivial part, the “only if part”
was proved long back by Grothendieck. Serre made some significant advancement
towards solving this conjecture in [Se2]. More precisely, Serre proved the “if part”
for the affine line under the assumption that the groupG is solvable. Then Raynaud,
using the induction on the cardinality of G and dealing with other cases, completed
the proof of the conjecture for the affine line. Once the affine line case was done,
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Harbater used the technique of formal patching to combine the quasi-p covers of the
affine line and prime-to-p covers of the given curve to construct covers with desired
group, solving the conjecture in the general case. A flavour of formal patching
technique will be seen in this manuscript as well.

From now on we shall assume that the characteristic of the base field is p > 0.
Consider the following exact sequence for the fundamental group of a smooth affine
curve C.

1 → πc1(C) → π1(C) → πab1 (C) → 1

where πc1(C) and πab1 (C) are the commutator subgroup and the abelianization of
the fundamental group π1(C) of C respectively. In this paper we give a description
of the abelianization (Corollary 3.5). This is a simple consequence of the theory
of Witt vectors and some calculation involving étale cohomology. But the main
result of this paper is the following (see Theorem 4.8, Theorem 5.3, Theorem 5.5
and Theorem 6.12):

Theorem 1.2. Let k be a countable algebraically closed field of characteristic p.
Let C be any irreducible smooth affine curve over k, then πc1(C) is free.

It is worth noting here that the tame part or the prime-to-p part of the funda-
mental group of an affine curve may be very small. For instance, the prime-to-p
part of the fundamental group of the affine line is trivial. But obviously the prime-
to-p part of the commutator subgroup is different from the commutator subgroup
of the prime-to-p part of the fundamental group.

The result on the commutator subgroup can be interpreted as some analogue of
the so called Shafarevich’s conjecture for global fields. Recall that the Shafarevich
conjecture says that the commutator subgroup of the absolute Galois group of the
rational numbers Q is free. David Harbater ([Ha6]), Florian Pop ([Pop]) and later
Dan Haran and Moshe Jarden ([HJ]) have shown, using different patching methods,
that the absolute Galois group of the function field of a curve over an algebraically
closed field is free. See [Ha7] for more details on these kind of problems.

The Section 2 of this thesis mainly consists of definitions and notations. In
Section 3, “Abelianization”, we give a description of the p-part of the abelianiza-
tion of the algebraic fundamental group of any normal affine algebraic variety over
an algebraically closed field in terms of Witt vectors. We deduce the fact that the
abelianization of the algebraic fundamental group determines Wn(A)/P (Wn(A)) as
a group (see Remark 3.6) where Wn(A) is the ring of finite Witt vectors over the co-
ordinate ring A of the affine variety under consideration and P is the additive group
endomorphism of Wn(A) which sends (a1, · · · , an) to (ap1, · · · , apn) − (a1, · · · , an)
(here ′′−′′ is subtraction in the Witt ring). It is conjectured by Harbater that the
algebraic fundamental group of an affine curve should determine its coordinate ring.

The rest of the manuscript is devoted to proving that the commutator subgroup
of the algebraic fundamental group of a smooth irreducible affine curve over a
countable algebraically closed field k is a free profinite group of countable rank.
Section 4 consist of some group theory results, some results on embedding problems
and it is also shown that the commutator subgroup of the algebraic fundamental
group is projective. These results are then used to reduce Theorem 1.2 to finding
proper solution for all split embedding problem with perfect quasi-p group as the
kernel, abelian p-group as kernel and prime-to-p group as kernel (for definitions and
terminology see Section 2). The embedding problems with quasi-p kernels are easy
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to handle thanks to the results of Florian Pop (Theorem 5.1). These are dealt in
Section 5. The nontrivial part of this document is solving the embedding problems
with prime-to-p kernel.

The section on “prime-to-p embedding problems” (Section 6) is the longest one
and is devoted to finding proper solutions for prime-to-p embedding problems. The
first subsection of this section is on formal patching methods which were developed
by Harbater (see [Ha1], [Ha2] and [Ha3]), Ferrand, Raynaud, Artin, etc. These
patching results have been moulded for the situation at hand. The next subsec-
tion contains the proof of the main theorem (Theorem 6.12). It starts with some
technical lemmas and propositions. First the prime-to-p embedding problems are
solved for the commutator subgroup of the fundamental group of the affine line.
The modifications needed for the general case appears next. The last section con-
sists of a few more short exact sequences involving the fundamental group of affine
curves. These are fallouts of the proof. A brief outline of how to modify the proof
to get these results have also been mentioned.

2. Definitions and notations

Let p be a fixed prime number. For a ring A of characteristic p, (Wn(A),+, .)
will denote the ring of Witt vectors of length n over R. This ring as a set consists
of n-tuples of elements of R. But the group operations are entirely different. The
multiplicative identity is (1, 0, 0, · · · , 0) and the additive identity is the zero vector
(0, 0, · · · , 0).

Let F denote the Frobenius endomorphism onWn(A) which sends (a0, · · · , an−1)
to (ap0, · · · , a

p
n−1) and P : Wn(A) →Wn(A) be the homomorphism of abelian groups

sending (a0, · · · , an−1) to (ap0, · · · , a
p
n−1) − (a0, · · · , an−1), i.e., F − Id. Note that

(ap0, · · · , a
p
n−1)− (a0, · · · , an−1) is not the same as (ap0− a0, · · · , apn−1− an−1) since

the “−” in the Witt ring is different from component-wise subtraction.
For a field K of characteristic p, these different Witt rings characterize the

abelian p-group field extensions of K. For a detailed treatment of Witt vectors,
readers are advised to look at [Jac].

An embedding problem consists of surjections φ : π � G and α : Γ � G

π
ψ

~~~
~

~
~

φ

��
1 // H // Γ α

// G //

��

1

1

where G, Γ and π are groups. Let H = ker(α). It is also sometimes called em-
bedding problem for π. It is said to have a weak solution if there exists a group
homomorphism ψ which makes the diagram commutative, i.e., α◦ψ = φ. Moreover,
if ψ is an epimorphism then it is said to have a proper solution. It is said to be
a finite embedding problem if Γ is finite. All the embedding problems considered
here is assumed to be finite. An embedding problem is said to be a split embedding
problem if there exists a group homomorphism from G to Γ which is a right inverse
of α. It is called a quasi-p embedding problem or embedding problem with quasi-p
kernel if H is a quasi-p group, i.e., H is generated by its Sylow p-subgroups and
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similarly it is called a prime-to-p embedding problem if H is a prime-to-p group,
i.e., the order of H is prime to p. H will sometimes be referred to as the kernel of
the embedding problem.

A profinite group is a compact Hausdorff totally disconnected topological group.
In the context of this thesis, a more useful definition (which is equivalent to the
previous one) is that a profinite group is the inverse limit of an inverse system of
finite groups with discrete topology.

A profinite group is called free if it is a profinite completion of a free group. A
generating set of a profinite group π is a subset I so that the closure of the group
generated by I is the whole group π. The rank of a profinite group is the minimum
of the cardinalities of its generating sets.

For a reduced ring R, frac(R) will denote the total ring of quotients of R. A ring
extension R ⊂ S is said to be generically separable if R is a domain, S is reduced,
frac(S) is separable extension of frac(R) and no nonzero element of R becomes a
zero divisor in S. A morphism φ : Y → X is said to be generically separable if X
can be covered by affine open subsets U = Spec(R) such that the ring extension
R ⊂ O(Φ−1(U)) is generically separable.

For an affine variety X over a field k, k[X] will denote the coordinate ring of X
and k(X) will denote its function field. For a scheme X and a point x ∈ X, let
K̂X,x denote the fraction field of complete local ring ÔX,x whenever the latter is a
domain. For domains A ⊂ B, A

B
will denote the integral closure of A in B.

As in [Ha2], a morphism of schemes, Φ: Y → X, is said to be a cover if Φ is
finite, surjective and generically separable. For a finite group G, Φ is said to be a
G-cover (or a G-Galois cover) if in addition there exists a group homomorphism
G→ AutX(Y ) which acts transitively on the geometric generic fibers of Φ.

For a scheme X, let M(X) denote the category of coherent sheaves of OX -
modules, AM(X) denote the category of coherent sheaves of OX -algebras and
SM(X) denote the subcategory of AM(X) for which the sheaves of algebras are
generically separable and locally free. For a finite group G, let GM(X) denote
the category of generically separable coherent locally free sheaves of OX -algebras
S together with a G-action which is transitive on the geometric generic fibers of
SpecOX

(S) → X. For a ring R, we may use M(R) instead of M(Spec(R)), etc.
Given categories A, B and C and functors F : A → C and G : B → C, A ×C B
will denote the fiber product category. The objects of this category are triples
(A,B,C), where A, B and C are objects of A, B and C respectively together with
isomorphisms of C with F(A) and with G(B) in C. The morphisms are triples
(a, b, c), where a, b and c are morphisms in A, B and C respectively, so that F(a)
and G(b) under the functors F and G are morphism in C which agrees with c in the
natural way. That is, the following two squares commute.

C

��

c // C ′

��

C

��

c // C ′

��
F(A)

F(a)
// F(A′) G(B)

G(b)
// G(B′)

For a connected scheme X, let Cov(X) denote the category whose objects are
finite étale covers ofX, i.e., finite surjective étale morphisms f : Y → X. Morphisms
between two objects f : Y → X and g : Z → X of this category are morphisms of
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X-schemes. A geometric point x of X is a morphism Spec(K) → X, with K a
separably algebraically closed field containing the residue field of the point x0 ∈ X,
where x0 is the image of the given morphism Spec(K) → X. Note that x0 need
not be a closed point.

For each geometric point b of X we shall define a functor Fb from the category
Cov(X) to the category of sets (denoted by Sets). This functor sends an object
f : Y → X of Cov(X) to the set HomX(b, Y ), the set of X-morphisms from b to Y .
Moreover, a morphism h : Y → Z in Cov(X) is sent to the set map Fb(h) which
sends α ∈ HomX(b, Y ) to h ◦ α ∈ HomX(b, Z).

Two functors F and G from Cov(X) to Sets are said to be isomorphic if for
every object f : Y → X there is a bijection IY : F (Y ) → G(Y ) and these bijections
are compatible with the morphisms in the two categories. In terms of commutative
diagram this means that for any morphism h : Y → Z in the category Cov(X) we
have the following commutative diagram:

F (Y )
IY //

F (h)

��

G(Y )

G(h)

��
F (Z)

IZ

// G(Z)

I is said to be an isomorphism from the functor F to G. The étale fundamental
group (or the algebraic fundamental group) of X with a base point b, a geometric
point of X, is the group of automorphisms of the fiber functor Fb defined above.
This group is denoted by π1(X, b).

Note that for each object Y of Cov(X), π1(X, b) induces a group of automor-
phisms of Fb(Y ). Moreover these groups form an inverse system of groups and
π1(X, b) is the inverse limit of this inverse system. Hence it is a profinite group.
As in the classical (topological) fundamental group case, here as well π1(X, b) and
π1(X, c) are (non canonically) isomorphic for any two geometric points b and c of
X.

If X is a smooth variety over C (or any algebraically closed field of characteristic
zero), then the étale fundamental group of X, π1(X, b), for a closed point b ∈ X
is isomorphic to the profinite completion of the topological fundamental group
πtop1 (X, b). This is a consequence of the famous (Grothendieck) Riemann Existence
Theorem. Let k be an algebraically closed field. It is easy to see from the Riemann-
Hurwitz formula that π1(P1

k, b) is trivial and that if the characteristic of k is 0 then
π1(A1

k, b) is also trivial.
In the subsequent sections when we deal with an integral scheme X , we shall

drop the base point from the notation of the fundamental group. In those situations,
the base point b is assumed to be the generic geometric point of X corresponding
to the ring monomorphism k(X) ↪→ k(X)

s
, where the function field k(X) is viewed

as the residue field of the generic point and k(X)
s

is the separable closure of k(X).
Hence, if X is integral π1(X) := π1(X, b) where b is the above generic geometric
point of X. With this notation, we see that π1(X) = lim

←−
Aut(k(Y )/k(X)) where

Y varies over finite étale covers of X and Aut(k(Y )/k(X)) is the group of field
automorphisms of k(Y ) fixing k(X). Moreover, the Galois étale covers of X form
a cofinal system in this inverse system, hence π1(X) = lim

←−
Gal(k(Y )/k(X)) where
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Y varies over finite Galois étale covers of X. This Galois theoretic aspect of π1(X)
has been used throughout in this thesis.

3. Abelianization

In this section, the theory of Witt vectors and their intimate relationship with
abelian p-group field extensions are used to understand the abelianizations of the
fundamental groups of affine varieties. The field extensions defined by Witt vectors
can be thought of as generalizations of Artin-Schrier field extensions.

Let X = Spec(A) be a normal affine algebraic variety over an algebraically
closed field k of characteristic p > 0. Let G = πab1 (X) and let G(p) be the maximal
p-quotient of G, i.e., G(p) is the quotient group of G such that every finite p-
group quotient of G factors through G(p). Note that G(p) is also a subgroup of
G. Let GW = Hom(lim

−→
Wn(A)/P (Wn(A)), S1), where the group homomorphism

fromWn(A)/P (Wn(A)) toWn+1(A)/P (Wn+1(A)) is given by sending [(a1, · · · , an)]
to [(0, a1, · · · , an)]. Here S1 is the unit circle in the complex plane viewed as a
topological group. The main result of this section is the following:

Theorem 3.1. G(p), the p-part of the abelianization of the fundamental group of
X, is isomorphic to GW .

The proof requires a few technical lemmas which we shall see now. For a sheaf
of rings F of characteristic p on a topological space X, let Wn(F) denote the sheaf
which assigns to an open set U , the ring Wn(F(U)). A version of the following
lemma can be found in [Se1].

Lemma 3.2. (Serre) Let A be a noetherian ring of characteristic p. Let B be
a ring extension of A and a finite A-module. Then for every n ≥ 1 and k > 0,
Hk
et(Spec(A),Wn(B)) = 0, where B = θ∗OSpec(B) and θ : Spec(B) → Spec(A) is

the morphism induced from A ↪→B.

Proof. Since B is a finite module over A, B is a coherent sheaf over Spec(A). We
shall use induction on n to prove the lemma. Note that W1(B) = B. By Serre’s
Vanishing Theorem and the fact that the étale cohomology of coherent sheaves
agrees with the Zariski cohomology (see [Mil, 3.7, 3.8, page 114]), the lemma holds
for n = 1. For the induction step, consider the following exact sequence.

0 −→ B −→Wn+1(B) −→Wn(B) −→ 0

Here, for a fixed open set U , the surjection (on the level of rings) is given by
sending (b1, · · · , bn, bn+1) to (b1, · · · , bn), and clearly the kernel is the subgroup
{(0, · · · , 0, b) ∈ Wn+1(B(U)) : b ∈ B(U)} which is isomorphic B(U) as a group.
This induces a long exact sequence

· · · → Hk
et(Spec(A),B) → Hk

et(Spec(A),Wn+1(B)) → Hk
et(Spec(A),Wn(B)) → · · ·

By the induction hypothesis on n, Hk
et(Spec(A),Wn(B)) = 0 for k > 0 and hence

Hk
et(Spec(A),Wn+1(B)) = 0, for all k > 0. �

Extending the Artin-Schrier theory to Witt vectors we get the following result.

Lemma 3.3. Let A be a finitely generated normal domain over an algebraically
closed field k of characteristic p > 0. Let π1(X) be the fundamental group of
X = Spec(A) and (Wn(A),+, .) the ring of Witt vectors of length n. Let P be the
additive group endomorphism F − Id of Wn(A). Then for every n ≥ 1, we have
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a natural isomorphism Wn(A)/P (Wn(A)) Φ−→ Hom(π1(X),Wn(Z/pZ)) so that the
following diagram commutes.

Wn(A)/P (Wn(A)) //

��
#

Hom(π1(X),Wn(Z/pZ))

��
Wn+1(A)/P (Wn+1(A)) // Hom(π1(X),Wn+1(Z/pZ))

Here the first vertical map sends [(a1, · · · , an)] to [(0, a1, · · · , an)] and the second
vertical map is induced by the inclusion of Wn(Z/pZ) in Wn+1(Z/pZ).

Proof. Let K be an algebraic closure of the fraction field frac(A) of A. Let Kun

be the compositum of all subfields L of K with the property that L/ frac(A) is
a finite field extension and the integral closure of A in L, A

L
, is an étale ring

extension of A. We shall define a map φ from Wn(A) → Hom(π1(X),Wn(Z/pZ))
as follows. Given (a1, · · · , an) ∈ Wn(A), let (r1, · · · , rn) ∈ Wn(K) be such that
P (r1, · · · , rn) = (a1, · · · , an). Note that r1, · · · , rn ∈ Kun; to see this first observe
that rpi − ri ∈ A[r1, · · · , ri−1] for each i ≥ 1. We know that the ring extension
given by a polynomial of the form Zp−Z−a, for a ∈ A is an unramified extension.
π1(X) = Gal(Kun/ frac(A)), so π1(X) acts on Kun fixing frac(A). For g ∈ π1(X),
let φ(a1, · · · , an)(g) = (gr1, · · · , grn)− (r1, · · · , rn). Note that

P ((gr1, · · · , grn)− (r1, · · · , rn)) = P ((gr1, · · · , grn))− P (r1, · · · , rn)
= gP (r1, · · · , rn)− (a1, · · · , an) = 0.

The second equality holds because (rp1 , · · · , rpn)− (r1, · · · , rn) is given by a polyno-
mial in r1, · · · , rn with integer coefficients. Hence F ((gr1, · · · , grn)−(r1, · · · , rn)) =
(gr1, · · · , grn)−(r1, · · · , rn), which yields (gr1, · · · , grn)−(r1, · · · , rn) ∈Wn(Z/pZ).
To see that φ(a1, · · · , an) is independent of the choice of (r1, · · · , rn), let (s1, · · · , sn)
be such that P (s1, · · · , sn) = (a1, · · · , an). Then the difference (r1, · · · , rn) −
(s1, · · · , sn) ∈ Wn(Z/pZ), hence is fixed by g. So g((r1, · · · , rn) − (s1, · · · , sn)) =
(r1, · · · , rn) − (s1, · · · , sn) which yields (gr1, · · · , grn) − (r1, · · · , rn) is same as
(gs1, · · · , gsn) − (s1, · · · , sn). Next we shall see that φ(a1, · · · , an) is a homomor-
phism from π1(X) to Wn(Z/pZ). Let g, h ∈ π1(X) then

φ(a1, · · · , an)(gh) = (ghr1, · · · , ghrn)− (r1, · · · , rn)
= (ghr1, · · · , ghrn)− (hr1, · · · , hrn) + (hr1, · · · , hrn)
− (r1, · · · , rn)

= φ(a1, · · · , an)(g) + φ(a1, · · · , an)(h)

since P (hr1, · · · , hrn) = (a1, · · · , an). Now we shall see that φ is a homomorphism.
To simplify notation, a may be used for (a1, · · · , an). Let a, b ∈ Wn(A) and r, s ∈
Wn(K) be such that P (r) = a, P (s) = b then P (r + s) = a+ b. Hence φ(a+ b) =
φ(a)+φ(b). To determine the kernel of φ, note that φ(a) = 0 iff gr = r for all g ∈ G,
i.e. r ∈ Wn(frac(A)). But A is normal, hence this happens iff r ∈ Wn(A). Hence
the kernel of φ is P (Wn(A)). Let Φ be the induced map on Wn(A)/P (Wn(A)). The
fact that the diagram commutes is obvious by the construction. So to complete the
proof it suffices to show that φ is surjective.
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Let α ∈ Hom(π1(X),Wn(Z/pZ)), we shall find a Witt vector (a1, · · · , an) so that
α = φ(a1, · · · , an). Note that α corresponds to a Galois étale extension B of A with
the Galois group of frac(B) over frac(A) being im(α)(= H say). Let SWn(B) =
{(r1, · · · , rn) ∈ Wn(B) : P (r1, · · · , rn) ∈ Wn(A)}. Clearly Wn(A) ↪→SWn(B). Let
Ĥ = Hom(H,S1) be the character group of H. For r ∈ SWn(B) and h ∈ H define
χr(h) = hr− r := gr− r where g is any element of α−1(h). As noted earlier χr is a
character (after identifying Wn(Z/pZ) with the unique cyclic subgroup of S1). We
know that Ĥ ∼= H. Also as seen earlier λ : r 7→ χr is a group homomorphism from
SWn(B) to Ĥ whose kernel is precisely Wn(A). So we have an exact sequence

0 −→Wn(A) −→ SWn(B) −→ Ĥ

where the last homomorphism is λ. Next we shall show that λ is surjective. Since
Ĥ ∼= H is a quotient of π1(X), H1(Ĥ,Wn(B)) ↪→H1(π1(X),Wn(B)) ([Wei, 6.8.3]).
By the Hochschild-Serre spectral sequence, H1(π1(X),H0

et(X,Wn(B))) embeds into
H1
et(X,Wn(B)) (see [Mil, 2.21(b), page 106]). Also H0

et(X,Wn(B)) is simply Wn(B)
and by Lemma 3.2, H1

et(X,Wn(B)) = 0. So H1(Ĥ,Wn(B)) = 0, i.e., every cocycle
is a coboundary. Viewing Ĥ as Hom(H,Wn(Z/pZ), if χ ∈ Ĥ then χ(hh′) = χ(h)+
χ(h′) = hχ(h′) + χ(h), hence χ is a cocycle and therefore a coboundary. So there
exists an r ∈ Wn(B) such that χ(h) = hr − r,∀h ∈ H. Since χ(h) ∈ Wn(Z/pZ),
P (χ(h)) = 0, i.e., hP (r) = P (r),∀h ∈ H. Since A is normal and B is integral over
A, P (r) ∈ Wn(A), hence r ∈ SWn(B). This proves the surjectivity of λ. So we
have, SWn(B)/Wn(A) ∼= Ĥ ∼= H. Since H is a subgroup of Wn(Z/pZ), H has a
generator of the type h = (0, · · · 0, 1, 0, · · · , 0). Let the coset (r1, · · · , rn) +Wn(A)
be a generator of SWn(B)/Wn(A). It follows that χr is a generator of Ĥ and
hence h1 := χr(h) is also a generator of H. So there is an h2 ∈ Wn(Z/pZ) such
that h1 · h2 = h (Witt product). Let g ∈ α−1(h) then gr − r = χr(h) = h1. Let
(a1, · · · , an) = P (h2 · r). This Witt vector is our candidate for preimage of α, we
shall show α = φ(a1, · · · , an). By assumption α(g) = h and

φ(a1, · · · , an)(g) = g(h2 · r)− h2 · r
= gh2 · gr − h2 · r
= h2 · gr − h2.r (h2 ∈Wn(A))

= h2 · (gr − r)
= h2 · h1 = h

For arbitrary g1 ∈ G, since H is cyclic α(g1) = h+ · · ·+h, l times, for some l. Then

φ(a1, · · · , an)(g1) = h2 · (g1r − r)

= h2 · (χr(h+ · · ·+ h))

= h2 · (h1 + · · ·+ h1) = h+ · · ·+ h

So φ(a1, · · · , an) agrees with α on whole of π1(X). �

Now we are ready to prove Theorem 3.1.

Proof. (Theorem 3.1) We know that G(p) ∼= Hom(Homcont(G(p), S1), S1) by
Pontriagin duality. Let Kn be the compositum of all the fraction fields frac(B)
where each A ↪→B is a finite Galois étale extension with Galois group a sub-
group of (Z/pnZ)m for some m. And let Gn be the Galois group of Kn over
frac(A). The natural group homomorphism from Gn+1 to Gn corresponding to
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the Galois extension Kn+1 ⊃ Kn ⊃ frac(A) makes (Gn)n≥1 into an inverse sys-
tem and G(p) = lim

←−
Gn. So we have Homcont(G(p), S1) ∼= Homcont(lim←−Gn, S

1).

Since Hom(−, S1) is a contravariant functor and the dual of inverse limit is direct
limit, Homcont(G(p), S1) ∼= lim

−→
Hom
cont

(Gn, S1). Since Gn is a pn torsion group and

Wn(Z/pZ) and can be identified with the unique cyclic subgroup of S1 of order
pn, Homcont(Gn, S1) ∼= Homcont(Gn,Wn(Z/pZ)). Also Homcont(Gn,Wn(Z/pZ)) ∼=
Homcont(G(p),Wn(Z/pZ)), since all the homomorphisms from G(p) to Wn(Z/pZ)
factor through Gn. Similarly, all the homomorphisms from π1(X) to Wn(Z/pZ)
have to factor through G(p). Therefore, Homcont(G(p),Wn(Z/pZ)) is isomorphic to
Homcont(π1(X),Wn(Z/pZ)). But, by Lemma 3.3 lim

−→
Homcont(π1(X),Wn(Z/pZ))

is isomorphic to lim
−→

Wn(A)/P (Wn(A)). �

The following result is a corollary of a classical result of Grothendieck [SGAI,
XIII, Corollary 2.12, page 392].

Theorem 3.4. (Grothendieck) The prime to p part of the abelianization of the
fundamental group of an affine curve C = Spec(A) over an algebraically closed field

k of characteristic p > 0 is given by
2g+r−1⊕
i=1

(
∏

l 6=p prime

Zl) where g is the genus of the

smooth compactification curve and r is the number of points in the compactification
which are not in C.

Corollary 3.5. Under the assumption of the previous theorem, abelianization of
the fundamental group of C, πab1 (C), is given by

Hom(lim
−→

Wn(A)/P (Wn(A)), S1)
⊕ 2g+r−1⊕

i=1

(
∏

l 6=p prime

Zl)

Proof. This follows directly from Theorem 3.1 and Theorem 3.4. �

Remark 3.6. Since the rank of πab1 (C) is the same as the cardinality of k, as a
consequence of Lemma 3.3, we obtain another proof of a known result that πab1 (C)
determines the cardinality of the base field. In fact just the p-part of πab1 (C) deter-
mines Wn(A)/P (Wn(A)) for all n.

4. Embedding problems

4.1. Group theory and embedding problems. In this subsection we will see
some well known group theoretic results. Some of these results connects the “free-
ness” of a profinite group to solving certain embedding problems.

Theorem 4.1. (Iwasawa [Iwa, page 567], [FJ, Corollary 24.2]) A profinite
group π of countably infinite rank is free if and only if every finite embedding problem
for π has a proper solution.

This was generalized by Melnikov and Chatzidakis for any cardinality (cf [Jar,
Theorem 2.1]). The Melnikov-Chatzidakis result says that for an infinite cardinalm,
a profinite group π is free of rank m if and only if every finite nontrivial embedding
problem for π has exactly m solutions. The following is a variant of this result
which has been proved in [HS] and is useful if we know that π is a projective group.
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Theorem 4.2. ([HS, Theorem 2.1]) Let π be a profinite group and let m be
an infinite cardinal. Then π is a free profinite group of rank m if and only if the
following conditions are satisfied:
(i) π is projective.
(ii) Every split embedding problem for π has exactly m solutions.

If π is a projective profinite group then there is a standard argument which allows
us to reduce the problem of finding proper solutions to an embedding problem for
π to finding proper solutions to a split embedding problem with the same kernel.
To see this let us consider the following embedding problem:

π

θ

~~~
~

~
~

φ

��
1 // H // Γ α

// G //

��

1

1

Since π is projective there exists a weak solution θ to this embedding problem. Let
G′ = Im θ. G′ acts on H by conjugation, since H is a normal subgroup of Γ. Let
Γ′ = H oG′ so that we have a natural surjection β : Γ′ → Γ given by (h, g) 7→ hg.
So if we have a proper solution θ′ for the split embedding problem,

π

θ′

}}|
|

|
|

ψ̃
��

1 // H // Γ′ // G′ //

��

1

1

then ψ = β ◦θ′ provides a proper solution to the original embedding problem. This
trick is used again below to reduce the problem further to certain special cases.

Theorem 4.3. Let π be any projective profinite group of rank at most m. Then
π is free of rank m if and only if for any finite group Γ and any minimal normal
subgroup H of Γ, the split embedding problem

π
ψ

~~~
~

~
~

φ

��
1 // H // Γ α

// G //

��

1

1

has m distinct solutions (and at least one solution if m is the countable cardinal)
in the following three cases:
(1) H is a quasi-p perfect group, i.e. H = [H,H].
(2) H is an abelian p-group.
(3) H is a prime-to-p group.
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Proof. In view of Theorem 4.2 (and Theorem 4.1 if m is the countable cardinal),
the “only if part” is trivial and for the “if part” it is enough to show that the
split embedding problem for π has m distinct proper solutions (and at least one
solution if m is a countable cardinal) for any finite group H, this will, in particular,
force the rank of π to be m. We induct on the cardinality of H. Suppose H is
not a minimal normal subgroup. Let H1 be a proper nontrivial subgroup of H
and a normal subgroup of Γ. Then we have the following two proper nontrivial
embeddding problems.

π

||y
y

y
y

��
1 // H/H1

// Γ/H1
// G //

��

1

1

and
π

||y
y

y
y

y

��
1 // H1

// Γ // Γ/H1
//

��

1

1
The cardinalities of H1 and H/H1 are strictly smaller than the cardinality of H.

By induction hypothesis, after replacing the above two embedding problems by the
corresponding split ones if necessary, we obtain m distinct proper solutions to both
of them (respectively at least one in countable case). Hence we have m distinct
proper solutions (respectively at least one) to the original embedding problem.
Therefore we may assume H is a nontrivial minimal normal subgroup of Γ. So
H ∼= S× ..× S for some finite simple group S provide ref. If S is prime-to-p then
H is prime-to-p, hence we are done by case (3). If S is quasi-p nonabelian group
then H being the product of perfect groups is perfect. So we are done by case (1).
And finally if S a is quasi-p abelian then S ∼= Z/pZ. Hence H is an abelian p-group
and we are done by case (2). �

We will need the following group theory result later.

Lemma 4.4. Given any finite abelian p-group A there exists a finite p-group B
such that the commutator [B,B] of B is isomorphic to A.

Proof. Since A is an abelian p-group, A is a direct sum of cyclic p-groups. Observe
that the commutator of the group B1 × B2 is isomorphic to [B1, B1] × [B2, B2]
for any two groups B1 and B2. So we may assume A is a cyclic p-group, say
Z/pmZ. Consider the Heisenberg group over Z/pmZ, i.e., the group of 3× 3 upper
triangular matrices with diagonal entries 1. It is a group of order p3m generated by
the matrices 1 1 0

0 1 0
0 0 1

 ,

1 0 0
0 1 1
0 0 1





12 MANISH KUMAR

and one could easily check that the commutator of this group is the subgroup
generated by 1 0 1

0 1 0
0 0 1


which is clearly isomorphic to (Z/pmZ,+). �

The construction of such a group using Heisenberg matrices was pointed out to
me by a friend Sandeep Varma and also by Prof. Donu Arapura.

4.2. Reduction to solving embedding problems. In this subsection we shall
use the results above to reduce the main theorem (Theorem 4.8) to solve some
special kinds of embedding problems.

Let k be an algebraically closed field of characteristic p > 0. Let π1(C) be
the algebraic fundamental group of a smooth affine curve C over k and πc1(C) =
[π1(C), π1(C)] be the commutator subgroup. Assume that card(k) = m.

Lemma 4.5. With the above notation the rank of πc1(C) is at most m.

Proof. Let C be a smooth affine curve over an algebraically closed field k of cardi-
nality m. Since k(C), the function field of C, is also of cardinality m, there are only
m polynomials over k(C). Hence the absolute Galois group of k(C) is the inverse
limit of finite groups over a set of cardinality m and hence has generating set of
cardinality m (generating set in the topological sense). So π1(C), being a quotient
of the absolute Galois group of k(C), is m-generated and hence the commutator
subgroup πc1(C) is m-generated. Hence πc1(C) has rank at most m. �

Proposition 4.6. For an irreducible smooth affine curve C over k, the commu-
tator subgroup πc1(C) of the fundamental group π1(C) is a projective group. More
explicitly, given

πc1(C)
∃ψ

||z
z

z
z

φ
����

Γ α
// // G

with surjections φ and α to a finite group G from πc1(C) and another finite group
Γ respectively, there exists a group homomorphism ψ from πc1(C) to Γ so that the
above diagram commutes, i.e., α ◦ ψ = φ

Proof. Let Kab be the compositum of the function fields of abelian étale covers of
C, i.e., the compositum of all L, k(C) ⊂ L ⊂ k(C) with L/k(C) finite, the integral

closure k[C]
L

of k[C] in L an étale extension of k[C], and Gal(L/k(C)) an abelian
group.

A surjection φ : πc1(C) → G corresponds to a Galois field extension M/Kab with
the Galois group Gal(M/Kab) = G and M ⊂ Kun, where Kun is the compositum
of the function fields of all the étale covers of C.

Since M/Kab is a finite field extension, there exist, a finite Galois extension L of
k(C) with k(C) ⊂ L ⊂ Kab, a Galois extension L′ of L with Gal(L′/L) = G, and

L′Kab = M . Let πL1 = π1(Spec(k[C]
L
)). So we have the following tower of fields.

Moreover Gal(Kun/Kab) = πc1(C), Gal(Kun/L) = πL1 and πc1(C) is a subgroup
of πL1 . The field extension L′/L gives a surjection φ̃ : πL1 → G. Since L′/L is a
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Kun M = L′Kaboo

Kab

πc
1(C)

OO

G

88rrrrrrrrrr
L′

OO

L

πL
1

>>

OO

G

88qqqqqqqqqqqq

k(C)

OO

Figure 1

descent of the field extension M/Kab, φ̃|πc
1(C) = φ. By [Se2, Proposition 1] and

[Se3, I, 5.9, Proposition 45], which says that the fundamental group of any affine

curve is projective, we have πL1 : = π1(Spec(k[C]
L
)) is projective. So there exists

a lift, ψ̃, to Γ of φ̃. i.e.,
πL1

∃ψ̃

���
�

�
�

φ̃
����

Γ α
// // G

with α ◦ ψ̃ = φ̃. So α ◦ ψ̃|πc
1(C) = φ̃|πc

1(C) = φ. So ψ̃|πc
1(C) gives a lift of φ. �

Proposition 4.7. Consider the following split embedding problem for πc1(C)

πc1(C)
ψ

||z
z

z
z

φ

��
1 // H // Γ α

// G //

��

1

1

Suppose this problem has m distinct solutions (and at least one solution if m is the
countable cardinal) in the following three cases:
(1) H is a quasi-p perfect group, i.e. H = [H,H].
(2) H is an abelian p-group.
(3) H is a prime-to-p group.
Then πc1(C) is free of rank m.

Proof. In view of Theorem 4.3, this follows directly from Proposition 4.6 and
Lemma 4.5. �

In Section 5, it is shown that the embedding problem of the above theorem has a
solution in cases (1) and (2) (Theorem 5.3, Theorem 5.5). This follows very easily
from some well known results. In Section 6, a solution to the embedding problem
with prime-to-p kernel has been exhibited (Theorem 6.12). Using these results and
Proposition 4.7 we get the main theorem:
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Theorem 4.8. If m is the countable cardinal then πc1(C) is free of countable rank.

5. Quasi-p embedding problems

In this section it will be shown that every split embedding problem for πc1(C)
has a solution if H is a perfect quasi-p group or H is a p-group. This is an easy
consequence of the following result of Florian Pop on quasi-p embedding problems.

Theorem 5.1. (Florian Pop, [Pop], [Ha3, Theorem 5.3.4]) Let k be an al-
gebraically closed field of characteristic p > 0, card(k) = m, and let C be an an
irreducible affine smooth curve over k. Then every quasi-p embedding problem for
π1(C) has m distinct proper solutions.

Theorem 5.2. ([Ha5, Theorem 1b]) Let π be a profinite group so that H1(π, P )
is infinite for every finite elementary abelian p-group P with continuous π-action.
Then every p-embedding problem for π has a proper solution if and only if every
p-embedding problem has a weak solution (equivalently, p cohomological dimension
of π, cdp(π) ≤ 1).

Theorem 5.3. The following split embedding problem has card(k) = m proper
solutions

πc1(C)

��||z
z

z
z

1 // H // Γ // G //

��

1

1
Here H is a quasi-p perfect group (i.e. [H,H] = H) and πc1(C) is the commutator
of the algebraic fundamental group of an irreducible smooth affine curve C over an
algebraically closed field k of characteristic p.

Proof. As in Proposition 4.6 (also see Figure 1), let Kun denote the compositum (in
some fixed algebraic closure of k(C)) of the function fields of all étale Galois covers
of C. And let Kab be the subfield of Kun obtained by considering only abelian
étale covers of C. In terms of Galois theory, πc1(C) is Gal(Kun/Kab). So giving a
surjection from πc1(C) to G is the same as giving a Galois extension M ⊂ Kun of
Kab with Galois group G. Since Kab is an algebraic extension of k(C) and M is a
finite extension of Kab, we can find a finite abelian extension L ⊂ Kab of k(C) and
L′ ⊂ Kun a Galois extension of L with Galois group G so that M = KabL′. Let
X be the normalization of C in L and ΦX the normalization morphism. Then X
is an étale abelian cover of C and the function field k(X) of X is L. Let WX be
the normalization of X in L′ and ΨX the corresponding normalization morphism.
Then ΨX is étale and k(WX) = L′.

By applying Theorem 5.1 to the affine curve X and translating the conclusion
into Galois theory, we conclude that there exist m distinct smooth irreducible étale
Γ-covers. Each one of these Γ-covers, Z, of X has the property that Z/H = WX .
Clearly k(Z) ⊂ Kun. We also have Gal(k(Z)Kab/Kab) ⊂ Γ and by assumption
Gal(k(WX)Kab/Kab) = G. Moreover, the Galois group of k(Z)/k(WX) is H which
is a perfect group and k(WX)Kab/k(WX) is a pro-abelian extension. Hence they
are linearly disjoint, so Gal(k(Z)Kab/k(WX)Kab) = H. So Gal(k(Z)Kab/Kab) =
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Γ. Also if Z and Z ′ are two distinct solutions then Gal(k(Z)k(Z ′)/k(WX)) is
a quotient of H × H and hence perfect. So Gal(k(Z)k(Z ′)Kab/k(WX)Kab) =
Gal(k(Z)k(Z ′)/k(WX)) and consequently k(Z)Kab and k(Z ′)Kab are distinct fields.

�

Now we shall consider the case when H is an abelian p-group.

Lemma 5.4. Let P be any nonzero finite abelian p-group, then there exist infinitely
many distinct epimorphisms from πc1(C) to P .

Proof. Let n ≥ 1 be a natural number. By Lemma 4.4 there exists a p-group P1

such that its commutator [P1, P1] = Pn. By Theorem 5.1 there exists a surjective
homomorphism from π1(C) to P1. And clearly this epimorphism when restricted to
the commutator πc1(C) surjects onto [P1, P1] = Pn. Call this restricted epimorphism
φ. Now if we compose φ with any of the projection maps from Pn to P , we obtain
n surjections from πc1(C) to P . Since n was arbitrary, we are done. �

Theorem 5.5. The following split embedding problem has a proper solution

πc1(C)

��||z
z

z
z

1 // H // Γ // G //

��

1

1

Here H is a minimal normal subgroup of Γ and an abelian p-group; and πc1(C) is
the commutator of the algebraic fundamental group of a smooth affine curve C over
an algebraically closed field k of characteristic p.

Proof. Again, as in the proof of Theorem 5.3, let Kun and Kab be the “function
fields” of the maximal étale cover and maximal abelian étale cover of C respectively.
Let M be the G-Galois field extension of Kab corresponding to the epimorphism
πc1(C) → G of the embedding problem. And again because of M being a finite field
extension of Kab we can descend it to an étale G-cover WX of a finite abelian étale
cover X of C. Since the center Z(Γ) of Γ and H are both normal subgroups of Γ,
so is Z(Γ) ∩ H. Since H is a minimal normal subgroup of Γ, Z(Γ) ∩ H is trivial
or H ⊂ Z(Γ). If H ⊂ Z(Γ) then Γ acts trivially on H, hence Γ ∼= G × H. By
Lemma 5.4 there are infinitely many distinct surjections of πc1(C) onto H. Hence
there are infinitely many linearly disjoint field extensions of Kab contained in Kun

with Galois group H. M being a finite field extension of Kab, all but finitely
many of these H-extensions are linearly disjoint with M over Kab. Hence there
exists an H-extension of Kab (in fact infinitely many of them) which is linearly
disjoint with M over Kab and the compositum of this H-extension with M leads to
a Γ-extension of Kab. Hence we have a solution to the embedding problem. Now
suppose Z(Γ) ∩H is trivial, i.e., Γ acts on H nontrivially. By Theorem 5.1 there
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exists a proper solution to the following embedding problem for π1(X):

π1(X)

��||y
y

y
y

1 // H // Γ // G //

��

1

1

So there exists a smooth irreducible étale H-cover Z of WX which is a Γ-cover of
X. We shall show that Gal(k(Z)Kab/Kab) is isomorphic to Γ. Suppose not, then
k(Z) is not linearly disjoint with M = k(WX)Kab over k(WX). So there exists
a nontrivial field extension L′′/k(WX) with L′′ = k(Z) ∩ k(WX)Kab. So L′′ =
Kk(WX) for some finite field extension K of k(X) such that K ⊂ Kab. Kab/k(X)
is a pro-abelian extension, so K/k(X) is a Galois extension (in fact abelian). Hence
L′′/k(X) is a Galois extension. So we conclude that Gal(k(Z)/L′′) is a normal
subgroup of Γ = Gal(k(Z)/k(X)), but Gal(k(Z)/L′′) ⊂ H = Gal(k(Z)/k(WX). H
being a minimal normal subgroup of Γ and L′′/k(WX) being a nontrivial extension
force L′′ = k(Z) and hence Gal(K/k(X)) = H. But this contradicts the fact that
Γ acts on H nontrivially. �

Below we give an alternative approach to asserting the existence of a proper
solution of the embedding problem for πc1(C) when H is any p-group. This is a
cohomological approach which needs the following cohomological result.

Proposition 5.6. Let P be any nonzero finite elementary abelian p-group with
a continuous action of πc1(C), then the first group cohomology H1(πc1(C), P ) is
infinite.

Proof. Let Φ be the kernel of the action of πc1(C) on P . Then Φ is a normal
subgroup of πc1(C) of finite index. We know πc1(C) acts on Kun and has fixed field
Kab. Let M be the fixed field of Φ, so Gal(M/Kab) = πc1(C)/Φ. Since M is a
finite extension of Kab, there exist a finite abelian extension L of k(C) and a finite
extension L′ of L such that Gal(L′/L) = Gal(M/Kab) and L′Kab = M . Let X be
the normalization of C in L and Y the normalization of C in L′. If we translate all
these relations between the above Galois extensions to their Galois groups, we get
the following commutative diagram:

Φ � � //
� _

��

π1(Y )� _

��
πc1(C) � � //

����

π1(X)

����
πc1(C)/Φ ∼ // π1(X)/π1(Y )

So we notice that π1(X) = πc1(C)π1(Y ). Now we define an action of π1(X) on P
by defining it to be trivial on π1(Y ) and the given action on πc1(C). This is well
defined because πc1(C) ∩ π1(Y ) = Φ, which is the kernel of the action of πc1(C) on
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P . Now consider the following short exact sequence of groups:

1 → πc1(C) → π1(X) → Π → 1

Here Π is simply the quotient π1(X)/πc1(C). Applying the Hochschild-Serre spectral
sequence for group cohomology [Wei 7.5.2] to this short exact sequence, we get the
following long exact sequence:

0 → H1(Π,H0(πc1(C), P )) → H1(π1(X), P ) → H0(Π,H1(πc1(C), P ))

→ H2(Π,H0(πc1(C), P ))

If the action of πc1(C) on P is such that it fixes only 0, then H0(πc1(C), P ) = 0,
hence the first and the fourth term in the above long exact sequence is 0. Also we
know that H1(π1(X), P ) is infinite by [Ha4, Proposition 3.8]. So H1(πc1(C), P ) ⊃
H0(Π,H1(πc1(C), P )) is infinite. So we may assume that Pπ

c
1(C) is nonzero. In this

case we have a short exact sequence of πc1(C)-modules:

0 → Pπ
c
1(C) → P → P/Pπ

c
1(C) → 0

Here πc1(C) acts trivially on the first term and fixes nothing in the third term, i.e.,
H0(πc1(C), P/Pπ

c
1(C)) = 0, so we get the long exact sequence of group cohomology

which looks like:

· · · → H0(πc1(C), P/Pπ
c
1(C)) → H1(πc1(C), Pπ

c
1(C)) → H1(πc1(C), P ) → · · ·

Since πc1(C) acts trivially on Pπ
c
1(C), H1(πc1(C), Pπ

c
1(C)) = Hom(πc1(C), Pπ

c
1(C)).

And we know that Hom(πc1(C), Pπ
c
1(C)) is infinite by Lemma 5.4. So we conclude

that H1(πc1(C), P ) is infinite. �

Proof. Alternative approach to Theorem 5.5. The result follows trivially from
Theorem 5.2 and Proposition 5.6. �

6. Prime-to-p embedding problems

In this section, certain results on formal patching will be proved and they will
be used to solve the prime-to-p embedding problems for the commutator of the al-
gebraic fundamental group of a smooth affine curve. We begin with some patching
results (Theorem 6.1, Lemma 6.3, Proposition 6.4) which roughly mean the follow-
ing: given a proper k[[t]]-scheme T whose special fiber is a collection of smooth
irreducible curves intersecting at finitely many points, finding a cover of T is equiv-
alent to finding a cover of these irreducible curves away from those finitely many
intersection points and covers of formal neighbourhood of the intersection points so
that they agree in the punctured formal neighbourhoods of the intersection points.
In our situation, the special fiber of T is a connected sum of X and N copies
of Y , for some N ≥ 1. Let the ith copy of Y intersect X at a point ri of X
and a point s of Y for 1 ≤ i ≤ n. Now suppose we have an irreducible G-cover
ΨX : WX → X étale at r1, · · · , rn and an irreducible H-cover ΨY : WY → Y étale
at s. Let Γ = G o H. A Γ-cover of T is constructed by patching the Γ-cover
of X, namely, IndΓ

GWX = (Γ ×WX)/ ∼, where (γ,w) ∼ (γg−1, gw) for γ ∈ Γ,
g ∈ G and w a point of WX ; and the Γ-cover IndΓ

HWY of Y . This is possible since
both these covers restrict to Γ-covers induced from the trivial cover in the formal
punctured neighbourhood of the intersection points, so we can pick trivial Γ-covers
of the intersection points which obviously will restrict to the trivial Γ-cover on the
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punctured neighbourhood. Now we proceed to show how all this works. We start
with some patching results.

6.1. Formal Patching.

Theorem 6.1. ([Ha3, Theorem 3.2.12]) Let (A, p) be a complete local ring and
let T be a proper A-scheme. Let {τ1, · · · , τN} be a set of closed points of T and
T o = T \ {τ1, · · · , τN}. Let T̂i = Spec(ÔT,τi

), T̃ o be the p-adic completion of T o

and Ki be the p-adic completion of Ti \ {τi}. Then the base change functor

M(T ) →M(T̃ o)×M(∪N
i=1Ki) M(∪Ni=1T̂i)

is an equivalence of categories. And this remains true with M replaced by AM,
SM or GM for any finite group G.

In fact Theorem 3.2.12 of [Ha3] is even stronger and allows one to assert the
equivalence of categories even if one replaces T , T o, etc. with their pull-backs by
proper morphisms. The proof of the above theorem uses Grothendieck’s Existence
Theorem and a result of Ferrand-Raynaud or rather the following generalization by
M. Artin.

Theorem 6.2. (M. Artin [Ha3, Theorem 3.1.9]) Let T be a noetherian scheme,
W a finite set of closed points of T , T o = T \W , Ŵ the completion of T along W
and W o = Ŵ ×T T o. Then the base change functor is an equivalence of categories
between M(T ) and M(T o)×M(W o) M(Ŵ ).

We shall specialize the above patching result (Theorem 6.1) to something we
need. Let k be a field. Let X and Y be smooth projective k-curves with finite
k-morphisms ΦX : X → P1

x and ΦY : Y → P1
y, where P1

x and P1
y are projective lines

with local coordinates x, y respectively. Also assume that ΦY is totally ramified at
y = 0. Let R and S be such that Spec(R) = X \ Φ−1

X ({x = ∞}) and Spec(S) =
Y \Φ−1

Y ({y = ∞}). So k[x] ⊂ R and k[y] ⊂ S. Let A = (R⊗k S ⊗k k[[t]])/(t− xy)
and T a = Spec(A). Let T be the closure of T a in X ×k Y ×k Spec(k[[t]]). A more
geometric way of describing T is the following. Let F be the graph of t−xy = 0 in
P1
x ×k P1

y ×k Spec(k[[t]]) then T = (X ×P1
x
F )×F (F ×P1

y
Y ) where the morphisms

from F to P1
x and P1

y are restrictions of the projection morphisms from P1
x×k P1

y×k
Spec(k[[t]]).
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E F
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y
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E Y

||yy
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yy
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y

P1
x P1

y

Let L be the affine line Spec(k[z]). The k-algebra homomorphism k[[t]][z] → A
given by z 7→ x + y induces a k[[t]]-morphism φ from T a to L∗ = L ×k k[[t]]. Let
λ ∈ L be the closed point z = 0. L is contained in L∗ as the special fiber, so λ
viewed as a closed point of L∗ corresponds to the maximal ideal (z, t) in k[[t]][z].
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Let φ−1(λ) = {τ1, · · · , τN} ⊂ T a. Note that the special fiber of T is a reducible
curve consisting of X and N copies of Y , each copy of Y intersecting X at τi for
some i, since the locus of t = 0, x+ y = 0 is same as the locus of x = 0 and y = 0.
Let ri denote the point of X corresponding to τi, so Φ−1

X (x = 0) = {r1, · · · , rN},
and let s denote the point on each copy of Y corresponding to τi, so s is the
unique point of Y lying above y = 0. Borrowing the notation from Theorem 6.1,
let T o = T \ {τ1, · · · , τN} and Xo = X \ {r1, · · · , rN}. Let T̂i = Spec(ÔT,τi

)
and let TX = T o \ {x = 0} which is the same as the closure of Spec(A[1/x]) in
Xo ×k Y ×k Spec(k[[t]]). Similarly, define TY = T o \ {y = 0}.

Let K̂X,ri
denote the quotient field of ÔX,ri

. Define KX,ri
= Spec(K̂X,ri

[[t]]⊗k[y]
OY,s) where we regard K̂X,ri [[t]] as a k[y]-module via the homomorphism which
sends y to t/x. Similarly, define KiY = Spec(K̂Y,s[[t]] ⊗Spec(k[x]) OX,ri), where we
regard K̂Y,s[[t]] as a k[x]-module via the homomorphism which sends x to t/y. Let
xi be a local coordinate of X at ri and y0 a local coordinate of Y at s. For any
k[[t]]-scheme V , Ṽ will denote its (t)-adic completion.

With these notations we shall deduce the following result from Theorem 6.1.
This result is analogous to [Ha2, Corollary 2.2].

Lemma 6.3. The base change functor

M(T ) →M(T̃X ∪ T̃Y )×M(∪N
i=1(KX,ri

∪Ki
Y )) M(∪Ni=1T̂i)

is an equivalence of categories. Moreover, the same assertion holds if one replaces
M by AM, SM and GM for a finite group G.

Proof. First of all we observe that the closed fiber of T o, which is the subscheme
defined by the ideal (t), is disconnected. This is because the closed fiber of TX ∪TY
is the closed fiber of T o and the closed fibers of TX and TY , as subsets of the closed
fiber of T o, are open and disjoint. So considering their (t)-adic completions we
deduce T̃ o = T̃X ∪ T̃Y . Similarly the punctured spectrum T̂i \ {τi} is the spectrum
of the ring k[[xi, y0]][(x+y)−1]). Since the only prime ideals of k[[xi, y0]][(x+y)−1]
containing (t) are (xi) and (y0), we may first localize k[[xi, y0]][(x + y)−1] with
respect to the complement of (xi)∪(y0) and then take the (t)-adic completion. Now
using [Mat, 8.15], we get that the (t)-adic completion of T̂i \{τi} is KX,ri

∪KiY . So,
with all this identification, we get the result from Theorem 6.1. �

Let G and H be subgroups of a finite group Γ, such that Γ = GoH.

Proposition 6.4. Under the notation and the assumptions of Lemma 6.3, let
ΨX : WX → X be an irreducible normal G-cover étale over the points r1, · · · , rN ;
and ΨY : WY → Y an irreducible normal H-cover étale over s. Let WXT be the
normalization of an irreducible dominating component of WX ×X T and similarly
WY T the normalization of an irreducible dominating component of WY ×Y T . Then
there exists an irreducible normal Γ-cover W → T such that
(1 ) W ×T T̃X = IndΓ

G
˜WXT ×T TX

(1’) W ×T T̃Y = IndΓ
H

˜WY T ×T TY
(2 ) W ×T T̂i is a Γ-cover of T̂i induced from the trivial cover.
(3 ) W ×T KX,ri is a Γ-cover of KX,ri induced from the trivial cover.
(4 ) W ×T KiY is a Γ-cover of KiY induced from the trivial cover.
(5 ) W/H ∼= WXT as a cover of T .
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Proof. Let W̃X = IndΓ
G

˜WXT ×T TX and W̃Y = IndΓ
H

˜WY T ×T TY . So W̃X and
W̃Y are Γ-covers of T̃X and T̃Y respectively. Hence their union W̃ o is an object
of ΓM(T̃X ∪ T̃Y ). Now for each i, W̃X ×fTX

KX,ri
= IndΓ

GWX ×X KX,ri
. But

WX ×X KX,ri
is isomorphic to disjoint union of card(G) copies of KX,ri

, since
WX → X is étale over ri. And similarly, W̃Y ×fTY

KiY = IndΓ
HWY ×Y KiY which is

isomorphic to disjoint union of card(Γ) copies of KiY , since WY → Y is étale over s.
Hence W̃ o restricted to ∪Ni=1(KX,ri∪KiY ) is a Γ-cover induced from the trivial cover.
Let Ŵi be a Γ-cover of T̂i induced from the trivial cover. Then their union Ŵ is an
object in ΓM(∪Ni=1T̂i) which when restricted to ∪Ni=1(KX,ri ∪KiY ) obviously is a Γ-
cover induced from the trivial cover. So after fixing an isomorphism between the two
trivial Γ-covers of ∪Ni=1(KX,ri ∪KiY ), we can apply Lemma 6.3 and obtain an object
W in ΓM(T ) which induces the covers W̃ o and Ŵ on T̃ o and ∪Ni=1T̂i respectively.
Hence we get conclusions (1) to (4) of the proposition. So it remains to prove thatW
is irreducible and normal and that conclusion (5) holds. To prove the irreducibility
of W , first note that G and H generate Γ. Consider Γo, the stabilizer of the identity
component of W . So W has card(Γ/Γo) irreducible components. Since G is the
stabilizer of the identity component of W̃X and H is the stabilizer of the identity
component of W̃Y , G and H are contained in Γo. Hence Γo = Γ. Hence W is
irreducible. To show thatW is normal it is enough to show that for each closed point
σ of T Wσ = W×T Spec(ÔT,σ) is normal. If σ = τi for some i thenWσ is isomorphic
to the disjoint union of some copies of T̂i and hence is normal. Otherwise σ belongs
to TX (or TY ). So Wσ is isomorphic to IndΓ

G
˜WXT ×T TX ×TX

Spec(ÔTX ,σ), which
is a union of copies of Spec(ÔWXT×TTX ,σ′), where σ′ are points of WXT ×T TX
lying above σ. But WXT ×T TX is normal. A similar argument holds in the case
when σ ∈ TY . Next we shall show that W/H and WXT restricts to same G-cover
on the patches T̃X , T̃Y and T̂i for all i. Conclusion (5) will then follow from the
assertion in Lemma 6.3 about the equivalence of categories (with M replaced by
GM). Clearly, both W/H and WXT restrict to trivial G-cover of T̂i. WXT×T T̃X =
WXT ×T T̃ ×eT T̃X = W̃XT ×eT T̃X and this is same as ˜WXT ×T TX since TX is an
open subscheme of T . On the other hand W/H ×T T̃X = (W ×T T̃X)/H. But
by (1) this is same as ˜WXT ×T TX . Finally, note that the image of TY under the
morphism T → X is the generic point of X. So the G-cover WXT → T is trivial
over the subscheme TY . Hence WXT ×T T̃Y = IndG{e} T̃Y . On the other hand by

(1′), W/H×T T̃Y = (IndΓ
H W̃TY )/H. But (IndΓ

H W̃TY )/H is the same as IndΓ/H
H/H T̃Y

since WY /H = Y . But Γ/H is G. �

6.2. Proof of the main theorem. In this subsection the main theorem (Theorem
6.12) of this section will be proved using the patching results stated above.

Lemma 6.5. Let T , X and Y be as in Lemma 6.4. Let D be an irreducible smooth
projective k-curve. Assume that ΦX : X → P1

x factors through D, i.e., there exist
Φ′X : X → D and Θ: D → P1

x such that ΦX = Θ◦Φ′X . Also assume that ΦY and Φ′X
are abelian covers. For any k[[t]]-scheme V , let V g denote its generic fiber. Then the
morphism (Φ′X×ΦY ×IdSpec(k[[t]]))|T from T to its image in D×kP1

y×k Spec(k[[t]])
induces an abelian cover of projective k((t))-curves T g → D ×k Spec(k((t))).
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Proof. We need to show that the function field k(T ) of T is an abelian extension of
the field k(D)⊗k k((t)). Note that k(T ) is the compositum of L1 = k(X)⊗k k((t))
and L2. Here L2 is the function field of a dominating irreducible component of

(Y ×k Spec(k((t))))×P1
y×kSpec(k((t))) (D ×k Spec(k((t))))

where the morphism D×k Spec(k((t))) → P1
y ×k Spec(k((t))) is the composition of

D ×k Spec(k((t))) → P1
x ×k Spec(k((t))) with the morphism P1

x ×k Spec(k((t))) →
P1
y ×k Spec(k((t))) defined in local coordinates by sending y to t/x. Since L1 is a

base change of the finite extension k(X)/k(x) by k(D) ⊗k k((t)) and L2 is a base
change of the finite extension k(Y )/k(y) by k(D)⊗k k((t)) after identifying y with
t/x, we have L1 ∩ L2 = k(D)⊗k k((t)). Hence L1 and L2 are linearly disjoint over
k(D)⊗k k((t)). Moreover Gal(L1/k(D)⊗k k((t))) is isomorphic to Gal(k(X)/k(D))
and Gal(L2/k(D)⊗k k((t))) is isomorphic to Gal(k(Y )/k(y)). Hence these groups
are abelian, since the latter groups are so by assumption. Using the fact that the
Galois group of the compositum of linearly disjoint Galois field extensions is the
direct sum of the Galois groups, we get that Gal(k(T )/k(D) ⊗k k((t))) is a direct
sum of abelian groups, and hence is abelian. �

We shall see a variation of the following result, which is a special case of [Ha2,
Proposition 2.6, Corollary 2.7]. These results help in descending covers of k[[t]]-
schemes to analogous covers of k-schemes.

Proposition 6.6. (Harbater) Let k be an algebraically closed field. Let Xs
0 be a

smooth projective connected smooth k-curve. Let ζ1, · · · , ζr ∈ Xs
0 . Let X0 and X1

be irreducible normal projective k[[t]]-curves. Suppose X1 has generically smooth
closed fiber. Let ψ : X1 → X0 be a G-cover which induces ψg : Xg

1 → Xg
0 over the

generic point of Spec(k[[t]]). Assume X0 = Xs
0 ×k Spec(k[[t]]). Also assume ψg is

a smooth G-cover étale away from {ζ1, · · · , ζr} where ζj = ζj ×k k((t)) ∈ Xg
0 for

1 ≤ j ≤ r. Then there exists a smooth connected G-cover ψs : Xs
1 → Xs

0 étale away
from {ζ1, · · · , ζr}.

The above result uses Lemma 2.4(b) of [Ha2] and Proposition 5 of [Ha1]. These
results are stated below (without proof) for the reader’s convenience.

Lemma 6.7. Let S be the spectrum of a complete regular local ring with alge-
braically closed residue field, V an irreducible normal scheme, φ : V → S a surjec-
tive proper morphism such that the fiber over the closed point is generically smooth.
Then the closed fiber of φ is connected.

Proposition 6.8. Let ε be a closed point of a noetherian normal scheme S and
φ : V → S a proper morphism that is generically smooth over ε. If the fiber Vε
is geometrically connected and V is geometrically unibranched along Vε then for
all closed points e in a nonempty open subset of S, the fiber Ve is geometrically
irreducible.

The proof of the following result is also similar to the one given in [Ha2].

Proposition 6.9. Let k be an algebraically closed field. Let X0, X1, X2, X3 be
irreducible normal projective k[[t]]-curves such that for i > 0, Xi have generically
smooth closed fibers. For i = 1, 2 and 3, let ψi : Xi → Xi−1 be proper surjective
k[[t]]-morphisms and ψgi : Xg

i → Xg
i−1 be the induced morphisms on the generic

fibers. Assume Xg
0 = Xs

0 ×k k((t)) for some smooth projective k-curve Xs
0 . Let
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ζ1, · · · , ζr ∈ Xs
0 and ζj = ζj ×k k((t)) ∈ Xg

0 for 1 ≤ j ≤ r, so that ψg1 ◦ ψ
g
2 ◦ ψ

g
3

is étale away from {ζ1, · · · , ζr}. Let ψ1 be an A-cover, ψ2 be a G-cover, ψ3 be an
H-cover and ψ2 ◦ ψ3 be a Γ-cover. Then there exist Xs

1 , X
s
2 and Xs

3 connected
smooth projective k-curves and morphisms ψsi : Xs

i → Xs
i−1 so that ψs1 ◦ ψs2 ◦ ψs3

is étale away from {ζ1, · · · , ζr} and ψ1 is an A-cover, ψ2 is a G-cover, ψ3 is an
H-cover and ψ2 ◦ ψ3 is a Γ-cover.

Proof. Since all the three groups are finite, the covers ψi for i = 1, · · · , 3 descend to
B-morphisms, where B ⊂ k[[t]] is a regular finite type k[t]-algebra. That is, there
exist connected normal projective B-schemes XB

i and morphisms ψBi : XB
i → XB

i−1

where ψB1 is an A-cover, ψB2 is a G-cover, ψB3 is an H-cover and ψB2 ◦ ψB3 is a
Γ-cover and ψBi induces ψi. Moreover for E = Spec(B[t−1]), XE

i = XB
i ×B E

are normal projective E-schemes and XE
0 is isomorphic to Xs

0 ×k E. The induced
morphisms ψEi are such that ψE1 is an A-cover, ψE2 is a G-cover, ψE3 is an H-
cover, ψE2 ◦ ψE3 is a Γ-cover and ψE1 ◦ ψE2 ◦ ψE3 is ramified only over {ζ1

E , · · · , ζrE}.
To complete the proof, we shall show that there exists a nonempty open subset
E′ of E so that the fiber of ψEi over each closed point of E′ is irreducible and
nonempty. First we note that by Lemma 6.7 the closed fibers of Xi → Spec(k[[t]])
are connected, since by assumption the closed fibers are generically smooth. Hence
the fibers of ψBi over (t = 0) are connected because ψBi induces ψi. Since XB

i ’s are
normal, they are unibranched along the respective fibers over (t = 0). Hence by
Proposition 6.8, we have a nonempty open subset of Spec(B), and hence an open
subset E′ of E = Spec(B) \ (t = 0), such that for all closed points e ∈ E′ the
fibers Xe

i of XE
i → E over e are irreducible. Next, we shall show that there exists

a nonempty open subset S of E′ such that the restriction morphism XS
i → S is

smooth of relative dimension 1. Since k is algebraically closed k(Xs
0) is separably

generated over k. Hence k(XE′

0 ) is separably generated over k(E′). Moreover,
since ψEi are finite separable morphisms (in fact their composition is étale away
from {ζ1

E , · · · , ζrE}), k(XE′

i ) is separably generated over k(E′). Since XE′

i → E′ is
a morphism of integral schemes of relative dimension 1 and is generically separable,
the relative sheaf of differentials is free of rank 1 at the generic point ([Eis, Corollary
16.17a]). Hence there exists an open subset S of E′ such that the morphismXS

i → S
is smooth of relative dimension 1. Hence, the fiber Xs

i at each point s ∈ S ⊂ E′ is
a smooth, irreducible curve. �

Lemma 6.10. Given any positive integer l, there exists a Galois cover Y → P1
y

ramified only at y = 0, where it is totally ramified, with genus of Y > l and Galois
group (Z/pZ)n for some n. In particular it is an abelian cover.

Proof. Let Y ′ be the normal cover of P1
y defined by the equation up

n−u−ypn+1 = 0.
To see that this is an irreducible polynomial in k(y)[u], by Gauss lemma, it is enough
to show it to be irreducible in k[y, u]. But in fact, it is irreducible in k(u)[y] since the
(pn+1)th roots of up

n−u do not belong to k(u). Also Y ′ is étale everywhere except
at y = ∞ and since there is only one point in Y ′ lying above ∞ it is totally ramified
there. So by translation we can get Y , a cover of P1

y, which is totally ramified at
y = 0 and étale elsewhere. Also the genus of Y , by the Hurwitz formula, is given by
the equation 2g(Y )− 2 = (pn + 1)(g(P1

u)− 2) + deg(R) where R is the ramification
divisor of the morphism Y → P1

u. It is well known that deg(R) =
∑
P∈Y eP − 1

where eP is the ramification index at the point P ∈ Y if the morphism is tamely
ramified at P . Now branch locus of Y as a cover of P1

u is given by up
n − u = 0
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and u = ∞. For each point P ∈ Y lying above a branch point other than ∞,
eP = pn + 1, hence deg(R) ≥ pnpn = p2n. So we get the following inequality for
genus of Y .

2g(Y )− 2 ≥ −2(pn + 1) + p2n

⇒g(Y ) ≥ pn(pn − 2)/2

Clearly g(Y ) could be made arbitrary large. Also note that Gal(k(Y )/k(y)) ∼=
(Z/pZ)n. Hence Y is an abelian cover of P1

y. �

6.2.1. The case of the affine line.

Theorem 6.11. The following split embedding problem has a proper solution

πc1(A1)

��||y
y

y
y

y

1 // H // Γ // G //

��

1

1

Here H is a prime to p-group and a minimal normal subgroup of Γ and πc1(A1)
is the commutator of the algebraic fundamental group of the affine line over an
algebraically closed field k of characteristic p.

Proof. Let x denote the local coordinate for the given affine line. As in the previous
sections we shall denote this affine line by A1

x. Let Kun denote the compositum, in
some fixed algebraic closure of k(x), of the function fields of all Galois étale covers of
A1
x. And let Kab be the subfield of Kun obtained by considering only abelian étale

covers. In these terms πc1(A1
x) is Gal(Kun/Kab). Note that Kab/k(x) is a pro-p

field extension (Theorem 3.4 or Corollary 3.5). Giving a surjection from πc1(A1
x) to

G is equivalent to giving a Galois extension M ⊂ Kun of Kab with Galois group
G. Since Kab is an algebraic extension of k(x) and M is a finite extension of Kab,
we can find a finite abelian extension L ⊂ Kab of k(x) and L′ ⊂ Kun a G-Galois
extension of L so that M = KabL′. Let D = P1

x be the projective x-line, X the
normalization of D in L and ΦX : X → D the normalization morphism. Then X is
an abelian cover of D branched only at x = ∞, and the function field k(X) of X
is L. Let U = X \ Φ−1({x = ∞)}. Let WX be the normalization of X in L′ and
ΨX be the corresponding normalization morphism. Then ΨX is étale over U and
k(WX) = L′. Let {r1, · · · , rN} = Φ−1

X ({x = 0}), then ΦX is étale at r1, · · · , rN .
Let ΦY : Y → P1

y be an abelian cover étale everywhere except at y = 0, where it is
totally ramified such that the genus of Y is at least 2 and more than the number
of generators for H. Let s be the point of Y lying above y = 0. The existence of
such a Y is guaranteed by Lemma 6.10. Since H is a prime-to-p group, and Y has
high genus by [SGAI, XIII, Corollary 2.12, page 392], there exists an irreducible
étale H-cover W ′Y of Y . Let ΨY : WY → Y denote the covering morphism. Now
applying Proposition 6.4 we obtain an irreducible normal Γ-cover W → T satisfying
conclusions (1) to (5) of Proposition 6.4. Also, by Lemma 6.5, we know that the
morphism T → F , where F is the locus of xy − t = 0 in D ×k P1

y ×k Spec(k[[t]]),
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induces an abelian cover T ×Spec(k[[t]]) Spec(k((t))) → D ×k Spec(k((t))). For any
k[[t]]-scheme V , let V g denote its generic fiber. Since the branch locus of W g → T g

is determined by the branch locus of W → T on the patches, from conclusions (1),
(1′) and (2) of Proposition 6.4, we conclude that W g → T g is ramified only at
points of T g lying above x = ∞. This is because WY T → TY is étale everywhere
and WXT → TX is étale away from the points which map to x = ∞ under the
composite WXT → TX → X → D. Also T g → D ×k Spec(k((t))) is ramified only
at points above x = ∞, since T → F is ramified only at points above x = ∞ and
y = 0 (which is the same as t = 0 and possibly x = ∞). So, on the generic fiber
(i.e., t 6= 0) these two points get identified. Hence we obtain the following tower of
covers.

W g

��
W g/H ∼= W g

XT

G-cover ramified only at points lying above x=∞
��
T g

abelian cover ramified only at x=∞
��

D ×k Spec(k((t)))

Figure 2

Now applying Proposition 6.4, the above tower of k((t))-covers descends to a
tower of k-covers with the same ramification properties and group actions.

W s

��
W s/H ∼= W s

XT

G-cover ramified only at points lying above x=∞
��
T s

abelian cover ramified only at x=∞
��
D

Figure 3

Here −s, as in Proposition 6.9, denotes specialization to the base field k. So
to complete the proof, it is enough to show that the Galois group of k(W s)Kab

over Kab is Γ, where k(W s) is the function field of W s. Note that k(WX) ⊂
k(W s

XT ) = k(WX)k(T s). So k(W s
XT )Kab = k(WX)Kab, since k(T s) ⊂ Kab.

By assumption the Galois group of k(WX)Kab over Kab is G. So it is enough
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to show that the Galois group of k(W s)Kab over k(W s
XT )Kab is H. Note that

k(W s
XT )Kab/k(W s

XT ) is a pro-p extension since it is a base change of the pro-p ex-
tensionKab/k(x) and k(W s) is a prime-to-p-extension of k(W s

XT ) (in fact the Galois
group is H). Hence k(W s) and Kabk(W s

XT ) are linearly disjoint over k(W s
XT ) and

Gal(k(W s)Kab/k(W s
XT )Kab) = H. Thus the field k(W s)Kab provides a proper

solution to the given embedding problem as required. �

6.2.2. The general case. Now we shall deal with the general case which require some
modifications at the end and a slight modification in the beginning to facilitate the
application of the patching results.

Theorem 6.12. The following split embedding problem has a proper solution

πc1(C)

��||z
z

z
z

1 // H // Γ // G //

��

1

1

Here H is a prime-to-p group and a minimal normal subgroup of Γ and πc1(C) is
the commutator of the algebraic fundamental group of a smooth affine curve C over
an algebraically closed field k of characteristic p.

Proof. As in the proof of the affine line case (Theorem 6.11), let Kun denote the
compositum of the function fields of all Galois étale covers of C. And let Kab be
the subfield of Kun obtained by considering only abelian covers. Let D be the
smooth compactification of C. As before from the embedding problem, we obtain
an abelian cover Φ′X : X → D which is étale over C and a G-cover ΨX : WX →
X étale over U = Φ′X

−1(C) which remains a G-cover after base change to the
maximal abelian étale “pro-cover” of C. Since k is algebraically closed, k(C)/k has a
separating transcendence basis. By a stronger version of Noether normalization (for
instance, see [Eis, Corollary 16.18]), there exists a finite proper k-morphism from
C to A1

x which is generically separable. The branch locus of such a morphism is of
codimension at most 1, hence this morphism is étale away from finitely many points.
After translation of A1

x, if necessary, we may assume that none of these points map
to x = 0. This morphism extends to a finite proper morphism Θ: D → P1

x. Let
ΦX : X → P1

x be the composition Θ ◦ Φ′X . Let {r1, · · · , rN} = Φ−1
X ({x = 0}),

then ΦX is étale at r1, · · · , rN . Also note that Θ−1({x = ∞}) = D \ C. From
here on we can again obtain a Γ-cover of X which dominates WX as in the affine
line case. But now the field extension Kab/k(C) is not a pro-p group, as was the
case when C was the affine line. And hence the linear disjointness argument to lift
this cover to a Γ-cover of the maximal abelian pro-cover does not go through. But
nevertheless, the prime-to-p part is a finitely generated group (Theorem 3.4). And
we shall use this fact to obtain a cover which does lift to a Γ-cover. Let l > 0 be
any integer. Let ΦY : Y → P1

y be an abelian cover étale everywhere except over
y = 0, where it is totally ramified, such that the genus of Y is at least 2 and more
than the number of generators for H l, i.e., the product of H with itself l times.
Let s be the point lying above y = 0. Since H l is prime-to-p, and Y has high
genus by [SGAI, XIII, Corollary 2.12, page 392], there exists an irreducible étale
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H l-cover WY of Y . Let Γ(l) be the semidirect product H l n G, where the action
of G on H l is the component-wise action of G on H. Let ΨY : WY → Y denote
the covering morphism. Again applying Proposition 6.4 with H replaced by H l we
obtain an irreducible normal Γ(l)-cover W → T satisfying conclusions (1) to (5) of
Proposition 6.3 with H replaced by H l and Γ replaced by Γ(l) everywhere. Also, by
Lemma 6.5, we know that the morphism T → F , where F is the locus of xy− t = 0
in D ×k P1

y ×k Spec(k[[t]]), induces an abelian cover T ×Spec(k[[t]]) Spec(k((t))) →
D ×k Spec(k((t))). Again, for any k[[t]]-scheme V , let V g denote its generic fiber.
As in affine line case, we get the following tower of covers of k[[t]]-schemes:

W g

��
W g/H l ∼= W g

XT

G-cover étale at points lying above C×kSpec(k((t)))

��
T g

abelian cover étale over C×kSpec(k((t)))

��
D ×k Spec(k((t)))

Figure 4

However, now W g is a Γ(l)-cover of T g and an H l-cover of W g
XT . So now we

can get many disjoint H-covers of W g
XT which leads to Γ-covers of T g. And this

helps in obtaining a Γ-cover of maximal étale abelian ”procover” of C. But first
applying Proposition 6.9, the above tower descends to a tower of k-covers with the
same ramification properties and group actions as above.

W s

��
W s/H l ∼= W s

XT

G-cover étale at points lying above C

��
T s

abelian cover étale over C

��
D

Figure 5

For each i, with 1 ≤ i ≤ l, let iW s denote the quotient of W s by the subgroup
Hi = H × · · · × Ĥ × H × · · · × H of H l with ith factor of H missing. Note
that Hi is a subgroup of Γ(l) and hence acts on W s. Also note that Hi is a
normal subgroup of Γ(l) and Γ(l)/Hi

∼= Γ for each i. So each of these iW s is
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a Γ-cover of T s. Moreover, by construction, these Γ-covers are linearly disjoint
over W s

XT
∼= W s/H l. So to complete the proof, it is enough to show that for

at least one i, the Galois group of k(iW s)Kab over Kab is Γ, where k(iW s) is
the function field of iW s. As observed previously k(W s

XT )Kab = k(WX)Kab and
by assumption the Galois group of k(WX)Kab over Kab is G. So it is enough
to show that the Galois group of k(iW s)Kab over k(W s

XT )Kab is H for some i.
Since H is a minimal normal subgroup of Γ, H ∼= S × S × · · · × S for some simple
group S. If S is nonabelian then S and hence H is perfect. Gal(k(iW s)/k(W s

XT ))
is perfect and k(W s

XT )Kab/k(W s
XT ) is a pro-abelian field extension, so they are

linearly disjoint. Hence Gal(k(iW s)Kab/k(W s
XTK

ab) ∼= H. If S is abelian then
S ∼= Z/qZ for some prime q different from p. By Grothendieck’s result on the
prime-to-p part of the fundamental group (see Theorem 3.4), there are only finitely
many nontrivial surjections from π1(C) to H. These epimorphisms correspond to
the H-covers Zj of D which are étale over C. Since we could have chosen l to be
any integer, let l be an integer greater than the number of such H-covers of D.
Zj ×D W s

XT may still be irreducible H-cover of W s
XT for some j. We choose an i

such that iW s is different from Zj×DW s
XT for all j. For such an i, k(iW s) is linearly

disjoint with k(W s
XT )Kab over k(WXT ), since subfields of k(W s

XT )Kab which are
finite extensions of k(W s

XT ) are in bijective correspondence with the covers of W s
XT

obtained from base change of étale covers of C. So we have found a proper solution
to the given embedding problem. �

This concludes the proof of the main theorem (Theorem 4.8) of this thesis.

7. A few more consequences and a conjecture

In this section a few more consequences of the proof of the main theorem will
be stated. Let Gp be the maximal p-torsion quotient group of π1(C), i.e., Gp =
lim
←−

Gal(k(Y )/k(C)), where Y → C is a Galois étale cover with the Galois group

(Z/pZ)l for some l. Let Kp be the kernel of the quotient map.

1 → Kp → π1(C) → Gp → 1

The same argument as was used to prove πc1(C) to be a projective group in
Theorem 4.6, also proves the projectivity of Kp. That every split quasi-p perfect
embedding problem and every split abelian p-group embedding problem forKp have
solutions also follows in the same way as for πc1(C). Even the prime-to-p embedding
problem for Kp has a solution. To see this note that the Galois group of the cover
Y → P1

y in the Lemma 6.10 is a p-torsion group. Hence the proof of the general case
can be modified to get a Γ-cover dominating the given G-cover after passing to an
appropriate (Z/pZ)n-cover of C. Then the standard linear disjointness argument
as in the affine line case in Theorem 6.11 provides solution to every prime-to-p
embedding problem. In this whole argument Gp can be replaced by Gpn (and
consequently Kp can be replaced by Kpn) for every positive integer n. Hence we
obtain the following result.

Theorem 7.1. For every positive integer n, Kpn , as defined above, is a profinite
free group of countably infinite rank.

The main theorem (Theorem 4.8) requires the base field to be countable so a
natural question is what happens when the base field is uncountable. For uncount-
able base field it is easy to see that the rank of the commutator subgroup is the
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cardinality of the field. Moreover, for these fields as well one solution to any of
the embedding problems mentioned in Proposition 4.7 is guaranteed by Theorem
5.3, Theorem 5.5 and Theorem 6.12. But to assert the freeness of the commutator
subgroup when the base field k is uncountable one has to exhibit card k solutions
to these embedding problems. The author believes that this should be the case.
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