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Abstract In this paper a novel architecture for cortical

computation has been proposed. This architecture is com-

posed of computing paths consisting of neurons and

synapses. These paths have been decomposed into lateral,

longitudinal and vertical components. Cortical computation

has then been decomposed into lateral computation (LaC),

longitudinal computation (LoC) and vertical computation

(VeC). It has been shown that various loop structures in the

cortical circuit play important roles in cortical computation

as well as in memory storage and retrieval, keeping in

conformity with the molecular basis of short and long term

memory. A new learning scheme for the brain has also

been proposed and how it is implemented within the pro-

posed architecture has been explained. A few mathematical

results about the architecture have been proposed, some of

which are without proof.

Keywords Cortical computation �
Cognitive computation � Dynamic core hypothesis

Introduction

The term ‘computation’ has traditionally been pertinent to

electronic computation only, which signifies the execution

of algorithms within the realm of the classical information

theory. To this date the most successful architecture as a

framework for this type of computation has been the von

Neumann architecture where the memory is accessed with

hierarchical ease but always remains separated from the

units of logical operations. The fastest accessible memory

is stored in registrar or cache and called the working

memory. On the contrary the general consensus among the

neuroscientists is that the memory does not reside con-

centrated in a specific location in the brain, but rather the

various forms of memories remain distributed over a wide

part of the brain, where particular cortical regions like

hippocampus and the limbic systems play crucial roles in

mediating them (Moscovitch et al. 2005). Despite this well

established paradigm for cortical computation a von Neu-

mann inspired architecture for cognitive computation

(Valiant 1995) has been proposed (Valiant 2000). In spite

of the elegant logical structure of this model working

memory cannot be treated as a unit separate from logical

operations in the nervous systems (for a neural basis of

memory see Kandel 2001). A more realistic architecture for

cortical computation called dynamic core hypothesis has

been proposed in Edelman and Tononi (1998, 2001).

According to this model varying subsets of sub-regions of

the brain are assigned and unassigned during the recol-

lection of conscious experiences. Valiant (2000) looks

mathematically more solid than neurobiologically sound.

On the other hand (Edelman and Tononi 2001) is biolog-

ically more solid than mathematically concrete. A more

efficient architecture for cortical computation should fall

somewhere in between these two. In this paper an ele-

mentary construction for such an architecture has been

proposed. Biologically the model is so elementary that

there is little scope for doubt about its validity. On the other

hand it has been shown how deep mathematical investi-

gations even this elementary model can warranty. Scope

for nontrivial mathematical investigations to establish

profound biological results have been outlined. Care has

been taken never to deviate too far from the cellular and

molecular neuroscience.
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The importance of feed forward and feed back paths in

neural information processing has been recognized

through numerous studies. This paper has greatly been

motivated by the survey presented in Engel et al. (2001)

and Mumford (1991), the former is from a neurophysio-

logical point of view and the latter from a computational

point of view with considerable neuroanatomical insight.

In case of the mammals information from the environ-

ment is collected through the sense organs on the body

surface and transmitted through thalamus to the cortex

where it gets processed hierarchically in various func-

tional regions (olfactory senses do not reach cortex

through thalamus (Mumford 1991)). This is called feed

forward or bottom up processing. During this modulation

of new information with old experience feed back signals

are generated and propagated from higher processing

regions to lower processing regions. This top down or

feed back signal then starts monitoring the bottom up

processing of information. In other words, past experience

or learned knowledge takes an important part in mediat-

ing the feed forward processing. The whole processing

then gets a structured form within the neural network of

the brain in which brain regions get selectively involved.

The information being processed can shift from one

structure to another within the duration of execution of

the task. This is the fundamental notion of dynamic core

hypothesis. Note that the ability to shift from one struc-

ture to another endows a capability of combinatorial

selection. This eventually enables a relatively small

number of structures to process a vast body of different

signals and produce very versatile outputs.

Apart from biological evidence existence of loops in the

cortex can also be inferred mathematically. Cortex is a

three dimensional structure. It has been proved in this

paper that if the formation of an information processing

line consisting of neurons and feed forward excitatory

synapses is considered to be a random walk then the line

will return to its initial position with a probability 0.2782.

This guarantees the formation of loop by a line with � 28%

chance. From a theoretical point of view strong backward

coupling was explored by Hopfield (1982). It has been

argued in this paper that the loop structures play a central

role in cortical information processing (also see Mumford

1991, 1992).

Loops have been identified as the most basic system

level computational units of the cortex (Mumford 1991,

1992). Multi-stage integration of processes going on in

different cortical areas may be a common strategy

throughout the cortex for producing complex behavior

(Zeki and Shipp 1988). Loops traversing through different

cortical areas and layers seem to be the most probable

anatomical candidates to perform such integration in a self-

sustaining manner. In the subsequent sections a simple but

general neural circuit architecture as collection of loops

will be described which resembles the circuit of the cortex.

In section ‘‘Horizontal computation’’ the horizontal com-

ponent of the architecture will be discussed. The vertical

component will be taken care of in section ‘‘Vertical

computation’’. Some aspects of memory and learning under

the light of the proposed architecture will be dealt in sec-

tion ‘‘Memory and Learning’’. A new scheme of cortical

learning, called critical set learning, has also been proposed

in this section. The paper will conclude with a section

devoted to discussions and future directions.

Horizontal computation

In this paper cortical computation has been divided into

lateral computation (LaC), longitudinal computation (LoC)

and vertical computation (VeC). Among them LaC and

LoC will constitute the horizontal component of cortical

computation and VeC the vertical component. The current

section will be devoted to horizontal computation. LaC is

the processing through the feed forward and feed back

paths from lower brain regions (such as thalamus) to the

higher brain regions (such as prefrontal cortex) and reverse

respectively (described by the columns in Fig. 1). LoC is

Fig. 1 Horizontal computation consisting of lateral computation

(LaC) and longitudinal computation (LoC). Big loops are components

of LaC and small loops are components of LoC. The total number of

Brodmann’s areas has deliberately been kept blank to allow for

flexibility. Synapses have not been shown. This figure should be

viewed in conjunction with Fig. 2
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the collection of feed forward and feed back processing

taking place among the cortical regions and within a

cortical region to locally influence the processing of

information (described by the rows of Fig. 1). There will

usually be multiple lines (consisting of excitatory neurons

pairwise joined with feed forward synapses) parallelly

processing information from thalamus to prefrontal cor-

tex. Several closely spaced parallel lines will make a

path. The neurons belonging to various lines within the

same path in a brain region may be interconnected with

excitatory and inhibitory synapses directly and/or through

local interneurons. Once the neurons in the LaC paths are

activated the local LoC paths across those LaC paths are

also activated. These LoC computations along the LaC

paths have profound effect on the over all LaC compu-

tation. LoCs are not necessarily confined within a

particular cortical region. They may span across several

cortical regions. The input to the LoC circuits together

with their anatomy and physiology mediate the LoC

computation. The LaC activates the higher brain regions,

which in turn sends feed back signals to the LoCs along

the LaC paths. The LoCs then take part in mediating the

LaC. This cycle of LaC driving LoC and LoC driving

LaC to self sustain the cycle can keep alive the internal

information processing within the brain long after the

cessation of outside stimulus. This not only plays a fun-

damental role in consciousness and cognition but also in

storage and retrieval of various forms of memory. Apart

from loops both LaC and LoC consist open ended paths.

However advantage of loops in neural information pro-

cessing over the open ended paths has been shown in

Lemmas 2.1 and 2.2 below. It is worthy to note that in a

loop where all neurons are connected by feed forward

excitatory synapses exciting any one nerve cell will

activate the whole loop, provided each presynaptic neuron

can make the postsynaptic neuron fire (this will be

assumed to be valid in this paper).

Definition 2.1 A big loop will mean a cyclic brain circuit

consisting of a longest feed forward path from the thalamus

to the highest processing brain region and a feed back path

from that region on or close to the thalamus (for an

excellent review of the thalamocortical loops see Mumford

1991).

All input to the cortex, except for the olfactory sense,

comes to it via thalamus (Mumford 1991) and therefore the

big loops are the fundamental architectural units for the

LaC. On the other hand LoC consists of smaller loop

structures either within a region or spanning across several

regions. If an area A projects to another area B then B also

projects to A (Mumford 1992). The existence of local

collaterals is a major feature of the output pyramidal cells

of the cortex. It allows the cortex to carry on local

calculations indefinitely without further stimulation

(Mumford 1992). If those collaterals form cyclical con-

nections (possibly through excitatory interneurons) then the

following results will convince us about their ability to self

sustain. The cycles of Lemma 2.2 below are LoC cycles.

Lemmas 2.1, 2.2 and Theorem 3.1 have been taken from

Majumdar (2007a).

Lemma 2.1 A cycle with k nodes (neurons) in the

directed graph of the brain circuit can be activated with

greater probability than a linear path or line with the same

number of nodes.

Proof In a directed cycle if any neuron is activated the

signal will propagate to all the other nodes cyclically and

they will become activated in turn. Whereas to activate all

the nodes in a line the first node must have to be activated.

So if any neuron in the cycle can be activated with prob-

ability p the whole cycle will be activated with probability

p, whereas the whole line will have activation probability p
k

only. h

Lemma 2.2 Cycles in brain circuit can amplify signal.

Proof Let a signal or an action potential of frequency I (in

case of a firing neuron frequency signifies intensity, so I is

also intensity of the signal) is reaching the jth node of a

cycle (n1,…,nj,…,nk), where nk+1 = n1. If a signal takes

time T on an average to travel from one node to the next,

and the incoming signal to nj is still reaching the node after

(k - 1)T time, then the total dendritic input to nj becomes

I + I0, where I0 has been received through the feed back

loop. If nj is not already firing at the highest frequency the

input I + I0 will make it fire at higher frequency than did

I. h

Theorem 2.1 (Contrast and amplify principle): During

the bottom up journey signal travels from sensory neurons

to the highest processing brain area by contrast and

amplify principle.

Proof Sensory inputs are carried by parallel LaC lines

in the brain circuit from the thalamus and other input

areas to the highest processing brain regions as shown

in the schematic diagram of Fig. 1. Any two of the

parallel lines are short circuited by both excitatory and

inhibitory interneurons. At the very beginning all the

parallel lines carry signals from inputs according to the

structure available at that instant, i.e., all the lines are

active and between any pair of them excitatory and

inhibitory interneurons are active or inactive without

any control from the higher order brain regions. Once

the signals reach in those regions ‘an activity pattern

emerges based on memory of past experience,’ (this part

has been explained following the proof) which is the

expected pattern and it in turn starts controlling the
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interneurons (through feed back lines) by selectively

short circuiting the pair wise parallel lines. A bunch of

closely spaced lines short circuited mostly by excitatory

interneurons work as a single path (in this theorem a

path may be thought of as a collection of lines, see

Fig. 1) and two such groups of paths short circuited

mostly by inhibitory interneurons work as different

paths (not shown in the Fig. 1). This way some infor-

mation which are flowing through the same path are

processed together as a cluster and two clusters become

distinguished, because they are information carried by

different paths. In the process the whole sensory input is

decomposed by contrast.

Next, take a LaC path as a collection of parallel lines in

the brain circuit, which are pair wise short circuited mostly

by excitatory interneurons. These short circuiting excit-

atory interneurons when form (directed) LoC cycles can

enhance the signal passing through it according to Lemma

2.2. By the argument of Lemma 2.1 the signal enhance-

ment will be more if T is small, such as if most of the edges

of the cycle are electrical synapses, k is small and I0 is large

(ideally close to I). h

Question 2.1 How ‘an activity pattern emerges based on

memory of past experience,’ as claimed in the proof of

Theorem 2.1?

Answer Well, as a LaC path reaches a higher pro-

cessing region like the hippocampal formation or the

prefrontal cortex it gets access to neurons with more

diverse connections and greater processing power. Let A

and B be two LaC paths as collections of LaC lines

(recall that in Fig. 1 each vertical line is a LaC line and

their collection is a LaC path). u be a neuron in the

hippocampal formation connected to all LaC lines

belonging to A (presynaptically by dendritic arbor) and B

(postsynaptically by axonal branching) which will fire if

at least k presynaptic neurons fire. Now if sensory

information coming through thalamus activates k or more

LaC paths of A then the probability that B will also be

activated is
Pr

j¼k
r!

j!ðr�jÞ! p
j
0ð1� p0Þr�j

, where p0 is the

probability of firing a presynaptic neuron to u and r is

the number of activated LaC lines in A. To increase the

chance of activating B several u will be needed. The

higher is the number of u the greater will be the success

of activating B through A. The pattern consisting of A

and B connected through the class of neurons u pro-

cesses a given set of inputs in a specified way giving

rise to a particular activity pattern, which is shaped by

how u neurons (to connect A with B) have been recruited

based on past experience. h

In the answer to the above question u may be treated

as a class of neurons. Some cells in the class are most

likely from the hippocampus. In this sense taking p0 as a

constant is an over simplification, although this is the

predominant trend (Valiant 2005). p0 should ideally be a

spatiotemporal function which can probably be modeled

suitably by an appropriate wavelet function. That func-

tion in general will represent the spatiotemporal structure

of synaptic plasticity in the areas of interest within the

brain.

Vertical computation

Cortex is organized in six layers. Each cortical column of

diameter about 0.5 mm and height 2 mm is the smallest

computing unit of the cortex. In mammalian brain the

neocortex is the region where most of the higher order

neural computations take place. The neocortex receives

input from the thalamus, from other cortical regions on

both sides of the brain and from a variety of other

sources. The output of the neocortex is also directed to

several brain regions, including other regions of the

neocortex on both sides of the brain, the basal ganglia,

the thalamus, the pontine nuclei and the spinal cord.

Different inputs to the neocortex appear to be processed

in different ways and the outputs of the neocortex arise

from different populations of neurons. The layering of

neurons provides an efficient means of organizing the

input–output relationships of the neocortical neurons

(Kandel et al. 2000). The information flow within and

among cortical columns has been schematically shown in

Fig. 2 (drawn after Figure 17-9 of Kandel et al. 2000,

which signifies information flow in visual cortex). The

cellular organization of cortical columns (which is not

uniform across the cortex) has been described, e.g. in

Kandel et al. (2000, p. 327).

In the 3D architecture the horizontal computation and

the vertical computation are carried out in an intertwined

manner. For example, in the visual cortex feed forward

LaC computation from primary visual cortex to secondary

and tertiary visual areas starts in layer 3 and terminates

mainly in layer 4. Feed back LaC computation on the other

hand typically originates in cells in layers 5 and 6 and

terminate in layers 1, 2 and 6 (Kandel et al. 2000). Simi-

larly LoCs also span across layers and not just remain

confined within a single layer as initially appeared in

Fig. 1.

In order to appreciate the 3D architecture of cortical

computation Figs. 1 and 2 are to be viewed together.

Layers 2 though 6 of Fig. 2 (when the columns are

assembled together to form the whole cortex) are of the

form of Fig. 1. Layer 1 does not contain any neuron, only

dendrites and therefore takes part in communication, but
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not in direct computation (in this paper it has been

assumed that cortical computation is performed by firing

neurons only). A neuron always remains fixed in a par-

ticular layer of Fig. 2, but dendrites and axons as

horizontal and vertical lines of Fig. 1 traverse freely from

layer to layer of Fig. 2. We are now in a position to state

the following

Theorem 3.1 At most 27.82% of the cortical lines would

loop around for feed back information processing in the

cortex. If output of the thalamus is taken as the input to the

cortex and cortical feed back has to regulate the infor-

mation flow through the thalamus then the same is true for

the thalamocortical circuit as well.

Proof The digraph of the cortex or the cortical circuit

consisting of neurons and synapses start evolving in the

womb and continues throughout the life through cortical

rewiring. Due to the enormous packing density of neurons

in the mammalian cortex (in the human cortex it is of the

order of 104 neurons/mm3, because the total surface area of

human cortex is 2500 cm2 (Peters and Jones 1984), max-

imum thickness is 3.2 mm (Fischl and Dale 2000) and the

number of neurons in it is of the order of 1010 (Koch 1999)

the development of cortical lines through growth of new

synapses may be modeled as a symmetric random walk in

R 9 R 9 Z6. Cortex has six distinct layers. If all the syn-

apses are excitatory then the following argument assures

that a cortical line will loop around with probability

0.2782.

In a symmetric random walk (Feller 1968) let un be the

probability that the nth random step leads to the initial

position. Let fn be the probability that the nth step takes the

walk back to the initial position for the first time. Clearly,

f0 = 0 and u0 = 1. Let f ¼
P1

n¼0 fn: Since the walk can

return to its starting point with a probability in [0, 1], f B 1.

We want to prove that for a symmetric random walk in

R 9 R 9 Z6 f = 0.2782.

If the walk is to return to its starting point at the nth step,

it can do so by reaching the starting point for the first time

at the first step and then again revisiting it at the (n - 1)th

step after that. Or, it can do so by coming back to the

starting point for the first time at the second step and then

revisiting it after (n – 2)th step. Or, in general coming back

to the starting point at the rth step for the first time and then

revisiting it in the (n – r)th step. So

un ¼
Xn

r¼1

frun�r: ð3:1Þ

Let us define UðsÞ ¼
P1

i¼0 uis
i and FðsÞ ¼

P1
i¼1 fis

i as two

generating functions. In the right hand side of (3.1) is the

convolution fr*ur with the generating function F(s)U(s).

However on the left of (3.1) u0 is missing. So from (3.1) we get

UðsÞ ¼ 1

1� FðsÞ : ð3:2Þ

X1

n¼0

un ¼
1

1� f
: ð3:3Þ

So in order to show that a symmetric random walk in

R 9 R 9 Z6 sooner or later forms a loop with probability f

we need to find
P1

n¼0 un.

If R 9 R 9 Z6 is denoted by X, Y and Z coordinates

then the return to the initial position will be possible if and

only if the number of steps in positive and negative X

directions are equal and also the number of steps in positive

and negative Y and Z directions are equal respectively.

This implies un = 0 if n is odd. Since the walk is

symmetric the probability of moving to positive X

direction = probability of moving to negative X direc-

tion = probability of moving to positive Y

direction = probability of moving to negative Y direc-

tion = probability of moving to positive Z

direction = probability of moving to negative Z direc-

tion = 1
6
. So

Fig. 2 Vertical computation (VeC) in cortical columns, which

signifies information processing across all the six layers of the

cortex (drawn after Figure 17-9 of Kandel et al. 2000). It should be

viewed in conjunction with Fig. 1 because this figure signifies the

passage of horizontal and vertical lines of Fig. 1 trough the layers of

1 through 6 in which neurons of each Brodmann’s area are

organized
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u2n ¼
1

62n

X

iþ jþ k ¼ n
k 2 0; . . .; 5f g

2nð Þ!
i!ð Þ2 j!ð Þ2 k!ð Þ2

: ð3:4Þ

Applying Stirling’s formula and the fact that

Pn
k¼0

n

k

 !2

¼
2n

n

 !

; we get

(3.3) and (3.5) with the facts that u0 = 1, and un = 0

whenever n is odd, give f = 0.2782. It is enough to

calculate for up to n = 100 for all the practical purposes,

because after that all the terms in (3.5) become too

insignificant. h

Since many of the cortical synapses are inhibitory the

actual amount of cortical lines looping around would be

less than 28%. This actually leaves a larger scope of choice

for the loop formation (100CK [ 100C28, where K \ 28)

among the cortical paths and therefore formation of loops

under the influence of genes and environment becomes an

overwhelmingly important prerequisite for cortical devel-

opment. Relatively low occurrence of loops in the cortex

has also been supported anatomically (Fig. 4 in Zeki and

Shipp 1988, where it has been observed—most connections

between areas in the cortex appear to be reciprocal, but

within an area the distributions of the forward and back-

ward components do not precisely coincide).

Apart from the random walk argument, which gives a

way to mathematically prove the existence of cortical loops,

arguments based on the notion of computational complexity

also leads to existence of cortical loops for the ‘efficient’

processing of visual information (Tsotsos 1989, 1990).

Visual search is a basic operation for any visual information

processing. It has been shown in Tsotsos (1989) that the

stimulus driven search alone is an NP-complete problem

and it has been argued in Tsotsos (1990) that to make the

visual search task tractable it must also have to be goal

driven. This implies the existence of loops consisting of

feed forward (for the stimulus driven part) and feed back

(for the goal driven part) lines. It has been inferred in

Tsotsos (1989, 1990) without proof that the same holds true

for other sensory information processing also.

One remarkable aspect of the contrast and amplify

principle is clearly differentiating biological neural net-

works (BNN) from the artificial neural networks (ANN). In

an ANN the boundary of a pattern is traced with the help of

a finite number of points (determined by the number of

input nodes) and an interpolation function (determined by

the synaptic weights). On the other hand BNN traces a

pattern from the interior with the help of contrast principle

and amplify that for a definite recognition. If for example, a

visual pattern is decomposed into topologically connected

components, closely spaced retinal ganglion cells would

receive light rays from a given component which will be

carried through closely spaced LaC lines to the higher

processing cortical areas. More generally the following:

Theorem 3.2 The LaC, LoC and VeC processing of a

visual pattern preserves the topological structure.

Proof Photon is reaching on every cell in retina from a

wide area of the visual scene (assuming it as a two

dimensional frame, the argument in this proof is valid for

single retinal processing only, it is not valid for simulta-

neous processing by two retinas). If Ri,j is a retinal cell

located on a concave spherical surface receiving photons

from area Si,j on the Euclidean plane of the visual surface,

we can call Si,j the receptive field of Ri,j. i,j are integers.

Clearly Siþm;jþn \ Si;j 6¼ / (the null set) when m, n are

small integers and I ¼ [i;j Si;j; where J signifies the whole

visual scene. In fact each Si,j has a very vaguely defined

boundary and therefore we can assume it to be an open set.

Then the collection of Si,j’s forms an open basis for the

relative topology on J as a subspace of the Euclidean

plane. As soon as a class of Ri,j is activated by the photons

coming from J a collection of LaC paths and along with

them associated LoC and VeC paths are also activated.

Now consider the processing in a single LaC line. Inside

the line the signal received from Si,j is being transmitted

from one membrane patch to the next through neurotrans-

mitter filled vesicles (from a neuronal membrane to a

presynaptic membrane and then from the postsynaptic

membrane to the next neuronal membrane and so on). Each

of these membrane patches has again a very vaguely

X1

n¼0

u2n � u0 þ
1

p

X1

n¼1

2

3

� �2n
1

n
þ 1

4p

X1

n¼1

2

3

� �2n

nþ 1

4 � 16p

X1

n¼1

2

3

� �2n

nðn� 1Þ2 þ 1

36 � 64p

X1

n¼1

2

3

� �2n

nðn� 1Þ2ðn� 2Þ2

þ 1

576 � 256p

X1

n¼1

2

3

� �2n

nðn� 1Þ2ðn� 2Þ2ðn� 3Þ2 þ 1

14400 � 1024p

X1

n¼1

2

3

� �2n

nðn� 1Þ2ðn� 2Þ2ðn� 3Þ2ðn� 4Þ2:

ð3:5Þ
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defined boundary. In fact if a neuron or a synapse is taken

as enclosed by a smooth closed surface then they have no

boundary at all! So each membrane patch can be taken as

an open set. Then the LaC processing always maps an open

set onto another open set. LoC and VeC processing are to

support LaC processing only and they too process infor-

mation in the same membrane to membrane manner.

Therefore the whole information processing from each Si,j

under the LOVE architecture is an open mapping. Note that

each neuron is disjoint from any other neuron so is each

synapse. But when two synapses sp and sq belonging to the

same functional area in the cortex are processing informa-

tion from the same Si,j the output of sp and sq also largely

overlap. The same is the case for two neurons in the same

functional area of the cortex. This means that although

neurons and synapses are discrete entities outputs of their

information processing as membrane devices together form

a continuous sheet like structure just like the (two

dimensional) visual scene itself.

Now different cortical regions process different aspects

like motion, form, color, etc of Si,j. So multiple sheet like

copies of Si,j are made and they are processed in a

distributed manner in different regions of the cortex for

various aspects. Apparently it looks like destroying the one

to one correspondence with Si,j, but it does not. Because Si,j

itself is a superposition of multiple copies, some are for

form, some other are for color and if eye balls are to be

moved to keep track of it then its various copies at different

positions of the eye balls are to be processed for motion,

etc. If this is accepted then there is of course a one to one

correspondence between Si,j and the collection of its copies

in the cortex.

At the time of bottom up processing very little

information from each Si,j, if at all, reaches up to the

highest processing areas of the cortex. During the top down

processing an even smaller subset is chosen for the final

processing. Which information would be accepted for

processing during the bottom up and top down pass is

determined by genetic make up and past experience. But

once the choice is made the processing is performed in loop

(within the LOVE architecture) and this means if the

information flow during the bottom up processing is

denoted by the function f then the flow during top down

processing can be denoted by another function g-1. We

have seen that both of them are one to one correspondence

and both are open mapping. So also is g-1f.

To complete the proof we only need to show g-1f is

continuous. Let x; y 2 J and jx� yj\e; where |.| denotes

the Euclidean norm and e [ 0: Either both of x,y are in

same Si,j for some i,j or they belong to different Si,j’s. In

any case when e is small the signal from x and y are going

to be processed either in a single LaC line or closely spaced

cortical lines (both LaC, LoC and VeC) for each of the

features (color, motion, form etc) processing. So there is a

d[ 0 such that g�1f ðxÞ � g�1f ðyÞ
�
�

�
�\d: This completes

the proof. h

This is however unlikely to be true for the auditory sig-

nals i.e., signals from spatially disconnected sources may be

mapped to a connected region of the cortex. Anyway The-

orem 3.2 in conjunction with Theorem 2.1 asserts that in

case of a visual pattern a topologically connected region

within the pattern in the environment would be processed as

a connected region in the brain by a collection of closely

contiguous LaC lines i.e., a single LaC path.

So the pattern recognition by BNN is not by approxi-

mating the boundary contour (hyper-surface) with

piecewise line (or hyper-plane) segments like in ANN, but

simply by selecting the appropriate collections of LaC lines

i.e., by choosing the right LaC paths. Although there are

considerable theoretical (Tsotsos 1989, 1990) evidence for

the validity of the following Theorem 3.3, under the light

of the above arguments it needs a rigorous proof which will

be omitted in this paper.

Theorem 3.3 Visual pattern recognition in the BNNs is

computationally more efficient (performed in linear time)

than the same by the ANNs.

Cortical computation as a combination of LaC, LoC and

VeC can be termed as LOVE and let us call the architecture

shown in Figs. 1 and 2 as the LOVE architecture.

Memory and learning

Both long term and short term memory reside within the

cortex as a 3D mesh of dendrites, neurons and axons i.e., in

the LaC, LoC and VeC paths. A particular memory in a

network depends on

(1) the exact geometrical (or architectural) structure of

the network, and

(2) the exact level of neurotransmitters/neuromodulators

in that network.

The above two conditions along with a third one,

(3) the types of nerve cells involved,

are also the precise conditions for computation by the

network. In the LOVE architecture the third condition has

been taken care of by the functional areas of the cortex (say

according to the classification of Brodmann), the second

one is a functional aspect and falls outside the purview of

the network architecture (functional stability has been dealt

in Majumdar 2007a, b). For the first condition it has been

shown in the previous two sections how the cortex can be

described in terms of the LOVE architecture.
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(1) Ensures the geometry of dendritic arbor and (2)

ensures given an input how ‘smoothly’ it would be carried

to the neuron through the arbor. Therefore (1) and (2)

together ensure a very specific activity level for the neurons

present in the network with respect to a given input. This

will lead to recreation of a cognitive experience (created

earlier by that particular input) of the network (memory

recall). When the stimuli from the environment reach the

thalamus they activate all the LaC paths they encounter. In

fact if the inputs to the LaC paths (meant to process a

particular type of sensory stimulus) at a particular instance

are assumed to be organized on a two dimensional

Euclidean plane the stimuli will draw a photographic image

on that plane (the so called self organizing map (Kohonen

1990)). In a geometric sense this is true not only for visual

stimulus but also for all other forms of sensory stimuli. In

this image each (noticed) feature of the external environ-

ment would have a unique representation in the brain.

Organization of some of the features (if not all) will acti-

vate a set of LaC paths, which in turn will activate specific

nerve cells through which a whole lot of other LaC paths

will be activated as described in the previous sections

(elaborated in Fig. 3 and further described in the current

section). Along with the LaC paths appropriate LoC and

VeC paths will also be activated as described before. Very

quick sequential activations of the neural networks in the

brain like this may lead to recall of a whole experience

from a fraction of the stimuli which took part in creating

the experience initially.

Definition 4.1 Let D be a data set. Critical set learning of

D is learning the whole of D by a smallest subset S of D. S

is called the critical set.

This means if D can be learned by a chain of proper

subsets S1 � S2 � . . . � D then D can also be learned by

S ¼ \iSi; where S is the critical set.

Conjecture 4.1 Given a LaC path and a learning by that

path, almost always there is a minimum collection of LaC

lines within that path, activating which after the learning

will activate the whole LaC path involved in the initial

learning. In other words cortical learning is almost always

a critical set learning.

Learning by a LaC path signifies the neurons within that

path will produce exactly the same spike trains in response

to the same stimulus (this is a simplified assumption

however, for even when a neuron is oscillating below

threshold for spike initiation, it can still release neuro-

transmitter and shape the final circuit output Harris-

Warrick and Marder 1991). ‘Almost always’ means here

the collection of events for which the assertion does not

hold has measure zero. Event here means a point in the

pseudometric space (R2r+1,d) defined in Majumdar (2007a),

where R2r+1 is the 2r + 1 dimensional real linear space and

d is the pseudometric defined on it by (3.5) in Majumdar

(2007a). In everyday language this means in the vast

majority of cases a previously known object is recognized

by our brain even when the object is exposed partially. This

is true as long as the signal reaching the sensory neurons

are enough to activate the critical sets in the LaC paths

which were used to learn the object initially. This issue was

addressed by Hopfield from a different but equivalent point

of view (Hopfield 1982). I shall return to a specific example

of crtical set learning under the LOVE architecture later in

this section.

But how that experience of learning got to be stored in

the network in the first place? A succinct answer to this

question can be given by quoting the synaptic plasticity

and memory hypothesis as enunciated in Martin et al.

(2000), ‘‘Activity-dependent synaptic plasticity is induced

at appropriate synapses during memory formation and is

both necessary and sufficient for the information storage

underlying the type of memory mediated by the brain area

in which that plasticity is observed.’’ To elaborate it under

the LOVE architecture let us note that once a stimulus is

presented before a sensory organ and if its signal is carried

through a LaC path in the cortex it will propagate by the

paired pulse facilitation (PPF) (a good description of PPF

can be found in Chapter 13 of Koch 1999). The duration of

Fig. 3 A typical interaction of a collection of looping LaC lines with

a looping LoC line (another LoC line is not looping and therefore is

not a cycle) spanning across some of the higher processing areas of

the cortex, such as hippocampal formation and prefrontal cortex. The

lighter lines indicate synaptic connections to be strengthened

according to the Hebbian rule
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PPF is of the order of 100 ms. While some synaptic

facilitation is induced in the network, consisting of LaC,

LoC and VeC paths, after a single stimulus, the degree of

facilitation increases with the number of stimuli. As the

number and frequency of stimuli increase, another form of

potentiation, augmentation is induced. Further stimulation

brings into play a third form, termed posttetanic potentia-

tion (PTP) (Koch 1999). The duration of augmentation is of

the order of 10 s, while the duration of PTP is of the order

of minutes. Since facilitation increases the probability of

release of neurotransmitter the more number of LaC lines

are activated the greater is the chance of reaching the signal

up to the higher processing areas of the cortex such as the

prefrontal cortex, where decisions are made or the hippo-

campus which mediates the storage of long term

declarative memory or the amygdala which mediates

emotion. PPF, augmentation and PTP can be described by

the following equation (Koch 1999)

pðtÞ ¼ p0 þ ðpf � p0Þ exp
�t

sf

� �

; ð4:1Þ

where p(t) is the probability of (neurotransmitter) release at

time t (0 B t B sf), p0 and pf are respectively probabilities

of release before and after facilitation, sf is the

characteristic decay time. (4.1) represents PPF when sf is

of the order of 100 ms, augmentation when sf is of the

order of 10 s, and PTP when sf is of the order of minutes.

Note that (4.1) gives an experimental opportunity to

compute p0 and pf from p(t) at different t. Putting the

value of p0 in

pA;B ¼
Xr

j¼k

r!

j!ðr � jÞ! pj
0ð1� p0Þr�j; ð4:2Þ

we get pA,B which is the association probability between A

and B as described in the answer to question 2.1.

A LaC path A activated by signals from environmental

stimulus activates another LaC path B in the cortex with

probability pA,B. If such activation happens in a LoC cycle

(Fig. 3) in higher cortical processing regions, consisting of

excitatory feed forward synapses then several LaC paths

may become active just by the PPF and/or augmentation

and/or PTP generated in a single LaC path (say A) directly

by the environmental stimulus (Note that in Fig. 3 all this

have been shown by LaC lines only, which needs to be

generalized for LaC paths). In other words the cognitive

computation in A may invoke a whole bunch of other paths

distributed over a large network in the cortex. Since a loop

can self-sustain by propagation of feed forward and feed

back signals even a transient stimulus to A, if strong

enough, will be able to keep circulating the flow of PTP

through the LaC, LoC and VeC paths (since VeC goes on

in conjunction with LaC and LoC it will be kept tacit in

most of the discussions) of a large network to keep it active

even long after the cessation of the environmental stimulus.

This whole activity manifests as short term or working

memory. To this if activities of motor neurons are also

added we get cognition.

For preserving long term memory anatomical change in

the brain is necessary through formation of new synapses.

Formation of new synapses needs synthesis of new pro-

teins, which in turn needs activation of specific genes in the

chromosome of the nerve cells. From a LOVE architectural

point of view the significance of formation of new synapses

to preserve long term memory can be summarized in

Fig. 3. In this figure the LaC lines (and hence also the LaC

paths) have been classified into two distinct classes—one

which takes input directly from the environment will be

called Type I LaC and the other which does not take input

directly from the environment will be called Type II LaC.

The input taken through Type I LaCs are transmitted from

lower processing areas of the brain (say thalamus) to the

higher processing areas such as the hippocampal formation

or the prefrontal cortex. Type II LaCs are connected to

Type I LaCs by ordinary synaptic connections as well as

through the LoC loops spanning across the higher pro-

cessing regions as shown in Fig. 3. Type I LaCs activate

the appropriate LoC loops, which in turn activate the Type

II LaCs. Activated Type II LaCs by self-sustained loop

systems keep on processing the environmental stimulus

even after the cessation of the stimulus itself in the envi-

ronment. This in turn necessitates formation of new

synapses between pairs of neurons from Type I LaCs and

Type II LaCs (shown in light lines in Fig. 3). Both the

neurons are excitatory and synaptic joints are shown in

light lines to indicate they are either in the formation stage

or about to be strengthened by Hebbian rule. Formation of

new synapses in the nervous system of Aplysia as a con-

sequence of new learning has been stated in Kandel (2001).

Formation of new synapses in response to bursts of syn-

aptic stimulation in the mammalian cortex has been

described in Trachtenberg et al. (2002).

Type I LaCs are always dedicated to receive inputs

directly from the environment and therefore must be set

free for that task leaving the back ground processing of the

already acquired information to the Type II LaCs. A Type I

and a Type II LaC are connected through ordinary synapses

as well as through the LoCs spanning through the higher

processing regions of the cortex (such as hippocampus) as

shown in Fig. 3. When Type I LaCs activate Type II LaCs

through the higher processing region LoCs the other syn-

apses connecting the neurons of Type I LaCs with those of

the Type II LaCs get strengthened by Hebbian rule,

because the neurons on either end of each of them have

been activated along with the respective LaC lines they are

situated in. This needs synthesis of new proteins (for detail
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see Kandel 2001) and may take hours to days to complete

the formation of new synapses and augmenting their

strength. Spontaneous firing of hippocampal pyramidal

neurons may help to keep the LoCs active, which in turn

keep the LaCs active. During this process back ground

processing of the environmental stimuli keep continuing in

the Type II LaCs leading to activation of specific genes,

synthesis of new proteins and formation of new synapses.

This is the key to converting the short term memory into

the long term memory. Once this is done stimuli through

Type I LaCs can activate the Type II LaCs without the

involvement of higher processing region LoCs. Since hip-

pocampus may play an important role to keep higher

processing region LoCs active, this may be the reason why

hippocampus is not so much needed to recall the already

formed declarative memory as it is needed to form them

initially.

Notice that Type I LaCs are to be made free for

accepting subsequent inputs. When the new set of inputs

arrive they too are likely to reach the Type II LaCs who are

busy in processing the previous inputs. This means the

Type II LaCs will have to be perturbed before the short

term memory in them can be converted into long term

memory. If this is true then formation of long term memory

would be very difficult and for most of the stimuli no long

term memory would have been preserved. This apparent

contradiction is resolved through combinatorial assembly

of LaC lines in a LaC path and the same for LoC lines in a

LoC path. At a given time signal will be processed in a

given LaC line in a particular manner. It would have a

particular interpretation depending on which particular

assembly of LaC and LoC lines it is being considered a part

of. This is the essence of the dynamic core hypothesis.

Some of these combinatorial assemblies of the LaC and the

LoC lines within the LaC and the LoC paths respectively

are genetically rewired, others are rewired through inter-

actions with the environment after birth. Defective genetic

rewiring may be a cause of mental retardation. The com-

binatorial assemblies of the LaC and the LoC lines within

the LaC and the LoC paths respectively warranty a rather

elaborate mathematical study, which would be taken up in

future papers.

In Fig. 4 an example of critical set learning within the

LOVE architecture has been elaborated. Signal from a

particular stimulus, say S, has been received and sent to

cortex via the thalamus through the Type I LaC path shown

in the Fig. 4. Some features of S may have appealed more

to the individual cortex depending on the memory of past

experiences and emotion (such as lips and eyes in a whole

face) and accordingly those feature can send stronger sig-

nals than the others and they use a subset of the LaC

looping lines within the LaC path as shown in Fig. 4. This

subset has been called the critical set in this paper. When

the signal reaches the hoppocampal LoCs through the

critical set of LaC looping lines, the signal is able to

activate a set of pyramidal neurons there which are con-

nected in a loop often with the ability that whenever only

one presynaptic neuron fires, the postsynaptic one also

fires. This in turn activates the hippocampal LoC looping

path leading to activation of the Type II LaC path used to

preserve the memory of S (this memory may typically

include some other features of S along with the context and

environment in which it was presented, albeit relatively

faintly). The combination of connections among the pre-

synaptic and postsynaptic neurons across the LaC looping

lines of the LaC paths has not been shown in Fig. 4. It is

this connections which are crucial for activating the whole

LaC path by making only a few neurons fire. The minimal

input which can activate the appropriate LaC and LoC

paths to recall the memory of S can be termed as critical

input.

It is clear that the critical set with respect to a stimulus

will be very individual specific. It will also depend on the

stage of development in life and therefore on time. The

same critical set may not remain the critical set across the

whole life of an individual. Since we are far from knowing

the precise structure and function of cortical circuits we are

Fig. 4 A critical set learning under the LOVE architecture. The

whole Type I LaC path was activated by the stimulus when it was

presented for the first time, but by the trick of cortical connections

through new synapses (shown in thick black dots) only a subset of it is

sufficient to recall the memory of the stimulus preserved in the shown

Type II LaC
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not in a position to design an algorithm for determining a

critical set in case of learning a stimulus by an individual at

certain point of time in life. However in a graph theoretic

model at much more elementary level it is possible to

develop such algorithms. These algorithms may not be

useful in neuroscience, but may find use in neural networks

and artificial intelligence.

Discussion and conclusion

Although the brain computes as do the electronic com-

puters their architectures are different. Unlike electronic

computers a brain does not compute with a von Neumann

type architecture. In this paper an architecture, christened

as LOVE, for information processing by the cortical cir-

cuits has been proposed.

It is already well recognized that the brain functions are

largely controlled by the architecture of the cortex. It is

therefore imperative to understand the architecture of the

cortex in order to understand the functions of the brain.

Cortex on the other hand is a most complex structure in the

universe, where neurons and synapses remain connected in

a well structured network with enormous packing density.

Also this structure is highly dynamic—anatomical changes

may take place within hours. It has been experimentally

and theoretically well established that the nervous systems

process significant amount of information through feed

back loops. In this paper cortex has been viewed as an

assembly of mutually overlapping loops. In fact the loops

are so overlapping that it is virtually impossible to have a

unique decomposition of the cortex into loops.

In this scenario some scheme had to be adopted to

decompose the cortex into loops, such that the logical

operations remain intact yet the decomposition signifi-

cantly simplifies the cortical architecture. Cortex is a three

dimensional structure, which can be thought of as a sheet

of paper with six layers. Then what can be more simple

than a classical orthogonal type decomposition? The cor-

tical loops should be decomposed along X, Y and Z axes,

where the Z-axis can admit only six values—one for each

cortical layer. The rule followed in this paper are (1) the

loops which carry signals from thalamus or sensory neu-

rons to the highest processing regions of the cortex and

bring the output back are arranged along the X-axis and

named lateral computing or LaC loops; (2) the loops which

coordinate among the LaC loops across and within various

cortical areas are to be arranged along the Y-axis and are

called longitudinal computing or LoC loops; (3) the loops

which coordinate among various layers of the cortex are

arranged along the Z-axis and are called vertical computing

or VeC loops. Note that this is only a convenient decom-

position of big cortical loops, which have sub-loops of

various sizes spanning within and across regions. LaC and

LoC loops traverse through layers of the cortex and

therefore VeC remains part of each and every LaC or LoC.

Usually it is possible to decompose a given sufficiently

large cortical loop into LaC, LoC and VeC parts in more

than one different ways. If along with that loop an arbitrary

collection of a sufficiently large number of other cortical

loops overlapping with that one is also taken then it would

be possible to decompose the collection into mutually

overlapping LaC, LoC and VeC loops. The main hypoth-

esis of this paper is—a typical task in the cortex is

processed through a collection of mutually connected LaC,

LoC and VeC loops. A probabilistic argument on line of

symmetric random walks in three dimensions has been

given to show that every cortical line has a certain proba-

bility to loop around.

The first major result of this paper is the contrast and

amplify principle, where under the LOVE architecture it

has been shown selection of specific LaC paths process

specific features of the stimulus and during the process the

signals from the stimulus get amplified by the LoC loops

consisting of excitatory neurons from LaC lines within a

LaC path and the feed forward synapses joining the neu-

rons with one after another in the LoC loops. A LaC line

may belong to more than one LaC paths. Signal processing

in that line would have a particular meaning when it would

be viewed as part of a particular LaC path. The same is true

for LoC lines also. When this is true for a collection of

closely spaced LaC or LoC lines it is true for a LaC or LoC

path also. This dynamic changing of the utility of a line or a

path from task to task is the architectural embodiment of

the dynamic core hypothesis. This is true within a single

task also if it can be decomposed into several sub-tasks and

each of them is treated as a different task, which dynami-

cally share a cortical ‘core’ consisting of LaC, LoC and

VeC loops.

The second most significant result is the proof of exis-

tence of cortical loops with a probability of 0.2782 or less.

This seems to be going against the importance of a loop

based architecture, but it is not. Since only a small per-

centage of the cortical lines (and therefore also cortical

paths) will form loop the choice of selection of those lines

becomes much greater, for 100CK [ 100C28, where K \ 28.

This will have profound implication on the development of

our brain under the influence of learning. Let me hypoth-

esize here that a baby is born with certain inbuilt

information processing abilities in the brain and the cortical

loops already formed in the womb take important role in

those processing. Right from the birth the baby starts

learning from the environment and in the process new

synapses grow to make more and more new loops in the

cortex. One implication of this may be that we do not

remember much of our life before five years of age. This
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happens because not enough cortical loops have developed

to accommodate a new percept associated with a large

number of contexts (each feature of a context would need a

separate cortical looping path to perceive according to the

LOVE architecture). Lac of enough loops keeps the ability

to perceive the number of contexts limited. Since a percept

is not embedded in the memory of enough number of

contexts it gets lost easily and quickly. From the arguments

of section ‘‘Memory and learning’’ it is clear that if a

particular percept is embedded in a large number of con-

texts (each needing cortical looping paths to be stored) then

it gets the chance to be refreshed from time to time through

activating one or the other looping paths associated with

one or the other context respectively. Otherwise some

synapses may die because of lack of activity and circuits

get destroyed leading to loss of memory.

A couple of mathematical results have been stated in

this paper without proof. This is to emphasize that the

LOVE architecture described here, apart from being

grounded on a strong neurophysiological foundation, is

also conducive to rich theoretical study from mathematical

and computational points of view. For example, Theorem

3.2 and Conjecture 4.1 are deep results and I guess the

latter would take considerable effort to prove. However

Theorem 3.3 may not be too difficult to establish from a

computational complexity point of view.

In this paper a new paradigm of learning, called critical

set learning, has been proposed, which seems to be the

most natural in case of learning by a nervous system in

general and the cortical learning in particular. The main

idea is learning the whole only from a minimal set of

partial information. For example, if we are told ‘Einstein’

most of us can readily recollect ‘Albert Einstein’. It has

been argued how LOVE architecture can implement such a

scheme. The main result has been summarized in Conjec-

ture 4.1, proving which will further establish the validity of

the LOVE architecture.

The ideas presented in this paper has great potentiality

for computer simulation. In future efforts will be made to

develop an open source software (probably named ‘cortex’)

which will simulate aspects of cortical computation within

the setup of the LOVE architecture described in this paper.

In this software a neuron will be represented as a spike

train or more precisely as a vector consisting of the Fourier

coefficients of a spike train over a period of time (as

described in Majumdar 2007a, b). Generally the spike train

will keep changing from one period to the next, which will

signify changing input to the neuron. Neurons will form

loops and loops will form the cortical circuit according to

the LOVE architecture (of course loops will have specific

orientations, not every two neurons will belong to a loop).

The algorithm controlling the functions of the circuits will

be as described in Majumdar (2007a, b). The functional

aspect described in Majumdar (2007a, b) take into account

both past experiences and the level of impulse (the simplest

form of emotion). Impulse or the simplest form of emotion

has been quantified in Majumdar (2007a, b) with the help

of a mathematical function. This brings the motivation

under the purview of computation. I am not aware of any

other attempt so far to quantify emotion.
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