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Abstract—In this survey various soft computing techniques, 

such as, neural networks, fuzzy logic, evolutionary computation, 

statistical discrimination and Bayesian inference in processing 

human scalp EEG have been discussed. To aid the discussion, 

physiological basis of scalp EEG has been briefly presented, 

followed by a discussion on dimensionality reduction of the EEG 

data. For readability the paper has been kept as little technical as 

possible. Large number of references have been listed to aid 

searching the details. 
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I. INTRODUCTION 

N EEG analysis, most methods of analysis follow, explicitly 
or not, a pattern recognition approach [1], [2]. These 

analyses have important applications in brain computer 
interface (BCI) [3], [4], [5], epilepsy research [6], [7], sleep 
studies [8], [9], [10], psychotropic drug research and 
monitoring patients in critical condition in the ICUs [11], [12]. 
However automated analysis of EEG data is a huge challenge 
because of the volume of the data sets and dynamic nature of 
the signals with high temporal resolutions (in millisecond 
range). In case of the human scalp EEG signals this challenge 
has been further augmented by the introduction of high density 
EEG nets consisting of more than 300 channels [13] and with 
increasing sample frequency (1000 Hz or more) of dizitization 
by means of advanced technologies. 

Human scalp EEG was born in 1920s when the German 
physician Hans Berger first measured traces of brain electrical 
activities on the scalp [14], [15]. Since then the interpretation 
of patterns in the scalp EEG, in the most part, has remained a 
challenging issue. Synaptic activity in the pyramidal neurons 
(85% of excitatory human cortical neurons are of this type) is 
the principle source of scalp EEG [16] (p. 914). Modulatory 
dynamical actions of the neural ensembles, both at local and 
global scales, give rise to patterns in the scalp EEG [17], [18]. 
With clever quantitative methods it is possible to measure 
(cognitive) task related integration [19], [20], [21] and 
differentiation [22] (in some sense) from even the single trial 

 
 

EEG signals. 
The online epoch identification in human scalp EEG signals 

has a long history [23]. In this classic, the vision propounded 
for spatio-temporal data reduction and processing by soft 
computing approaches, like the Bayesian statistics, in order to 
bring down the computational loads to a manageable limit, are 
being largely followed even today [24]. For the sake of 
computational efficacy it is desirable to keep the analysis 
linear as far as possible. But, then comes the vital issue – are 
we not overlooking the nonlinear features? It has been argued 
in [25] that the advantage of a nonlinear analysis, at greater 
cost, of the multi-channel noisy scalp EEG data is rather 
marginal over the corresponding linear methods. 

Since the early days of the BCI [26] the need for real time 
analysis of EEG and ERP has been felt. Linear analysis and 
soft computing techniques are the two most promising 
approaches in this regard. In contrast to classical approach of 
exact computation at a greater cost, which may be prohibitive 
for the complex problems like multidimensional EEG analysis, 
soft computing strives to achieve tangible results at reasonable 
cost by allowing inexactness and uncertainty to be parts of the 
computational models. It includes neural networks, fuzzy 
logic, statistical discrimination, Bayesian inference and genetic 
algorithms. This list is of course not exhaustive, but would be 
sufficient for our purpose in this paper. Here we will be 
reviewing various soft computing techniques that have been 
followed for human scalp EEG/ERP processing. Such a 
review, even if non-exhaustive, would hopefully be useful for 
the research community. 

In the next two sections we will be briefly presenting a 
physiological overview of scalp EEG and dimensionality 
reduction of the data respectively. In section 4 we will be 
reviewing neural network applications on human scalp EEG, in 
section 5 fuzzy systems applications, in section 6 applications 
of evolutionary computation, and in sections 7, 8 and 9 
applications of statistical discrimination, support vector 
machine (SVM) and Bayesian inference respectively. Not all 
these branches have found equal applications on human EEG. 
In this survey we have tried to be as exhaustive as we could, 
sacrificing the technical details, which can be seen in the 
references. This, we hope, will enhance the readability and 
usefulness of the paper. 
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II. CORTICAL SOURCE OF SCALP EEG 

Excitatory postsynaptic potential (EPSP) at the apical 
dendritic trees of pyramidal neurons is the principle source of 
the scalp EEG [15], [16]. When these neurons receive inputs 
through their apical dendrites EPSPs are generated in the 
apical dendritic tree. The apical dendritic membrane becomes 
transiently depolarized and consequently extracellularly 
electronegative with respect to the cell soma and the basal 
dendrites. This potential difference causes a current to flow 
through the volume conductor from the nonexcited membrane 
of the soma and basal dendrites to the apical dendritic tree 
sustaining the EPSPs [1], [15]. 
 

 
Fig. 1. Left: EPSPs are generated at the apical dendritic tree of a cortical 
pyramidal cell. Center: Large cortical pyramidal nerve cells are organized in 
macro-assemblies with their dendrites normally oriented to the local cortical 
surface. Right: Functional networks made of these cortical cell assemblies and 
distributed at possibly multiple brain locations are the main generators of 
EEG signals. Taken from [15]. 

 
Some of the current takes the shortest route between the 

source and the sink by traveling within the dendritic trunk 
(primary current in blue in Fig. 1). Conservation of electric 
charges imposes that the current loop be closed with 
extracellular currents flowing even through the most distant 
part of the volume conductor (secondary current in red in Fig. 
1). Intracellular currents are commonly called primary 
currents, while extracellular currents are known as secondary, 
return, or volume currents. With the spatial arrangement and 
the simultaneous activation of a large population of the cells, 
as shown in center of Fig. 1, contribute to the spatio-temporal 
superposition of the elemental activity of every cell, resulting 
in a current flow that generates detectable scalp EEG signals 
[15]. 

Both primary and secondary current contribute to scalp 
EEG. Macrocolumns of tens of thousands of synchronously 
activated large pyramidal cortical neurons are thus believed to 
be the principle sources of scalp EEG because of the coherent 
distribution of their large dendritic trunks locally oriented in 
parallel, and pointing perpendicularly to the cortical surface 
[27]. The currents associated with the EPSPs generated among 
their dendrites are believed to be at the source of most of the 
signals detected in MEG and EEG because they typically last 
longer than the rapidly firing action potentials traveling along 
the axons of excited neurons [28], [15]. 

III. DIMENSIONALITY REDUCTION 

Dimension of scalp EEG data at the preprocessing stage is 
calculated as number of channels ×  number of trials (e.g., the 
way the data representation is made in [29]). For dense array 
EEG consisting of more than 100 channels, a recording session 
spanning through hundreds of trials each spanning through 
several seconds or minutes or even hours (in case of say, 
epilepsy monitoring) with a sample frequency of 1000 Hz or 
more, the amount of generated data may be of the order of tens 
or even hundreds of gigabytes. Without some kind of data 
reduction it would be impossible even to load the data set into 
the main memory of most modern day work stations. 
Dimensionality reduction can be done by selecting appropriate 
channels [30], [31] or time epochs or trials [32]. 

Dimension of EEG at the postprocessing stage is calculated 
usually in terms of the dimension of the feature space.  
Dimension reduction (also known as feature extraction) is 
achieved either by projection to a lower dimensional space or 
by selecting a subspace of the original one [30], [33]. In [22] 
dimensionality reduction has been achieved by projecting EEG 
from all the channels into a single one dimensional time 
domain signal. More of it will be discussed in section 7. 

IV. NEURAL NETWORKS 

This section will be organized in accordance with [34]. Low 
signal to noise (SNR) in case of scalp EEG is a good reason 
for using neural networks (NN) to process them [35]. 

A. Artifact Removal 

Eye blinks; movements of eyeballs and tongue; face, head 
and neck muscle contractions; cardiac rhythms; frequency of 
the alternating current supply to the equipment (steady state 50 
or 60 Hz) are the major sources of artifacts in scalp EEG (for a 
nice overview see ref. [36]). Some of these may be avoided if 
the subject follows appropriate guidelines. For the others, 
automated artifact detection and removal techniques are the 
most practical solutions. When the patterns of artifacts is 
different from the patterns of evoked potential artificial NN 
(ANN) can theoretically be used to separate the artifacts out 
from the EEG. Some advancement in this direction has been 
reported in [37] – [46]. 

Various features of artifacts are extracted and fed into the 
input of an ANN to train it. At the end of training success rate 
of an RBF network has been reported to be 75% in artifact 
detection [43]. 

B. Source Localization 

Interpretation of the clinical EEG almost always involves 
speculation as to the possible locations of the sources inside 
the brain that are responsible for the observed activity on the 
scalp [47]. For excellent reviews see [15], [48] and [49]. 
However computational cost of most source localization 
algorithms is prohibitive. An error back propagation NN 
approach was first proposed to overcome this hurdle in case of 
dipole source localization [50]. In general dipole source 
localization problem is an optimization problem – to find 
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optimum coordinate and orientation of dipoles, and hence 
suitable for bring solved by artificial NN. It is possible to do 
away with computation intensive head models if there is 
sufficient input-output data to train the network. 

A general ANN system for EEG source localization is 
illustrated in Fig. 2. According to [51], the number of neurons 
in the input layer is equal to the number of electrodes and the 
features at the input can be directly the values of the measured 
voltage. The network also consists of one or two hidden layers 
of N neurons each and an output layer made up of six neurons, 
3 for the coordinates and 3 for dipole components. In addition 
each hidden layer neuron is connected to the output layer with 
weights equal to one in order to permit a non-zero threshold of 
the activation function. Weights of inter connections are 
determined after the training phase where the neural network is 
trained with predetermined examples from forward modeling 
simulations [49]. Localization accuracy has been claimed to be 
less than 5% by various ANN approaches [34], [35], [50] – 
[57] and high accuracy in case of [58]. Clearly ANN approach 
is not very practical for distributed source models, where 
sources may consist of any subset of thousands of cortical 
mesh points [32]. 
 

 
Fig. 2. Block diagram for source localization by artificial neural networks 
(ANN). Taken from [49]. 

C. Sleep Studies 

K-complexes are said to be the largest events in healthy 
human EEG [59]. It is natural that ANN had been tried on 
them quite early with 90% success rate of identification and 
8% false positive [60], also [61]. Sleep spindle identification 
by ANN also started getting attention at the same time [60], 
[62]. A simple feed forward ANN was applied on sleep EEG 
even earlier [63]. 61 to 80% accuracy was achieved in 
classifying seven different sleep stages in infant EEG (wake, 
movement, sleep stage 1, sleep stage 2, sleep stage 3/4, 
paradoxical sleep and artifacts) [64]. A pioneering study was 
undertaken to distinguish sleep EEG power spectrum patterns 
under the influence of different sleeping pills using ANN [65]. 
For a detailed review of early ANN applications on sleep 
studies see [66] (also see [34] for more references). 

Use of ANN for automatic sleep stage scoring has been 
reported in [67] with an average 87.5% agreement with two 
human experts. A dominating trend in sleep EEG analysis has 

been – first to extract features (such as shape, frequency, 
power spectrum, etc) by a suitable wavelet transform (in some 
cases Fourier transform [68]) and then using these features as 
input to an ANN [67], [69], [70]. Accuracy of recognition runs 
from as low as 44.44% [69] to around 95% in [70]. Automatic 
recognition of alertness and drowsiness has been performed by 
three different NNs with the best performance reported for the 
learning vector quantization (LVQ) network [71], which is 
94.37 ±  1.95% in agreement with the human experts. 

D. Epilepsy 

EEG analysis is the most certain way to diagnose and 
monitor epilepsy and it has a long history [72]. The effort for 
automatic detection of epileptic activities in prolonged EEG 
recordings is also quite old [73]. Neural networks started being 
used for epileptic seizure detection since early nineties [74], 
[75] followed by others [76] – [86]. In case of neonatal seizure 
detection by error back propagation NN the average detection 
rate is from 79.6% to 91% [85], [86]. Feed forward NN and 
quantum NN have been used to detect neonatal epileptic 
seizure with moderate specificity (little over 79% by both 
types of NN) [87]. Elman networks (EN) have also been used 
for seizure detection [88]. These are a form of recurrent NN 
which have connections from their hidden layer back to a 
special copy layer. This means that the function learnt by the 
network can be based on the current inputs plus a record of the 
previous state(s) and outputs of the network. The results that 
EN yields are said to be the best with a single feature fed as 
the input. The overall reported detection accuracy is about 
99.6% [88]. Recurrent NN based seizure prediction has been 
reported in [89]. For better performance of spike detection by 
NNs, preprocessing of the EEG has been emphasized in [90]. 
Recurrent NN has been used for seizure EEG classification in 
[91]. Scalp EEG of 418 epilepsy patients was classified with 
an multilayer perceptron (MLP), which matched with two 
human experts in 89.2% instances [92]. 

Let us conclude this subsection with a prophetic observation 
of Alan S. Gevins, “Brain electromagnetic signals can be quite 
useful for providing corroborating evidence about the presence 
of a seizure disorder and also for determining the site of 
seizure origin. Therefore, despite their limited clinical impact 
to date, efforts at automated "epileptiform" transient detection 
will undoubtedly continue” [93]. 

E. Brain Computer Interface 

BCI started with the seminal paper of Farwell and Donchin 
[94]. Soon afterward NN was applied to classify the scalp 
EEG signals during right and left hand movements in the hope 
of predicting the side of movements before they occurred [95], 
[96]. Power spectrum of extended α - band (5 to 16 Hz) band 
had been used to train and test an hybrid of K-means and back 
propagation NN to achieve a classification accuracy of 85 to 
90% [97]. Cascade NN has been used for the same prediction 
purpose has shown widely varying results depending on the 
power spectrum of α  EEG [98]. 91% or more classification 
accuracies were achieved for mere left or right index finger 
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movements discrimination by employing on ANN for each 
channel and selecting only the ‘best’ classification results [99], 
[100] ([100] also includes right foot movements in addition to 
the two mentioned earlier). 

The performances of a back propagation ANN with four 
layers have been compared in [101] with two human 
investigators when both the ANN and the humans were 
engaged in classifying scalp EEG of six subjects during right 
middle finger extension tasks. For a cube rotation task in BCI 
an adaptive NN based algorithm has achieved a 68.3% 
classification accuracy in [102]. Imagined hand movement in 
four out of seven subjects is reported to be predictable with 
80% accuracy in [103]. In a more recent study fast Fourier 
transform (FFT) based amplitudes of the EEG have been used 
as input to a multilayer NN with reported improved accuracy 
on test sets 80% or more [104]. FFT and NN based EEG 
classification of intention of right and left elbow movement 
has been reported in [105], [106]. EEG classification of limb 
movement imagination by NN based on particle swarm 
optimization has been reported in [107]. 

F. Other Patterns 

Several studies have been reported pertaining to the analysis 
of evoked potential (EP) in the scalp EEG using NN [108] - 
[110]. Some of them are concerned about visual EPs [109] – 
[122], some about auditory EPs [100], [110], [118], [123] – 
[134] and some about somatosensory EPs [110], [135] – 
[139]. For a fundamental treatment of use of NN in the 
analysis of event related potential (ERP) see ref. [140]. 

Using EEG recordings several investigators have developed 
neural network based systems to assess the vigilance level of 
the subject under investigation [141] – [147]. In [147] a 
Levenberg-Marquardt (LM) multilayer perceptron (MLP) was 
used to classify EEG signals from 30 subjects for alertness 
(success rate 93.6%), drowsiness (96.6%) and sleep (90%) 
(the LM network has been reported to be performing poorer 
than the LVQ in [71]). The input to the MLP was obtained by 
spectral analysis of the EEG through a discrete wavelet 
transform (DWT). 

Analysis of maturation level of neonatal brains (28 to 112 
weeks after birth) has been determined using NN on the EEG 
[148]. NN was used on EEG of 131 children aged between 4 
and 16 years to detect possible abnormality in brain [149]. NN 
was applied on auditory EP of brainstem to detect hearing 
impairments in newborns [150]. Attention deficit hyper active 
(ADHA) disorder is a recognized problem in child psychiatry, 
in which NNs have been used on EEG to identify symptoms 
with good success [151], [152]. 

In certain neurological disorders EEG tends to be different 
from the normal. Tacitly using this fact NN based 
classification of disordered EEG with respect to the control 
has been achieved. This was done for headache and migraine 
[153] – [155], neuroophthalmological disorder [156], head 
injury [140], multiple sclerosis [39], [157], schizophrenia 
[158] – [163], Alzheimer disease [164] – [167], Parkinson’s 
disease [167], Huntington’s disease [162], [168] – [171], 

depression [161] and alcoholics [172], [173]. Probabilistic NN 
has also been used for EEG classification in [174] with 
moderate success and slightly poorer performance than SVM, 
but with much better performance in [175]. For some clinical 
applications of NN on EEG see section IV of [176]. 

MLP and EN have been used on EEG to determine the 
depth of anesthesia during surgery with 99% success for the 
EN [177] (for a survey of applications of NN on EEG during 
anesthesia see ref. [178]). EN has been shown to perform 
better on human visual evoked potential (VEP) than the k 
nearest neighbor (kNN) algorithm [179]. Continuous 
monitoring of brain state by means of NN application on EEG 
of the critically ill patients in the intensive care unit (ICU) has 
been reported in [12], [180]. Use of NN on EEG under the 
effects of drugs (sedatives) in order to classify the effects due 
to different drugs has been reported in [181], [182]. 
Classification of online scalp EEG by NN during three 
different mental tasks has been performed with 70% accuracy, 
but with only 5% mis-classification [183]. Convolutional NN 
has been used in BCI for classifying EEG during different 
activities with 95% accuracy [184]. 

V. FUZZY LOGIC 

Fuzzy logic based analysis of human scalp EEG started with 
the pioneering paper [8]. Fuzzy clustering and neuro-fuzzy 
techniques have remained the most notable methodologies in 
this regard. 

A. Fuzzy Clustering 

Cluster analysis is based on partitioning a collection of data 
points into a number of subgroups, where the objects inside a 
cluster (a subgroup) show a certain degree of closeness or 
similarity. Hard clustering assigns each data point (feature 
vector) to one and only one of the clusters, with a degree of 
membership equal to one, assuming well defined boundaries 
between the clusters. This model often does not reflect the 
description of real data, where boundaries between subgroups 
might be fuzzy, and where a more nuanced description of the 
object’s affinity to the specific cluster is required [10]. In case 
of human EEG this was first utilized in [8] (before this fuzzy 
clustering was applied on sleep EEG of chimpanzee [185]). An 
efficient human sleep EEG data classification has been 
reported in [10] by means of unsupervised fuzzy partition-
optimal number of classes (UFP-ONC), which is a 
combination of fuzzy k-means (FKM) algorithm [186] and 
fuzzy maximum likelihood estimation. This has been able to 
decompose the sleep EEG from a single subject into optimum 
number of distinct classes, which has been treated as a priori 
unknown [10], [187], [188]. 

A different fuzzy clustering algorithm was used in [189] for 
EP identification in low signal to noise ratio (SNR) EEG. In 
this FKM algorithm has been applied with the number of 
clusters determined by the criterion proposed in [190]. Trials 
with prominent (same) EP were grouped together using fuzzy 
clustering before being averaged for extraction of the EP. 
Single instances of EP have been reported to be classified up 
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to 95% accuracy. FKM clustering (also known as fuzzy c-
means clustering) was used in conjunction with an ANN to 
classify epileptic spikes (ES) in scalp EEG [191]. However the 
performance is not very impressive. 

Fuzzy if-then rule-based online classification of a single 
subject’s EEG signal during pain and no pain experiences has 
been reported in [192] with only 64% overall classification 
accuracy, which is slightly poorer than the corresponding 
hidden Markov model (HMM) classification studied on the 
same data set. A fuzzy classification technique for epilepsy 
risk level has been proposed in [193]. 

B. Neuro-Fuzzy Techniques 

Combination of NN and fuzzy logic gives a powerful soft 
computing methodology, which has been applied on human 
EEG with mixed success. In one of the first applications 
auditory evoked potential (AEP) from the EEG of a patient 
under anesthesia was analyzed by an NN. The output of the 
NN was utilized as input to a fuzzy if-then rule-based 
controller, which controlled the dosage of the anesthetic drug. 
The performance was graphically compared with a trained 
anesthetist during a real surgery [194]. 
 

 
Fig. 3. A simple adaptive neuro-fuzzy inference system (ANFIS) for infant 
sleep-wake stage classification. Taken from [195]. 

 
About 88.2% infant sleep-wake stage classification on the 

test EEG data has been achieved by ANFIS-based classifier 
[195] (Fig. 3). The architecture is in Fig. 3. Layer 1 is the 
fuzzification layer. X1, X2, and X3 are three of the input 
variables, each with two associated fuzzy concepts (Ai and Bi). 
Layer 2 generates all the possible rules of the form IF X1 is A1 
and X2 is B2 and X3 is A3, with a T-norm operator ( ), 
considering one fuzzy concept per input variable. The output 
of layer 2 is a strength parameter for each of the rules. Each 
node at layer 3 performs a linear combination of the rules and 
uses a sigmoidal function to determine the degree of belonging 
of the input pattern to each class (C1, C2, C3). In another study 
ANFIS classifiers were used on features extracted from EEG 

by wavelet transformations (WT) for classification pertaining 
to five different classes with a total accuracy of 98.68% [196]. 
WT on EEG followed by ANFIS could classify normal 
subjects from epileptic patients with 93.7% and 94.3% 
respectively, which is slightly higher than that achieved by an 
MLP [84]. WT followed by ANFIS has been used to analyze 
EEG pertaining to left and right hand movements [197], state 
of alertness [198]. Neuro-fuzzy NN has been used to 
determine the states of fatigue or alertness in drivers [199]. 
EEG feature extraction by Lyapunov exponent followed by 
ANFIS classification was used to detect changes in the signal 
[200]. A comparative study of neuro-fuzzy classifiers with 
some other classification methods is also available [201]. For a 
comprehensive treatment of the subject see ref. [202]. 

Combining adapted resonance theory (ART) NN with fuzzy 
logic, fuzzy ARTMAP NN was created [203], which has found 
several applications in human EEG processing [169], [204] – 
[208], often with classification success rate of 90% or above. 
Very recently a faster self-organizing fuzzy neural network has 
been applied in BCI with up to 70% processing time reduction 
[209].  

C. Other Fuzzy Systems 

After extracting features from EEG by DWT fuzzy SVM 
(FSVM) has been applied for the classification [210]. 
However FSVM is reported to have given poor results on 
classification of schizophrenic EEG from the control subjects 
[211].  Features extracted from EEG using wavelet packet 
have been sorted by fuzzy logic for optimum performance 
[212]. Fuzzy if-then rules have been used on features extracted 
by time frequency analysis of EEG in order to determine the 
depth of anesthesia on 22 patients [213]. Fuzzy rule based 
detection of α - band activity has been proposed in [214]. 
EEG based use of a fuzzy controller has been proposed to 
administer anesthesia in [215]. 

VI. EVOLUTIONARY COMPUTATION 

Signals in medicine, such as EEG, processing is subject to 
several important constraints. First, the number of signals to be 
processed is high, and often tightly interdependent. Second, 
signals are unique, in the sense that the circumstances under 
which they were obtained are normally not repeatable. Third, 
given the characteristics of their sources, medical signals are 
often very noisy. Finally, in some cases information about the 
signals is required in real time in order to take crucial 
decisions [216]. Genetic algorithm (GA) was applied on EEG 
during different mental tasks in order to classify them in task 
specific categories. The goal was achieved with 76% accuracy 
[25]. Genetic programming (GP) has been applied on human 
scalp EEG for epileptic pattern recognition [217] with success 
rate of 93% or more (in intracranial EEG seizure precursor 
features have been detected by GP in [218]). GP has been used 
for normal EEG classification in [219]. Epilepsy risk 
assessment with GA has been done in [220], [221]. 
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VII. STATISTICAL DISCRIMINATION 

Statistical discriminants are standard tools for classification 
of multidimensional patterns (for a general introduction see 
ref. [222]). Their need in human scalp EEG classification has 
long been felt [23]. Using them on scalp EEG, classification of 
dyslexia patients was performed in [223]. EEG of mild head 
injury patients was classified (with respect to a group of 
normal control subjects) by statistical discriminants with more 
that 90% accuracy in [224], [225]. [226] presents a review of 
classification of scalp EEG by discriminators in case of 
traumatic brain injury. Discriminants have been used to 
classify EEG belonging to subjects with neuropsychiatric 
disorders [227]. Unfortunately, very little detail is available of 
the discriminators implemented in [224] – [227]. 

Scalp EEG of normal human subjects has been classified 
during rapid serial visual presentation (RSVP) of ‘interesting’ 
and ‘uninteresting’ scenes by statistical discrminants [22], 
[228], [229]. Discriminant analysis has been performed in 
single trials on the weighted sum of all the scalp channels, 
where the optimum weight has been selected by fine tuning a 
logistic regression (LR) function (for a nice exposition of LR 
see ref. [230]) with the help of gradient descent method [22]. 
Then normalized projection of signal from each channel on 
this average is calculated. Intensity of this projection is used to 
classify signals between interesting (91.8% classification 
accuracy) and uninteresting scenes (98.3% classification 
accuracy) [228]. 

Although LR is more robust, it is a less efficient classifier 
and takes  more resources to compute compared to the normal 
statistical discriminators [231]. A study was undertaken to 
compare performance between Fisher’s discriminant (FD, see 
[232], [233] for description) and LR on the scalp EEG of three 
subjects (two male and one female, mean age thirty years, all 
of them left handed). They didn’t have any known 
neurological or vision disorder. The data was collected using 
256 channel Hydrocell Geodesic Sensor Net (Electrical 
Geodesics, Inc., Eugene, OR) during a series of RSVP tasks at 
a rate of 3 grey level satellite images per second [234]. The 
analysis was performed on single trials. LR turned out to be 
good in identifying target, but poor in identifying non-target 
data (Table 1). On the other hand FD was poor in identifying 
target data, but much better in identifying non-target data 
(Table 1). FD was also good in separating various pairs of 
target EEG data (see Table 2 for an example). The general 
conclusion was that there is no particular discriminator 
uniformly suitable for all types of EEG data. Different 
discriminators perform differently on different data sets [234]. 
FD was used on EEG after feature extraction by a combination 
of continuous WT and student t-statistic with the best 
classification accuracy in the 2003 BCI competition [235]. FD 
was used for random classification of EEG channels for BCI in 
[236] with a very moderate accuracy of 56.66%. A comparison 
of FD and two of its variants with SVM and k nearest neighbor 
(kNN) algorithm on EEG data before onset of finger 
movements appears in [237]. The outcomes are presented in 

Table 3. For a review of applications of linear discriminant 
analysis in BCI research see ref. [238]. 

 
 LR FD 

Target 0.9752 0.7601 
Non-target 0.5768 0.8770 
ROC area 0.9311 0.8700 

Table 1. Average performance of LR vis-à-vis FD on the EEG of three 
subjects during RSVP (3 images per second) of three different targets vs. non-
target. ROC area means the area under the receiver operator characteristic 
(ROC) curve. 

 
 LR FD 

Tank 0.6186 0.9858 
Truck 0.7623 0.9751 

ROC area 0.7067 0.9939 
Table 2. Average performance of LR vis-à-vis FD on the EEG of three 
subjects during RSVP (3 images per second) of target tank and target truck in 
different sessions (each consisting of about 300 trials) in each of which only 
one type of target images are mixed with non-target images roughly at 1: 4 
ratio. 

 

 
Table 3. Test set error ( ± std) for classification at 120ms before keystroke. 
›mc‹ refers to the 21 channels over (sensori) motor cortex, ›all‹ refers to all 27 
channels. RFD and SFD stand for regularized and sparse FD respectively. ch 
stands for channel. Reproduced from [237]. 

 
LR has been compared with NN on seizure EEG data [83]. 

Classification accuracy of two different MLPs has been 
reported to be more than 91% compared to 89% for the LR. 
Superior performance of NN over LR has been reported in 
[239], [240]. On an average LR had performed better on the 
single trial EEG than a conventional spatial pattern (CSP) 
based classifier [241]. 

A statistical discriminant was used to classify EEG signals 
belonging to schizophrenic patients for negative and positive 
features associated with the symptoms. 78% classification 
accuracy for schizophrenia was achieved on a test data set 
(disjoint from the training data) with 85% specificity [242]. 
Quadratic discriminant function was applied on EEG of 33 
subjects to classify among different tasks with 93% accuracy 
for the training data and 85% accuracy for the testing data 
[243].  

VIII. SUPPORT VECTOR MACHINE 

Despite greater difficulty in implementation and longer 
running time on test data compared to the NN and linear 
discriminants, SVM has become a popular classification 
algorithm for the EEG for its usually higher classification 
accuracy compared to the former. For an excellent tutorial on 
SVM see ref. [244]. The primary motivation behind SVM is to 
directly deal with the objective of generalization from training 
data to testing data with minimization of error and complexity 
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of the learning algorithm [25]. Table 3 shows superior 
performance of SVM on EEG data. A recent study on 
classification (vis-à-vis a human expert) of neonatal EEG of 
six infants has shown that SVM has outperformed the FD and 
NN (Fig. 4) [245]. 

 

 
Fig. 4. Six infants shown in abscissa. Performance measure is given by area 
under curve (AUC) of the ROC curve. FLD stands for Fisher’s linear 
discriminant. Reproduced from [245]. 

 
Artifacts such as, eye blink potential and electrocardiogram 

(ECG) have been removed from EEG using SVM [246]. A 
nonlinear SVM was applied to distinguish P300 EEG epochs 
from the other EEG signals during visualization of different 
words with 84.5% accuracy [247]. In another application on 
P300 based speller classification a self-supervised SVM has 
been applied to reduce the training efforts [248]. In [249] 
average P300 classification accuracy by SVM has been 
reported to be above 95%. Superior performance of SVM than 
linear discriminant analysis and k nearest neighbor classifier 
on the EEG of five subjects during limb and tongue 
movements has been reported in [250]. Better performance of 
SVM over PNN and multilayer PNN in EEG classification has 
been reported in [174]. 90% accuracy in EEG classification by 
SVM during left, right finger movements has been reported in 
[251]. SVM as part of ensemble classification for EEG has 
been considered in [252]. 

IX. BAYESIAN APPROACHES 

A. Source Localization 

If nJ  is an n-dimensional vector of cortical sources and 

pM  be a p-dimensional measurement of scalp EEG, where n 

and p are number of sources and number of channels 
respectively. Then by Bayes theorem 

 

 
)(

)()|(
)|(

p

nnp

pn
Mp

JpJMp
MJp = ,                        (1) 

 

where )|( BAp  is the conditional probability of event A, 

given event B. )( pMp  is constant. The configuration nJ  for 

which maximum of (1) will be achieved is the most probable 

source of pM . This is called maximum a posteriori (MAP) 

estimation [253], [254]. We can write 

))(exp(
1

)|( npn JU
Z

MJp −= , Z  is a normalization 

constant and U  is an ‘energy’ function. Taking logarithm and 

treating )( pMp  as a constant throughout, we can write 

)()()( 21 nnn JUJUJU λ+= , where λ  is a constant, and 

)(1 nJU  and )(2 nJU  are associated with )|( np JMp  

and )( nJp  respectively. npn GJMJU −=)(1 , where 

G  is a np×  mixing matrix made out of the head model of 

the subject. )()()(2 ntnsn JUJUJU += , where sU  and 

tU  are associated with spatial and temporal priors 

respectively. Five different algorithms were used in [253] to 
calculate the MAP in (1). In [254] Bayesian MAP has been 
used to estimate error in the reconstructed sources. Unlike 
[253], in [254] the prior has been modeled by chi-square 
distribution function. 

 

 
Fig. 5. Example of a source used in the simulations (top left) with the 
corresponding accurate location priors (top right), as well as inaccurate 
location priors (close, bottom left, and distant, bottom right). Reproduced 
from [258]. 

  
Bayesian model averaging has been applied for EEG source 

localization, which determined the posterior probability of the 
sources according to the best available model [255]. Repeated 
Bayesian estimation of maximum entropy of EEG has been 
used for the source localization [256]. A hybrid of two source 
models – equivalent current dipole (ECD) model and 
distributed source (DS) model has been proposed in [257]. 
Source reconstruction has been performed under suitable 
spatial and temporal constraints estimated by Bayesian 
method. EEG source reconstruction was done in [258] 
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according to both ECD and DS models by formulating the 
inverse problem as Bayesian inference, like in (1). The 
forward model was constructed by Markov chain Monte Carlo 
(MCMC) method. 

A general framework for Bayesian interpretation of brain 
images has been proposed in [259]. It has been applied for 
EEG source localization in [260]. Source localization has been 
performed with no prior, accurate prior, inaccurate prior, and a 
mixture of accurate and inaccurate prior. Results obtained on 
spherical head model with simulated data under different SNR 
and three different inverse methods subject to Bayesian 
expectation maximization. A result is shown in Fig. 5. 
Automatic selection of multiple cortical sources with compact 
support in a DS model has been achieved in [261] with a new 
application of [259]. In another application evoked and 
induced responses with respect to a stimulus has been 
reconstructed in the cortical surface from scalp EEG data 
[262]. Bayesian learning has been utilized to identify common 
sources of EEG and fMRI (functional Magnetic Resonance 
Imaging) in human subjects in [263]. 

B. Brain Computer Interface 

Bayesian NN was used on EEG to detect imagined finger 
movements in [264] with a typical accuracy of 75%. A real 
time BCI was designed with minimum training and using only 
one channel EEG data with 86.5 ±  6.9% classification 
accuracy for cursor movement task in [265]. The minimum 
training was possible under a Bayesian paradigm. A Bayesian 
inference scheme to predict continuous cursor movement has 
been proposed in [266], [267]. A dynamic Bayesian network 
(DBN) model has been used to predict the movement 
intention, where the DBN has learned from the EEG and EMG 
(electromyogram) [268]. 

 

 
Table 4. The Bayesian graphical network (BGN), neural network, Bayesian 
quadratic classifier, Fisher linear and hidden Markov model (HMM) are 
compared for classification of binary combinations of five mental tasks. The 
results in the table are averaged over ten different possible binary 
combinations of mental tasks. Reproduced from [269]. 

 
A comparative study among Bayesian graphical network, 

neural network, Bayesian quadratic, Fisher linear and hidden 
Markov model as classifiers of EEG for BCI applications has 
been presented in [269] (Table 4). BGN and Bayesian 
quadratic classifier seem to have performed better than others. 
Bayesian linear discriminant analysis has been applied for 
EEG classification in BCI in [270], with a superior 
performance than SVM and linear discriminant. 

C. Bayesian Classification 

There are two standard approaches to EEG classification – 
discriminative and generative. Bayesian classification falls 

under the generative class. For a nice overview see ref. [271]. 
In a generative approach, we define a model for generating 

data V  belonging to particular mental task },.......,1{ Cc∈  

in terms of a distribution )|( cVp . Here, V  will correspond 

to a time-series of multi-channel EEG recordings, possibly 
preprocessed. The class c  will be one of the mental tasks. For 

each class c , we train a separate model )|( cVp , with 

associated parameters cΘ , by maximizing the likelihood of 

the observed signals for that class. We then use Bayes rule to 

assign a novel test signal 
*V  to a certain class c  according 

to: 
)(

)()|(
)|(

*

*
*

Vp

cpcVp
Vcp = . That model c  with the 

highest posterior probability )|( *Vcp  is designated the 

predicted class [271]. 
 

 
Fig. 6. BCI system comprising LHMM  for left movement feature 

selection and RHMM  that for the right. Reproduced from [274].  

 
Input output Hidden Markov model (IOHMM, see ref. 

[272], and Fig. 7(d) for the architecture) based classification of 
EEG, which is a special case of Bayesian classification, has 
been applied in BCI [271]. IOHMM has performed better than 
HMM, Gaussian mixture model (GMM) and MLP with 
reduced classification error rate. HMM was applied on whole 
night EEG of nine subjects for sleep stage classification with 
accuracy ranging from 26% (rapid eye movement sleep) to 
86% (wake stage) [273]. To overcome the problem of 
nonstationarity in EEG signals HMM has been introduced, 
which then according to the scheme presented in Fig. 6 
determines if the movement intention is on left or right by 
evaluating the expression 

))|(),|(( RPLP HMMVPHMMVPMAX  [274]. The 

online classification rate occurring in four healthy subjects 
varied between 75% and 95% [275]. For theory and some 
applications of HMM see ref. [276], [277]. HMM on EEG was 
used to classify arousal and sleep states in [278]. Various 
HMM architectures have been shown in Fig. 7. A comparative 
study of their performances on human EEG data has been 
presented in [279]. HMM along with Principle Component 
Analysis (PCA) and SVM has been applied on EEG to classify 
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left right movement in [280]. 
 

 
Fig. 7. Various HMM architectures. The empty circles are the hidden states 
and the shaded ones are observation nodes, the lightly shaded ones (in d) are 
input nodes. (a) Standard coupled HMMs; (b) Event coupled HMMs; (c) 
Factorial HMMs; (d) Input-output HMM. Reproduced from [279].  

 
Kernel PCA and HMM are combined to identify mental 

fatigue features in EEG in [281] with a classification accuracy 
of 88%. The signal was collected during prolonged viewing at 
visual display terminal (VDT). HMM has also found 
applications in designing and validating seizure prediction 
algorithms [282]. 

X. CONCLUSION 

EEG signals are multidimensional, nonstationary (i.e., 
statistical properties are  not invariant in time), time domain 
biological signals, which are not reproducible. It is supposed 
to contain information about what is going on in the ensemble 
of excitatory pyramidal neuron level, at millisecond temporal 
resolution scale. Since scalp EEG contains considerable 
amount of noise and artifacts, and exactly where it is coming 
from is poorly determined, extracting information from it is 
extremely challenging. So far the two major paradigms used to 
understand scalp EEG are – segregation (classification, 
clustering etc) and integration (synchronization, coherence 
etc), both of which are computation intensive. The current 
explosion of interest in BCI, on the other hand, underscores 
the need of online processing. This is a compelling reason for 
the popularity of soft computing algorithms in human scalp 
EEG processing. 

The class of soft computing algorithms is not precisely 
defined. Any algorithm which employs inexact or approximate 
calculations may fall under this category. But for this paper by 
a soft computing algorithm we have understood any technique 
falling under one or more of the following categories: neural 
networks, fuzzy logic, evolutionary computation, statistical 
discrimination, support vector machine and Bayesian 
approaches. From a literature survey it appears that neural 
networks and Bayesian approaches are the two most popular 

choices. Linear statistical discriminants are easier to 
implement, but support vector machines give (many a times 
marginally) better classification accuracy. It is a choice 
between cost of implementation and significance of difference 
in performance. The popularity of fuzzy logic and genetic 
programming based techniques in human scalp EEG 
processing are yet to catch up with the remaining four. In 
general there is no ‘good’ or ‘bad’ technique in EEG 
processing. An ‘efficient’ technique is to be chosen depending 
on the data set and processing goal. In this sense, along with 
more ‘exact’ computing, the soft computing technique 
paradigms discussed in this paper constitute major human 
scalp EEG processing methodologies for the last three 
decades. 
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