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A Mathematical Model of the Nascent Cyclone
Kausik Kumar Majumdar

Abstract—In this letter, we have proposed a mathematical
modeling of a disturbance created by winds coming from different
directions and colliding to give rise to a vortex under certain
conditions. Under favorable conditions, this vortex may lead to
the development of a cyclonic storm (cyclogenesis).

Index Terms—Fuzzy systems, meteorology, simulation, storms,
terrestrial atmoshpere, tropical regions.

I. INTRODUCTION

I T HAS LONG been suspected that a sufficiently strong ini-
tial disturbance is essential for creating a tropical storm of

high intensity [5], [10]. In this letter, we have taken an approach
to construct a hypothetical model of the creation of a strong ini-
tial disturbing vortex, which hitherto has not been considered in
the literature. We have laid special emphasis on the large-scale
uncertainty remaining involved in the whole process. This is by
and large a very complex nonlinear phenomenon and, hence,
possibly susceptible to chaotic behavior. But in this letter, we
have applied techniques from fuzzy set theory (perhaps the first
time in the atmospheric science) to present a simple model of
the initial disturbing vortex. Due to the advantage inherent in
the technique we can ignore the complexity due to nonlinearity
to some extent and loose information accordingly. But this re-
markably simplifies our essential task at hand of modeling the
initial disturbing vortex out of a simple set of natural precon-
ditions. In a finer and more sophisticated model, where infor-
mation is progressively retained, this vortex will remain. Only
more and more subtle attributes will have to be added to it.

In order to make a fuzzy model, we follow the classical con-
vention of mathematical modeling of a physical phenomenon.
Often proposing an appropriate set of differential equations for
a climatic phenomenon is difficult. Even if such a set of equa-
tions is determined to some degree of accuracy, in many cases
it may not be possible to supply exact values of parameters and
variables as input to this system. In this case, fuzzy modeling is
a very convenient tool. One very important thing to keep in mind
here is that all kind of uncertainties cannot be dealt with using
statistical models, because statistical models are based on clas-
sical two-valued logic. On the other hand, many-valued fuzzy
logic is a much more versatile tool to deal with a broader class of
uncertainties. Realization of this fact prompted Zadeh to create
the fuzzy dynamical system as a tool to model very complex
phenomena [2]. For a good exposition of fuzzy-set-theory-based
techniques, fuzzy numbers, and fuzzy arithmetic, which have
been frequently used in this letter, one may want to consult a
standard text like [8].
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II. M ODELING OF THEDISTURBING VORTEX

Weather prediction experts are aware of the existence of sev-
eral empirical conditions that are necessary but not sufficient
for the formation of cyclones [5], [9]. The first of these requires
the sea temperature to be at least 26C through a depth of at
least 60 m. A second requirement is the absence of significant
vector changes of the mean wind that extends into the tropo-
sphere. Relative humidity will have to be 85% or more for a long
time throughout the region of storm formation and development.
There are other empirical conditions as well, but even when they
are satisfied, storm formation usually does not take place. In fact
necessary climatic and geographical conditions for the forma-
tion of the tropical storms prevail over large areas of the earth
during storm seasons, yet the actual occurrence of a storm is a
relatively rare phenomenon. This indicates that there must be
a rare coincidence of circumstances before development of a
storm. The formation always occurs in connection with some
kind of preexisting disturbance associated with a deep cloud
layer. All of these disturbances do not intensify into tropical
storms. Only a small percentage of these systems start intensi-
fying. Numerous studies have been made to clarify the process
of their formation, but no general mechanism has yet been ac-
cepted. In one such study described in [5], the evolution of the
maximum surface wind speeds, with respect to time, in two of
the experiments are compared. The first experiment starts with a
maximum wind of 43.2 km/h. After about three days, the vortex
rapidly intensifies to a nearly steady state amplitude of about
162 km/h. The second experiment is identical to the first, except
that it was started with a maximum wind of only 7.2 km/h. The
model storm in this case did not amplify even after 150 h had
elapsed. Apparently, the model needs a sufficient “kick” (dis-
turbance) to get a cyclone started [5], [10]. In nature, an asym-
metric disturbance, such as an easterly wave, is almost always
observed to precede the occurrence of tropical cyclones [5], [9].

To build the model of “a vortex initiated by a sudden distur-
bance,” we take our clues from two-dimensional satellite images
of matured cyclonic vortices. Though these features are of a ma-
tured cyclone, we accept them as clues toward the development
of such shapes. It is natural to assume that the initial disturbing
vortex is of log-spiral shaped strong wind vortex that is yet to
draw large clouds from the surrounding areas to be prominent
enough to be photographed from a satellite. We have taken the
following features of such images to infer the initial stage.

• The clouds from the surrounding areas of the eye are
curving inward to the eye in log-spiral shape. It is already
recognized that the curved cloud bands surrounding the
eye of a disturbance indeed take log-spiral shape [1],
[4]. This is possible only if there was a preexisting wind
vortex to draw clouds toward its center.
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• Here, clouds are taking shape along the drag of the wind
converging to the eye. So, the wind tending to converge
to the eye is supposed to traverse a log-spiral path in the
vicinity of the eye.

In [5] and [10], to get a model cyclone started, a weak vortex,
which decays upward from the surface, had to be superimposed
on the basic state (of the model) of formation of the storm. The
upward decaying effect may be ignored if the disturbance is con-
sidered to be limited within a certain layer of the atmosphere.
We additionally assume that the wind drag toward the center of
the vortex will be along log-spiral paths similar to that near the
eye of a matured cyclone. Resolving the velocity of the distur-
bance or the “kick” (which is nothing but wind jet(s) or waves
in reality) along the components of the cylindrical coordinates
(r, , z) we get the following:

dr dt radial component;
r d dt cross-radial component;
dz dt vertical component.

To get a log-spiral shape of the vortex, as seen from the top of
the cylinder, i.e., along axis downward (negativedirection),
the following equation must be satisfied:

dr
dt

r dt
m or r

dr
m (2.1)

where m is a constant.
We may assume that the disturbances propagate parallel to

the ground, i.e.,

dt
(2.2)

It is important to note that (2.1) and (2.2) give a simple dy-
namical model of only a disturbance leading to the development
of a tropical cyclone. Equations (2.1) and (2.2) are valid only for
a very short time at the very beginning of the genesis of a storm.
Once the storm is formed, the model of the storm may be repre-
sented by a set of suitable equations like the ones in [3], [7], or
[9].

Equation (2.1) can appropriately model only when (r,) de-
notes the precise location of a point. But (2.1) is intended to
model a vortex created by a certain wind jet or wave, where (r,)
denotes the position of an average point on the tip of the wind
jet or wave creating the vortex. In reality, the location of such
an average point cannot be determined with great precision. A
substantial uncertainty will always remain involved that cannot
be ignored.

Clearly, our model-based study of a climatic disturbance
leading to the genesis of a storm is a knowledge-based system
made up of vague or imprecise information. How does the
vagueness or imprecision or uncertainty arise in (2.1)?

Well, here the value of r depends on the value of( is crisp,
in fuzzy set terminology crisp means nonfuzzy) and the initial
value r(0). In practice, 1) the value of m will fluctuate even in
short time intervals and 2) we cannot determine the initial value
r(0) precisely. Uncertainties 1) and 2) propagate to the value of
r calculated by solving (2.1). So, the uncertainty in determining
the value of r is the compound uncertainty due to 1) and 2).

Fig. 1. Graph of the fuzzy constant M (the trapezium aABb), which is a fixed
trapezoidal fuzzy number. m2 [a; b]. m takes values in [c, d] with probability 1.

Fig. 2. Graph of fixed triangular fuzzy number r. Support of r is [5, 15] in
50-km scale, which is compatible with [9], r(10) = 1.

To accommodate these uncertainties we formulate (2.1) as a
fuzzy differential inclusion (FDI) relation as follows:

r m r r r (2.3)

The asterisk () is the multiplication sign. If is a fuzzy set
denotes the cut or the -level subset of the fuzzy set.

All fuzzy sets used in this letter are fuzzy numbers. That is, if
is a fuzzy set, then is a mapping R , such

that, there exists a closed bounded interval [a, b] of R for
, . satisfies some additional conditions also

[8], which are not important in this letter. Though in standard
fuzzy set terminology is called a fuzzy set, actually is a
function, which is like a probability distribution function used
in measuring the fuzzy membership value. . By an

-level subset of , denoted by , we mean the subset of [a, b]
(which will turn out to be a closed, bounded subinterval) given
by . m r , being an uncertain quantity, has
been treated as a fuzzy number. The meaning ofm r will
become clear in the following paragraphs.

Next, we are to specify m and r(0). For any given value of,
r takes values in a fuzzy number. Fuzziness occurs because
we cannot determine r() precisely for any given . We are to
take r such that all possible crisp values of r(0) always remain
within it. We take r as a triangular fuzzy number (Fig. 2).

We assume that for the sustenance of a stable storm m must
take values from a closed, bounded interval [a, b], whose interior
is nonempty. M is such a fuzzy number that only consists of all
feasible values of m. By feasible values of m, we mean only
those values for which a stable vortex is possible to generate,
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whose intensity is “enough” to give rise to a tropical storm (may
or may not be of hurricane intensity). We take M as a trapezoidal
fuzzy number (Fig. 1).

M M , which means for values of
m in the generated vortices will not be strong
and stable enough to give rise to a tropical storm of a given in-
tensity, say T3, or more in Dvorak scale [4]. For values of m in

(a, c, d, and b are to be determined experimentally)
the vortices generated may still mature into a tropical storm but
with a much lesser possibility. The greater is the membership
value the more is the possibility of the generated vortex to ma-
ture into a tropical storm. When m the possibility of
cyclogenesis is the highest. Under favorable conditions (some
of which we have mentioned in the first paragraph of this sec-
tion) for m a storm of hurricane intensity is very likely
to be generated. A relatively small length of [c, d] indicates the
lesser possibility of generation of storms of very high intensity.
This is of course a very simplified structure for M. Some other
structure(s) for the fuzzy number M is (are) also quite possible.

III. SIMULATION AND DISCUSSION

We have assumed that the variation of the initial disturbing
wave along the axis is negligible and that it is only propa-
gating parallel to the ground. So, FDI relation (2.3) is sufficient
to represent the model. Let us restate (2.3) as

r m r r r m M (3.1)

where the fixed trapezoidal fuzzy number M is given by Fig. 1,
and the triangular fuzzy number ris given by Fig. 2.

The solution of the ordinary crisp differential equation r
m r is dependent on m and r(0). Here, we shall consider the
set of all such crisp solutions (union of whose graphs is termed
integral funnel[6]), where m M and r r . A membership
value will be assigned to each such crisp solution, where the
membership value will be determined by the membership values
of m and r(0). This way we get the fuzzy set of solutions of the
differential equation r m r, where m and r(0) are fuzzy
valued. As a solution of (3.1) for a given, we take only those
solutions r whose membership value . Let us mention that
(3.1) should have been written as r M r , which is the
mathematically correct form. But this would have been more
cumbersome to follow. The product of two fuzzy numbers is
another fuzzy number [8].

Now we are in a position to simulate (3.1) according to the
algorithm stated below. The simulated diagram represents the
initial disturbing vortex. The size of this vortex will have great
effect on the final intensity of the storm [3], [9].

1) replace by = in (3.1);
2) calculate the right-hand side of the equation thus ob-

tained by Zadeh’s extension principle [8];
3) fix ;
4) take the -level set on the right-hand side, which is an

-tuple of -cuts of fuzzy numbers for some n;
5) solve (directly or numerically) the ordinary crisp DEs

only for the boundary values of the-level set;
6) the space enclosed by these solutions is the-level set of

the solution of the equation obtained by replacingby =

TABLE I
NUMERICAL SPECIFICATION OF THEFUZZY CONSTANT M

Fig. 3. Numerical simulation of (3.1) in 50-km scale, where� = 1, that is,
the phase space is showing the fuzzy flow representing the best system behavior
only, which resembles the generated initial cyclonic vortex. In this simulation
of (3.1)� has been taken as varying from�3� to 0 and the integration constant
A = r(0).

in (3.1) and, hence, the solution of the FDI (3.1) for the
given .

We have already mentioned in the previous section that the
values of a, c, d, and b are to be determined experimentally.
Here, we have determined them by computer simulations using
synthetic data. It is rather an attempt to make a meaningful in-
ference about the values of a, c, d, and b, which have been pre-
sented in Table I.

One very important thing to note here is that, m is taking neg-
ative values only. Mathematically, m could take positive values
as well. But in that case, the orientation of the vortex would
have been just the opposite. The vortex would not then be cy-
clonic but anticyclonic in northern hemisphere (in the southern
hemisphere, the orientation will just be the opposite). Under the
favorable influence of the coriolis force due to the rotation of
the earth about its own axis the cyclonic vortices gather extra
angular momentum to intensify. Therefore, in this letter we are
concerned about the cyclonic vortices (of the northern hemi-
sphere) only.

Now we are in a position to solve (3.1), where M is given by
Fig. 1, and Table I and ris given by Fig. 2. For a direct solution
of (3.1), we have to evaluate the product of two fuzzy numbers
M r by Zadeh’s extension principle [8]. Let Mr , then

m r
M m r r

For any given , let . Solve the crisp differen-
tial equation r m r for such m and r(0) that, mr .
This particular solution is an -solution, i.e., a solution with
membership value or more, of (3.1). Collection of all such

-solutions of (3.1) will give the -flow of (3.1) (in Fig. 3 the
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1-flow is shown). This -flow is actually the fuzzy solution of
(3.1), which signifies the behavior of the system given by (3.1)
with possibility . The best system behavior is obviously given
by the -flow, when . Fig. 3 gives the phase space of the
best system behavior of (3.1). The flow shown in Fig. 3 tends
to converge to a (fuzzy) point of the (fuzzy) phase space, which
is known as the fuzzy attractor (fuzzy limit point to be more
precise) of the system. If this vortex ultimately matures into a
severe cyclonic storm this fuzzy attractor will be the eye of the
cyclone.

The physical significance of the log-spiral shaped fuzzy flow
of Fig. 3 is that, it represents the initial disturbance generating
the initial vortex (like the ones in [5, Fig. 1]), which if suffi-
ciently strong, under favorable conditions may develop into a
cyclone. We have seen that the (fuzzy) log-spiral shape of the
vortex is due to the (fuzzy) constant ratio between the radial
and cross-radial components of the velocity of the disturbance.
For a more straightforward interpretation for the generation of
the initial vortex we may consider not one but two simultaneous
disturbances, both of them are linear wind jets or waves coming
from different directions and colliding and merging to produce
the initial vortex. In this case, one of them acts as the radial com-
ponent of the amplitude of the vortex and the other acts as the
cross-radial component. Our mathematical model and the subse-
quent numerical simulations give a very realistic picture of this
two disturbancehypothesis. For example, we have seen in [5]
how a 43-km/h initial kick has ultimately generated a 162-km/h
storm. If in our model we take this 43-km/h kick as the cross-ra-
dial velocity (acts in the anticlockwise direction in the northern
hemisphere and hence positive) then we can calculate the ra-
dial velocity from m. If we take m so that
M m , the radial velocity must be in [4.3, 2.15] (in the
southern hemisphere cross-radial velocity will be negative and
m (and ) will be positive, i.e., the radial velocity will always
be negative, which means that the wind and along with that also
the clouds will always tend to converge toward the center of the
vortex), which at any rate is a minor, almost negligible distur-
bance (the rate of convergence of cloud toward the cyclone will
be slow, not more than about 5 km/h, initially). Note that the
cross-radial velocity must be obtained from the major kick, i.e.,
the major kick must act tangentially to the vortex. The minor
kick must act along the radius-vector of the vortex. This shows
that our choice of M is very much realistic.

This model can also give satisfactory explanation of the phe-
nomenon of occurring of the most intense cyclonic storms often
either during April–May (just before the onset of the monsoon
in the Indian subcontinent) or during October–November (just
after withdrawal of the monsoon from the Indian subcontinent).
During these times of the year major changes take place in
the wind pattern over the seas surrounding the Indian coasts
(Indian Ocean, Bay of Bengal, and Arabian Sea). The wind
changes course from land-to-sea to sea-to-land (April–May) and
from sea-to-land to land-to-sea (October–November). Naturally
during these periods the possibility of simultaneous occurrence
of one major and one minor disturbances as described above is
very high and, hence, the relative high frequency of intense cy-
clones.

We have been able to establish through our model that cli-
matic disturbances in the form of simple linear wind jets or
waves are capable of creating log-spiral like cyclonic vortices.
The role of such disturbances behind creation of cyclones have
long been suspected [5]. This model is compatible with the
model presented in [9]. Once the sufficiently strong initial cy-
clonic vortex is created according to our model, the development
of the vortex toward maturity (i.e., a stable matured intense cy-
clone) can be simulated as given in [9]. Structure of such a storm
in matured stage is given in [9, eq. (11)]. The manifold of this
structure has been elaborated in [9, Fig. 1] in terms of constant
angular momentum surfaces in the r–z plane (r radius, z height),
the real life significance of which has been illustrated in [9, Fig.
5]. [9, Figs. 1 and 5] pertain to the vertical cross section of the
vortex of the storm. Fig. 3 of this letter, on the other hand, gives
the horizontal cross section of the vortex of the storm, at the
starting, near the surface of the sea. This model however is not
compatible with [10], for we have not taken the velocity of the
propagation of the disturbance during formation of a weak ini-
tial disturbing vortex according to [10, eq. (37)]. We have shown
instead that the initial disturbing vortex can be generated in a
more natural and simple way. Though we have proposed the
model based on observations made in [5], [9], and [10], it is
yet to be tested in real situation. The model can be improved by
incorporating the thermodynamic and fluid dynamic considera-
tions in the fuzzy constant M and considering the other solutions
of (3.1) also along with the best possible ones (i.e., for which

). This is one remarkable advantage of this type of fuzzy
differential inclusion relation modeling. We can improve it just
by accommodating more and more complex considerations in
one single uncertain quantity M. M seems to have absorbed all
lack of information to facilitate the vital task at hand to obtain
the initial log-spiral shaped disturbing vortex out of strong linear
wind jets or waves.

The development of the storm in the neutral case is an ex-
ample of the finite-amplitude air–sea interaction instability de-
scribed in [9]. In [9], it is argued that when entrainment and other
buoyancy reducing effects are taken into account, the mean trop-
ical atmosphere is very close to neutral, rather than conditionally
unstable. Because of this, anomalous surface winds are neces-
sary to enhance the surface heat fluxes. This energy is then re-
distributed in the vertical by convection, which then intensifies
the large-scale circulation and the surface heat fluxes, and so on.
When viewed in this context, the initial vortex must have a large
enough amplitude to enhance the surface fluxes enough for the
instability to occur [3]. Keeping this in mind we have taken r(0)
about 500 km, which is compatible with [9] and [10].

According to our model, the knowledge of the speed of wind,
above certain threshold levels and coming from different direc-
tions over a region, can be utilized to detect the formation of a
cyclone at a very early stage, even earlier than what we usually
get today.

IV. CONCLUSION

A modeling of a climatic phenomenon often involves a lot
of uncertainties. One of the most uncertain areas in the mod-
eling of a cyclone is its initial stage [3], [5], [7], [10]. It is well
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known that a sufficiently strong initial disturbance needs to be
present to start a cyclone, even in the most favorable climatic
and geographical conditions (some of these climatic conditions
are described in the first paragraph of Section II, the geograph-
ical regions and storm seasons are well known), for formation
of a storm [5], [10]. The immediate question is “How to model
this initial disturbance?” We have tried to answer this question
in this letter. To answer this question we have taken an hitherto
unapproached path (Ooyama’s model [7] was used previously
to study the transformation of a wave into a closed vortex [11]),
namely to make a log-spiral shaped cyclonic vortex out of strong
linear wind jets or waves. This is compatible with observation,
because tropical cyclones result from preexisting disturbances
such as easterly waves [10]. Of course an initial cyclonic vortex
may form in many other ways (like the ones mentioned in [7],
[10], and [11]). The author believes that the way the formation
of the initial cyclonic vortex has been modeled in this letter is
one of the most natural possibilities of occurrence of such phe-
nomena.

Recently, the author proposed a model of turbulence as
chaotic occurrence of vortices in a dynamic fluid [12]. It has
long been suspected that atmospheric turbulence has some role
in the process of generation of storms. The model of generation
of a storm as proposed in this letter and the model of turbulence
as proposed in [12] have some common aspects leading to
a support to the hypothesis that, atmospheric turbulence has
some definite role in the generation of storms. The author has
plans to further explore this area in short future.
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