
4390 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 62, NO. 17, SEPTEMBER 1, 2014

A Peak Synchronization Measure for Multiple Signals
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Abstract—Peaks signify important events in a signal. In a pair
of signals how peaks are occurring with mutual correspondence
may offer us significant insights into the mutual interdependence
between the two signals based on important events. In this work
we proposed a novel synchronization measure between two sig-
nals, called peak synchronization, which measures the simultaneity
of occurrence of peaks in the signals. We subsequently generalized
it to more than two signals. We showed that our measure of syn-
chronization is largely independent of the underlying parameter
values. A time complexity analysis of the algorithm has also been
presented. We applied the measure on intracranial EEG signals
of epileptic patients and found that the enhanced synchronization
during an epileptic seizure can be modeled better by the new peak
synchronization measure than the classical amplitude correlation
method.

Index Terms—Amplitude correlation, focal epilepsy, intra-
cranial electroencephalogram (iEEG), normal density function,
peak synchronization.

I. INTRODUCTION

S YNCHRONIZATION among different signals is an impor-
tant feature of study for dynamical systems related to those

signals [1]–[3]. Despite the predominant importance of synchro-
nization there is no unique meaning assigned to it in physics [4]
or in signal processing [5]. Intuitively, synchronization should
give us a measure of interdependence or similarity between two
signals. This has been studied by different methods for different
applications such as amplitude correlation [6], mutual informa-
tion [7], phase synchronization [8], [9] etc. One common trend
across all these methods is to determine mutual dependence
based on one particular feature uniformly across a segment of
signals. Once a segment (or a window) is selected no effort is
made to identify where in this segment that particular feature is
more prominent or less prominent. Mutual dependence is cal-
culated irrespective of the strength of the feature on different
parts of the signal, whereas in reality, the strength of the fea-
tures varies dynamically along individual signals.
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In this work we propose a synchronization measure based on
peaks in signals. In this paper we will be dealing only with up-
ward or positive peaks. But all ideas developed can be extended
to downward or negative peaks (troughs) in a straight forward
manner. Here wewill be concerned about peaks of signals alone,
like in phase synchronization phase is considered alone, not am-
plitude etc. In many applications signal peaks are the focus of
study [10]–[15]. In these applications a peak with much higher
amplitude than the background signal contains information rel-
atively more important than that in the background. If out of
two signals and is a peak and is strongly
dependent on then is expected to be a peak, where
is a particular instance of . If on the other hand is weakly
dependent on then a peak may occur at or at

for some , but not at (we have taken weak
dependence in this sense for this paper, it may have other inter-
pretations elsewhere). For peak at different weights are
to be assigned for peaks at and . Clearly, this
scheme is capable of giving a measure of synchronization be-
tween and . This type of a synchronizationmeasure will
be particularly useful for the signals in which peaks predomi-
nantly contain useful information. Biomedical signals form one
such class.
So far no attempt has been made to define a synchronization

measure among two or more signals based on occurrence of
peaks or spikes in each of them. In this work we proposed one
such measure for the first time. This is particularly important in
neuroscience. Simultaneous occurrence of peaks across one or
more signals collected from different parts of the brain is known
as event [16], [17].
Many important events and artifacts appear in neural sig-

nals as peaks (spikes) and they appear simultaneously across
multiple signals. This peak synchronization measure algorithm
will be useful in detecting them. When multiple signals are
coming from the same source, such as seismological signals
from the same epicenter recorded at different geographical lo-
cations, they will have simultaneous or slightly delayed spikes,
which can bemeasured for synchrony by this algorithm to ascer-
tain that they are from the same source. In depth EEG recording
of focal epileptic seizures spikes may appear in different focal
channels with some time lag. Yet the signals collected from dif-
ferent channels are known to be highly synchronous. We have
shown in this work that this algorithm is an appropriate tool to
model this kind of synchronization.
In the next section we present a detailed description of the

proposed peak synchronization measure. In Section 3 we show
an application of this measure on epileptic iEEG signals and
compare the peak synchronization with amplitude correlation.
The paper concludes with a Conclusion section, which also in-
corporates future directions.
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II. PEAK SYNCHRONIZATION

A. Peak Detection

Peaks are regions of much higher amplitude within a lower
amplitude background in a signal. So far many different algo-
rithms for peak detection have been developed, all of which
have their respective pros and cons. Some commonly used
simple algorithms for peak detection are the standard amplitude
thresholding and finding every local maxima. There are also
the traditional window-threshold techniques [10], [18]–[20].
Some of the other techniques include peak detection by wavelet
transform based pattern matching [11], [12], [21]–[27], Hilbert
transform [28], combining Hilbert and wavelet transform [29],
artificial neural networks [30], [31], techniques using templates
[32], [33], morphology filtering [34]–[36], Kalman filtering
[37], Gabor filtering [38], Gaussian second derivative filtering
[39], linear prediction analysis [40] and smoothed nonlinear
energy operator [41].
Here we have used a threshold based peak detection algo-

rithm [42], where the threshold is median times standard
deviation within a window of the signal. The window is subse-
quently slided along the signal. The proposed peak synchro-
nization measure does not depend on how peaks have been
detected.

B. Peak Comparison

Let be a sequence of signals, where is the converted
th time point of the th signal . The conversion of time points
of the original signals happens in the following manner:

We first consider two signals and then generalize the measure
to more than two signals. Let us define the following quantities,
whose significance will become clear subsequently.

(1)

are the weights, obtained by appropriately seg-
menting a probability density function into strips as shown in
Fig. 1. For finding peak synchrony, one needs to take a sym-
metric probability density function, non-decreasing before 0 and
non-increasing afterwards. Here let be the number of
strips having area not negligibly small (Fig. 1). This number is
odd, because central for n number of peaks on
either side of it.
The measure of peak synchronization between and at

the th time point, is given by

(2)

Fig. 1. In the above figure, the length is determined from the value assigned
to (0.5 in the above figure). The other weights are determined by the area of
adjacent strips of length . The tail area rapidly decreases, the further we move
from origin. Here, the tail area becomes insignificant beyond

, and hence strips after are ignored. This determines the coefficient
vector, which in this case, is .

For most practical purposes, one can use the normal density
function with mean 0 and scale (standard deviation) 1 as the
weight determination function. We will present a rigorous jus-
tification in support of this assertion later in this paper.
The intuitive idea behind the peak synchronization measure

is, given any peak in at time point we look for a peak in
. If is a peak we assign the highest weight to the

peak . The peaks on either sides of the peak are as-
signed weights ’s (other than ). Weights are decreasing in
magnitude with increasing distance of the peak from . The
weights are obtained by taking areas of strips, of equal width,
under the probability density function. The width of the strips
is determined by taking the area of the central strip equal to
(Fig. 1). captures the extent of presence of peaks around
time point . The role of is to do an average when both

and are peaks and is the sum of measure of
synchronization of peaks around with the peak and
that of peaks around with the peak .

C. Generalization of the Measure to Many Signals

Generalizing the measure for r many signals , we ob-
tain the following formula, using the above definitions of
and ((1))

(3)

The factor ensures comparability of values obtained for

clusters of signals of different sizes, by taking the average across
all the pairs.
The proposition below shows that the formula for measure of

peak synchrony for r many signals turns out to be the average of
the of peak synchrony measure obtained from each of the
pairs of signals ((3)), i.e.,
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Proposition 1:

Proof:

The 2nd term above is equal to the same with the summations
interchanged, i.e.,

So, the sum reduces to

which proves the above proposition.
Remark 1: Averaging over time points in a certain

interval as following,

leads to a single compound measure, indicating overall peak
synchronization of the r signals in the specified interval. Cal-
culating the same for the entire time duration, the compound
measure can be used to sort groups of signals according to their
overall peak synchronization, and particularly find the most
peak synchronous group of signals, from a larger set of signals,
or find the largest group whose measure of peak synchrony is
greater than a threshold.
Remark 2: The choice of value of the central coefficient

would depend on the signal being studied and needs to be fixed
by the user. Intuitively, it tells us how likely the signals are
peak-synchronized around a time point if both signals have
a peak at that time point. One need not be too precise as the
measure remains approximately invariant over a 0.2-neighbor-
hood of central coefficients (See Fig. 2). The peak synchrony

Fig. 2. The above plots depict 3 lines, points in which indicate the average mea-
sure of synchronization of neural signals from the 3 focal channels for pre (red),
post (green) and during (blue) seizure for 87 recordings containing seizure, over
a range of central coefficients. This figure shows the approximate invariance of
the average measure of synchronization remains over seizure hours, for a wide
range of central coefficients.

Fig. 3. The above figure records the variation of the average measure of
peak synchrony of 3 uniform random binary signals over a range of central
coefficients.

measure becomes more spiky with increase in . Also, the
larger the value of , the more is the sensitivity of the measure
towards small changes. The value of peak synchrony measure
becomes more stable if we choose smaller value of . In
fact, in absence of a specific choice of , a value 0.5 for it
would be safe for most purposes, in the sense that the curve
of varying measure with time corresponding to is
midway between the smoothest and the spikiest curves and the
average measure lies midway between the highest possible and
the lowest possible values. (See Figs. 2, 3).
Remark 3: The measure is indeed non-negative, permuta-

tion invariant and is binless, i.e., the measure is independent of
window length.

D. Peak Synchrony Measure Algorithm

1) Algorithm for Determination of Weights:
Step 1. Decide the choice of and the value of

to work with.
Step 2. Find 1 such that , where

is any probability density function in the class
described in (1) (For most practical cases,

, the Gaussian function with mean 0 and
scale parameter 1 can be used.)

1For the class of functions considered x is unique. Although, if we had taken
a larger class of functions with just f non-negative and , we
could have worked with the minimum x such that .
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Step 3. Find smallest which satisfies

Step 4. The value of is obtained by

2) Algorithm for Peak Synchronization Measure Calculation
Using the Above Found Weights:
Step 1) Obtain the values of , using the

algorithm (1).
Step 2) For and .

• Calculate
• Calculate from (1).

Step 3) Calculate given by

E. Computational Complexity of the Algorithm

Time complexity of the algorithm for measure calculation in
D.2 is . In most practical cases, r even has a
finite upper bound which does not depend on , in which case,
the time complexity is . Proof of both the above facts have
been outlined in Appendix A.

F. Invariance of Weights With Change in Scale

Suppose one decides to use Gaussian function as a weight de-
termination function. Now one natural question would be what
should be a proper choice of the scale parameter .More gener-
ally, if one decides to use as a weight determination func-
tion, then how the weight will change if is
used instead of . The proposition below shows that both and
give the same weight vectors. In particular using a Gaussian

function with any scale parameter but same location parameter
gives the same set of weight vectors.
Proposition 2: The weights remain invariant with respect to

change in scale of the weight determination function. In other
words, suppose that in algorithm D, the value of ’s

were calculated using a function,
and .

If one calculates the weights similarly, using same values of
and , but using , then denoting

, to be the new weights,
1. , i.e., number of weights remain same.
2. , i.e., the value of the
weights remain same.
Proof: Firstly, .

Using the above, we will show that, if are such
that (D.1 step 2), then

According to the Substitution theorem of Riemann Integral,
for any continuously differentiable on (a, b), If

is continuous on an interval , then

For our case if we take , then we have

Moreover . Comparing it with the above equa-
tion we obtain or equivalently . Now let be
found from Step 3 of Algorithm D.1. Therefore, n is such that

Similarly we can show that .
Therefore n is the smallest natural number which satisfies

and hence .
For the 2nd part of the proposition, we notice that

From initial condition we have , and hence
, that is the same weight vector in

either case.

III. APPLICATION TO NEURAL SIGNALS

A. Data

ECoG data of 21 epileptic patients containing 87 focal
onset seizures have been obtained from the Freiburg Seizure
Prediction Project (https://epilepsy.uni-freiburg.de/2008). One
hour recording containing preictal, ictal and postictal ECoG of
1 h duration in each of the 87 cases is available. The ECoG
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Fig. 4. Each of the above subplots depicts the measure of peak synchronization
of neural signals from the 3 focal channels of patient 2. The 3 subplots corre-
spond to all the three different hours of recording from top to bottom respec-
tively. The vertical red lines mark the seizure onset and offset. The horizontal
red line marks the line of statistical significance. Seizure part is clearly distin-
guishable by abnormally high synchronization values.

data were acquired using Neurofile NT digital video EEG
system (It-med, Usingen, Germany) with 128 channels, 256
Hz sampling rate, and a 16 bit analog to digital converter. In
all cases the ECoG from only six sites have been analyzed,
because only six channel data were made available through the
above website. However this is a publicly available data set and
therefore good for benchmarking novel algorithms. Three of
the six channel data are from the focal areas and the other three
from outside the focal areas. For each patient there are 2–5 h of
ictal data recordings.
Each hour’s recording contains only one seizure of few tens of
seconds to a couple of minute duration.

B. Results

For peak detection, a standard amplitude thresholding
( times standard deviation [42]) technique was
applied to the band-pass filtered and notched filtered signals
within 25–100 Hz, with 49–51 Hz notching frequency. We
have also checked by trial and error that this threshold worked
well for epileptic spike identification.
The peak synchronization measure was found using the

Gaussian function with mean 0 and scale parameter 1 as
the weight determination function, and threshold,

. The proposed measure indicates seizure, by
showing very high value during seizure (See Figs. 4 and 5),

Fig. 5. The above figure depicts 3 plots, points in which indicate the average
measure of peak synchronization of neural signals from the 3 focal channels for
pre (red), post (green) and during (blue) seizure for the 87 recordings (arranged
along abscissa). It clearly shows the trend of excessive peak-synchronization
during seizures, compared to before or after for most of the seizures considered.

TABLE I
SUMMARY OF RESULTS—PEAK SYNCHRONIZATION A TOTAL OF

87 SEIZURES RECORDED FROM THE FOCAL ECOG OF

21 FOCAL EPILEPTIC PATIENTS HAVE BEEN ANALYZED

which complies with the definition of epileptic seizure pro-
posed by the International League Against Epilepsy (ILAE)
and the International Bureau for Epilepsy (IBE), “An epileptic
seizure is a transient occurrence of signs and/or symptoms due
to abnormal excessive or synchronous neuronal activity of the
brain” [43]. Immediately after the seizure-offset, the measure
is greatly diminished. We also recorded the average measures
across all three focal channel pairs ( synchronization
across those three channels) for 21 patients (a total of 87
seizures), during seizure and considering 25000 time points
( s) pre and post seizure (See Table I). 78 out of 87 seizures
showed very high measure of peak synchronization during
seizure, compared to before and after it. That is, there are only
9 exceptions out of 87 cases or 10.34%.
We have also tested the statistical significance of the outcome

of peak synchronization measure. Since here we are concerned
about synchronization among three channels, we have taken 100
triplets of shifted surrogate signals generated by randomly shuf-
fling the real signal amplitude across the time (Clearly, gener-
ated signals are of same length and amplitude as the real sig-
nals). Then we have determined speak synchronization measure
for each of the generated triplets. The value of statistical signif-
icance has been chosen to be the value that is above 95% of the
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Fig. 6. Three eigenvalues of the amplitude correlation matrix during the 21st
hour of recording of patient 2. Vertical lines indicate seizure onset and offset
points.

peak synchronization measure values of the 100 shifted surro-
gate triplets (Horizontal red line in Fig. 4). Peak synchronization
value above this value (above the red line in Fig. 4) signifies that
the synchronization is not due to mere chance.

IV. COMPARISON WITH AMPLITUDE CORRELATION

Synchronization across channels before, during and after an
epileptic seizure has been analyzed in many different ways. En-
hanced phase synchronization across focal areas during seizure
has been observed in [4]. Multi-channel amplitude correlation
among focal channels during seizure has been studied in [44],
[45] in order to understand the seizure dynamics. Since the ap-
plied correlation measure in [44] and [45] is multi-channel, it
would be more appropriate to compare the peak synchroniza-
tion measure with this multi-channel correlation measure.
If there are r number of channels, then a cross-correlation

matrix has to be formed. The matrix is calculated for cross-cor-
relation over a window with m time points. Then r eigen values
of thematrix are calculated and sorted in descending order. Then
the window is slided (usually continuously) and the process is
repeated. The temporal plot of the highest eigen value is gener-
ated by the highest eigen values at all time points. If the highest
eigen value plot is increasing with respect to time, it is said
that the overall amplitude correlation is growing up. If it is de-
creasing, the overall correlation is also decreasing (Fig. 6). For
more detail see [44] and [45].
In Fig. 7, we have plotted the average amplitude correlation

among three focal channels before (25000 time points as in
case of peak synchronization), during and after (25000 time
points as in case of peak synchronization) seizure. In Fig. 7
different graphs signifying correlation measure before (red),
during (blue) and after (green) are lot more overlapping than
the graphs in Fig. 5. Thus a clear trend of high synchronization
during an epileptic seizure is not that evident in Fig. 7 as it is in
Fig. 5. The same becomes evident comparing between Tables I
and II. Thus we can conclude that the notion of hyper-syn-
chronous neuronal activity associated with epileptic seizures
is modeled better by peak synchronization than amplitude
correlation.
In fact peak synchronization is a more appropriate measure

of synchronization among ECoG signals during focal epilepsy
than amplitude correlation or phase synchronization, because

Fig. 7. The above figure depicts 3 lines, points in which indicate the ampli-
tude correlation of neural signals from the 3 focal channels pre, post and during
seizure for the 87 recordings containing seizure.

TABLE II
SUMMARY OF RESULTS—AMPLITUDE CORRELATION

peaks (spikes) are distinct features of ECoG signals during
an epileptic seizure. Sporadic sharp spikes occur in ECoG
of epileptic patients even when there is no seizure (for ex-
ample, in between two successive seizures, which is called
interictal period). ECoG spikes are created due to simultaneous
(synchronous) firing of a large number of neurons in a small
neighborhood of the channel. Focal channels are all in seizure
onset zone and they have spikes in temporal proximity of one
another. This happens due to heterogeneous spread of seizures
from the focal points [46]. This is an ideal situation where the
peak synchronization measure is able to capture the underlying
synchronization more fully than amplitude correlation.

V. CONCLUSION

In many applications a higher-than-background amplitude
peak in a time domain pure signal indicates an important event.
If two pure signals are mutually dependent, then occurrence
of a peak in one should be dependent on occurrence of peaks
in the other. This dependence of peaks of one signal on the
peaks of the other has been modeled for the first time in this
paper, which gives an event-based mutual dependence measure
between the two signals. We have shown that the proposed peak
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synchronization measure is largely independent of the different
choices of values for the model parameters. We subsequently
generalized this measure for more than two signals. To the
best of our knowledge the two important concepts of signals
namely, peak and synchronization, have been put together for
the first time in this work to define a peak synchronization
measure among multiple signals. One important advantage
of the algorithm, that we proposed in this work to measure
the synchronization, is its ability to measure synchronization
even when peaks are occurring with some time lag across
different channels. Most other measures of synchronization
(such as Hilbert [8] or wavelet [47] transformation based phase
synchronization) lack the ability to take care of the time lag
in occurrence of near simultaneous events across different
channels.
Next, we showed the effectiveness of the proposed measure

on a large biomedical signal database. This database was avail-
able publicly from https://epilepsy.uni-freiburg.de/2008, where
we downloaded it from in 2009, free of charges and it was
specifically meant for benchmarking new algorithms. Now this
database has been merged with a much bigger dataset available
for a price. Please visit http://epilepsy-database.eu/ and see [48]
for more detail. Our assertion was the newly developed peak
synchronization measure is modeling the synchronization more
comprehensively than classical amplitude correlation measure.
The amplitude correlation measure was applied earlier to study
same type of synchronization in similar signals [44], [45], but
with suboptimal outcome. In fact evolution of synchronization
across different channels during an epileptic seizure is a com-
plex process. Synchronization is less at the onset of seizure, but
more at the offset and even beyond as measured by phase syn-
chronization and amplitude correlation [49], [50]. Quantitative
outcomes of the two methods differ significantly and even some
time contradicted each other (see [49], [50] for detail). In this
scenario peak synchronization measure has been able to estab-
lish higher synchronization during seizure than before or after
it more decisively on our dataset with only about 10% excep-
tion. In future we have plans to apply this method to study inter-
ictal discharges in scalp EEG of epileptic patients during sleep.
During sleep, scalp EEG usually contains lesser artifacts than
wake state EEG, which will make detection of peaks of neural
origin more accurate.
One distinct advantage of the peak synchronization measure

algorithm is its linear time complexity (see Appendix A). For
many signals, each time point long, the algorithm takes

time to execute. This makes the algorithm suitable for
online implementation.
However peaks, both upright and inverted taken together, do

not in general constitute the information content of a signal. In
this respect Fourier coefficients are more reliable components
of a signal. In future development of the measure peaks may
be replaced by Fourier coefficients and the measure may be
calculated in the frequency domain rather than in the time do-
main. This will make the peak synchronization measure much
closer to mutual information measure. Even then the present
form of the peak synchronization will remain useful for sig-

nals, in which time domain peaks contain important information
(such as biomedical signals).
The proposed peak synchronization measure may find appli-

cations in a number of areas. For example, Figs. 4 and 5 in-
dicate the potential of the measure for automatic seizure de-
tection. Also hemodynamic correlate of interictal spikes may
be better related to spikes occurring near simultaneously across
several channels of either scalp or depth EEG rather than spikes
occurring in a single channel. A study on how the hemody-
namic response function varies with the degree of synchroniza-
tion across the event over a period of time can give us a new
insight into the seizure dynamics. In cognitive science research
a study on how event related potential (ERP) peaks across dif-
ferent channels synchronize with respect to the stimulus pre-
sentation may supplement our knowledge of neuronal synchro-
nization leading to ERP generation. This may be useful in brain
computer interface.

APPENDIX A
PSEUDOCODE FOR MEASURE CALCULATION AND

COMPLEXITY ANALYSIS

A. Finding the Coefficient Vector

Input:th, denoting the threshold after which tail areas
(described previously) are considered to be insignificant.

, the central coefficient.

Output: CV, the coefficient vector.

• -> computes univariate
normal distribution function at x, corresponding
to mean and variance

• -> computes inverse of
univariate normal distribution function with
mean and variance

• horzcat (A, B) -> horizontally concatenates two
matrices A and B to form a single matrix.

• taking .

begin

(1)
(1)
(1)
(1)

(2) while
(2)
(2)
(2)
(2)
(2) end

(3)

end
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B. Calculating the Measure of Peak Synchronization
Using the Above Found Coefficient Vector

Input: A, an matrix, consisting of r many peak
detected signals, with N time points each.

CV, the coefficient vector

Output: mc, a vector, with each index carrying the
measure of peak synchronization for the r signals at that
time point.

begin

(1) matrix of zeroes
(1)
(1) matrix of zeroes

(2) for

(2) for

(2)

(2) end

(2) end

(3)
(3) for
(3) for
(3) for
(3) if
(3)

else

(3)

end
end

(3) ;
end
end

(4) ;

end

C. Complexity of the Above Pseudocode

For a fixed , part A takes constant time, being free of r or
N and hence a constant function of them.
In part B, F consists of as its rows, with each ,

taking values over N time points.
S contains as its rows for , with representing

the measure of peak synchronization between the th and th
signals over N time points.
CV is the coefficient vector of length .
Step (1) deals with pre-allocation of F and S, and assignment

of n. In step (2) the matrix F, or equivalently the , is cal-
culated. This takes time proportional to . In step (3),
the matrix S, or equivalently the pairwise measures of peak syn-
chronization, as discussed previously, is calculated. Time taken

by this step is at most , for some constant .
Step (4) finally calculates the measure for r many signals, taking
time proportional to .
The most expensive step in the above algorithm is calcu-

lating the S matrix. So the run time of Part B of the algorithm
is , and hence . In most practical
cases, r even has a finite upper bound which does not depend on
, in which case, the time complexity is .
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