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The purpose of this note is to help any one who is intending to numerically solve the 

Hodgkin-Huxley (HH) equations and simulate an action potential in MATLAB for the 

first time. The effort has been guided by a single resource “Understanding neuronal 

dynamics by geometrical dissection of minimal models,” A. Borisyuk and J. Rinzel, In: 

Chow C, Gutkin B, Hansel D, Meunier C, Dalibard J, eds. Models and Methodsin 

Neurophysics, Proc Les Houches Summer School 2003, (Session LXXX), Elsevier, 

2005:19-72 (particularly Appendix A). Plenty of scope of improvements remain both in 

the mathematical approach to the solution and in the MATLAB implementation. 

Suggestions to improve are most welcome. 

 

The equations 

 

HH equations for action potential generation by a 1 cm
2
 patch of membrane in a giant 

squid axon are as following: 
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mC  is membrane capacitance in 2/ cmFµ , V  is displacement of membrane potential 

from its resting value (depolarization, taken as negative) in millivolt (mv), nhm ,,  are 

dimensionless (hypothetical) gating variables respectively for sodium activation, sodium 

inactivation and potassium activation, appI  is the applied stimulation current in Aµ , 

LKNa ggg ,,  are respectively maximum sodium, potassium, leak conductance in milli-

mho (m.mho)/cm
2
 or mS/cm

2
, rNaNa EEV −= ,  rKK EEV −=  and  rLL EEV −= , 

where rE  is the value of resting potential in mv, LKNa EEE ,,  are potentials in mv at 

which currents due to sodium, potassium and leakage (due to chloride and other 



negatively charged ions) respectively become zero, )(),(),( VnVhVm ∞∞∞  are steady state 

values of sodium activation, sodium inactivation and potassium activation respectively 

(dimensionless), )(),(),( VVV nhm τττ  are time constants of sodium activation, sodium 

inactivation, potassium activation respectively in milliseconds (ms), T  is temperature in 

centigrade. For a very detailed description of the quantities involved and physical 

significance of the equations one should see “A quantitative description of membrane 

current and its application to conduction and excitation in nerve,” A. L. Hodgkin and A. 

F. Huxley, Journal of Physiology, vol. 117, p. 500 – 544, 1952. 
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where x  stands for m  or h  or n . 
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Combining (6), (8) and (9) we get )(Vnτ , which has been calculated by the routine 

tau_n.m. Combining (7), (8) and (9) we get )(Vn∞ , which has been calculated by the 

routine m_inf.m. Similarly for )(Vmτ , )(Vhτ , )(Vm∞  and )(Vh∞  calculated by the 

routines tau_m.m, tau_h.m, m_inf.m and h_inf.m respectively. For equations (8) to (13) 

modern convention for sign of the potentials has been followed and therefore the 

equations have been taken from Biophysics of Computation: Information Processing in 

Single Neurons, K. Koch, Oxford University Press, New-York, 1999 (Chapter 6). 

 

Mathematical solution 



 

Next comes the calculation of the actual activation (inactivation) variables or in other 

words the gating variables, which are denoted by hmn ,,  for potassium activation, 

sodium activation, sodium inactivation respectively. (2), (3), (4) can be written in a 

generic form as 
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where nx =  or m  or h . Solving (14) gives us 
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For mx = , mτ  is very small. Hence by (15) it is going to be 
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The routine gating_variable.m has been used to compute (15) for nx =  and hx = . Now 

we are ready to tackle equation (1). First consider Fig. 1. 

 

                 
Fig. 1. Hodgkin-Huxley action potential generated by hhbr.m. First the variables time (t) and voltage (v) 

have been loaded in the MATLAB work space by commands t = 0:0.01:120; and v = -20:0.01:100; Then 

the command [D] = hhbr(v, t, 18.3, 1, 0.65, 0, 120, 36, 0.3, 80, -12, -60, 15, 50, 10); generated the figure. 

(Plateau and Downstroke arrows are not pointing accurately). 
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There are four phases of generation of an action potential as shown in Fig. 1, as a 

numerical solution of equation (1). 

 

Phase 1: Upstroke – is characterized by very rapid activation of +Na  channels (the very 

rapid, almost vertical with respect to time, rising phase in Fig. 1). Compared to the sharp 

change in m , changes in h  and n  are so slow that in this phase they can be assumed as 

constant. So that 0=
dt

dh
 and 0=

dt

dn
. For this phase we take 0hh =  and 0nn = . For the 

action potential in Fig. 1 00 =h  and 65.00 =n  (in Koch’s book 0n  has been taken to be 

0.32 (p. 147)). Equations (1), (2), (3), (4) reduce to 
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00 == hh  and 65.00 == nn , which can be written as 
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(17) has been calculated in lines 42 through 47 in the routine hhbr.m. No differential 

equation solver has been used. The calculation has been done from the scratch. 

 

Phase 2: Plateau – With rapid depolarization due to swift influx of +Na  ions inside the 

cell the maximum value of potential is reached quickly. Immediately afterwards slow 
+Na  influx inhibition and slow +K  outflux activation together dominate the process. 

The change in action potential with respect to time becomes so slow that we can assume 

0=
dt

dV
. Equation (1) becomes 
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Solving (18) we get 
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been calculated in line 56 of hhbr.m, which makes up the flat part of the action potential 

in Fig. 1, called ‘plateau’. Duration of plateau is roughly about 1 ms, the usual duration of 

an action potential. If resolution of time is 0.01, i.e., time has been generated by the 

MATLAB command t = 0:0.01:120; 100 time points will make 1 ms. So the length of the 

plateau is also 100 time points (in Fig. 1. the plateau is only 50 time points long). The 

duration of the plateau and the downstroke can be set in hhbr.m by choosing the values 

for the arguments ‘width’ and ‘duration’. 

 

The slow-fast dissection made in Phase 1 and Phase 2 is the trick to generate the action 

potential by the Hodgkin-Huxley equations. This will be carried over to the next two 

phases. 

 

Phase 3: Downstroke – After each depolarization +Na  channels become inactive for a 

few milliseconds. At the same time because of outflux of +K  during phase 2 the cell 

undergoes a hyperpolarization. Although +K  outflux is slow, once it reaches a certain 

level this hyperpolarization is very rapid. The following mechanism, as shown in Fig. 2, 

is responsible for rapid depolarization and rapid hyperpolarization of the membrane 

consisting of +Na  and +K  channels (Principles of Neural Science, 4th ed., E. R. Kandel, 

J. H. Schwartz, T. M. Jessell, McGraw Hill, 2000, p. 151). 

 

 

 

 

 

 

 

 

 

 

 
Fig. 2. If the membrane is depolarized sufficiently to open some of the Na

+
 (K

+
) channels, inward Na

+
 (K

+
) 

current (INa (IK)) flows through these channels and causes further depolarization. The additional 

depolarization causes still more Na
+
 (K

+
) channels to open and consequently induces more inward Na

+
 (K

+
) 

current. 

 

So we again resort to fast calculation according to equation (17). The downstroke of 

hyperpolarization follows. 

 

Phase 4: Recovery or Refractory – The action potential is followed by a brief period of 

diminished excitability, or refractoriness, which can be divided into two phases. The 
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absolute refractory period comes immediately after the action potential. During this 

period it is impossible to excite the cell no matter how great a stimulating current is 

applied. This phase is followed directly by the relative refractory period, during which it 

is possible to trigger an action potential, but only by applying stimuli that are stronger 

than those normally required to reach threshold. These periods of refractoriness, which 

together last just a few milliseconds, are caused by the residual inactivation of +Na  

channels and increased opening of +K  channels (Kandel et al., p. 157). In other words 

there is diminished h  and enhanced n . So the entire refractory period is a candidate for 

modeling by slow dynamics.  


