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Abstract. We prove that the rank of a non-trivial co-doubly commuting submodule is 2.
More precisely, let φ,ψ ∈ H∞(D) be two inner functions. If Qφ = H2(D)/φH2(D) and
Qψ = H2(D)/ψH2(D), then

rank (Qφ ⊗Qψ)
⊥ = 2.

An immediate consequence is the following: Let S be a co-doubly commuting submodule of
H2(D2). Then rank S = 1 if and only if S = ΦH2(D2) for some one variable inner function
Φ ∈ H∞(D2). This answers a question posed by R. G. Douglas and R. Yang [4].

1. Introduction

Let T = (T1, . . . , Tn) be an n-tuple of commuting bounded linear operators on a Hilbert
space H. For a subset E ⊆ H we denote [E]T by the close subspace span{T k11 · · ·T knn E : kj ∈
N, j = 1, . . . , n} of H. Then the rank of T [3] is the unique number

rank(T ) = min{#E : [E]T = H, E ⊆ H}.
A closed subspace S of H2(Dn), the Hardy space over the unit polydisc Dn, is said to be
shift invariant if Mzi(S) ⊆ S for i = 1, 2, . . . , n, where Mzi is the co-ordinate multiplication
operator on H2(Dn). The rank of a shift invariant subspace S of H2(Dn) is the rank of the
corresponding n-tuple of restricted co-ordinate shift operators, that is

rank S = rank (Mz1 |S , . . . ,Mzn|S).
The rank of a bounded linear operator (or, of a commuting tuple of bounded linear op-

erators) on a Hilbert space is an important numerical invariant. Very briefly, the rank of
a bounded linear operator is the cardinality of a minimal generating set (see the definition
below). One of the most intriguing and important problems in operator theory and func-
tion theory is the existence of a finite generating set for a commuting tuple of operators.
Alternatively, one may ask when the rank of a commuting tuple of operators is finite.

Prototype examples of rank one operators are the co-ordinate multiplication operator tuple
(Mz1 , . . . ,Mzn) on the Hardy space, the (weighted) Bergman space over the unit ball and the
polydisc in Cn, n ≥ 1, and the Drury-Arveson space over the unit ball in Cn. Moreover,
a particular version of the celebrated invariant subspace theorem of Beurling says: A shift
invariant (or, shift co-invariant) subspace of the one variable Hardy space is of rank one.
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Computation of ranks of shift invariant as well as shift co-invariant subspaces beyond
the case of the one variable Hardy space is an excruciatingly difficult problem, even if one
considers only shift invariant (as well as co-invariant) subspaces of the Hardy space over the
unit polydisc in Cn, n > 1 (see however [2, 6, 7, 8, 14]).

The purpose of this paper is to compute the rank of a tractable class of shift invariant
subspaces of the two variables Hardy space, H2(D2), over the bidisc D2 in C2. In order to
state the precise contribution of this paper, we need to introduce first some definitions and
notations.

We denote the open unit disc of C by D, and the unit circle by T. The Hardy space over
the unit disc D (bidisc D2), denoted by H2(D) (H2(D2)), is the Hilbert space of all square
summable holomorphic functions on D (on D2). Also we will denote by Mz and Mw the
multiplication operators on H2(D2) by the coordinate functions z and w, respectively. It is
easy to see that (Mz,Mw) is a pair of commuting isometries, that is,

MzMw =MwMz, M∗
zMz =M∗

wMw = IH2(D2).

Identifying H2(D2) with the 2-fold Hilbert space tensor product H2(D) ⊗ H2(D), one can
represent (Mz,Mw) as (Mz ⊗ IH2(D), IH2(D) ⊗Mw).

Let S and Q be closed subspaces of H2(D2). Then S is said to be a submodule ifMz(S) ⊆ S
and Mw(S) ⊆ S. We say that Q is a quotient module if Q⊥ is a submodule.

A well-known result due to Beurling states that if S is a submodule of H2(D) (that is, S is
closed subspace of H2(D) and MzS ⊆ S), then S can be represented as

S = Sφ := φH2(D),
where φ ∈ H∞(D) is an inner function (that is, φ is a bounded holomorphic function on D
and |φ| = 1 a.e. on T). Consequently, a quotient module Q (that is, Q is a closed subspace
of H2(D) and M∗

zQ ⊆ Q) of H2(D) can be represented as

Q = Qφ := (Sφ)⊥ = H2(D)/φH2(D).
It readily follows that

rank (Mz|Sφ) = rank (PQφMz|Qφ) = 1.

Rudin [10], however, pointed out that there exists a submodule S of H2(D2) such that the
rank of S is not finite (see also [7], [12] and [13]).

A quotient module Q of H2(D2) is doubly commuting if CzC
∗
w = C∗

wCz, where Cz = PQMz|Q
and Cw = PQMw|Q. A submodule S of H2(D2) is co-doubly commuting if the quotient module
S⊥(∼= H2(D2)/S) is doubly commuting.

The following useful characterization of co-doubly commuting submodules is essential for
our study (see [9, 11]): If Q is a quotient module of H2(D2), then Q is a doubly commuting
quotient module if and only if

Q = Q1 ⊗Q2,

for some quotient modules Q1 and Q2 of H2(D).
Let S = (Q1 ⊗Q2)

⊥ be a non-zero co-doubly commuting submodule. If Qj = H2(D), for
some j = 1, 2, then it is easy to see that

rank S = 1.
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Now let both Q1 and Q2 be non-trivial quotient modules of H2(D), that is, Qj ̸= {0}, H2(D),
j = 1, 2. Then there exist inner functions φ, ψ ∈ H∞(D) such that Q1 = Qφ and Q2 = Qψ.
The main purpose of the present paper is to prove that (see Theorem 2.1)

rank (Qφ ⊗Qψ)
⊥ = 2.

As a consequence of this, we give a complete and affirmative answer to a conjecture of Douglas
and Yang (see page 220 [4]): If S is a rank one co-doubly commuting submodule, then
S = ΦH2(D2) for some one variable inner function Φ ∈ H∞(D).

2. Proof of the main result

We begin with a simple but crucial observation on the rank of a joint semi-invariant subspace
of a commuting tuple of operators.

Lemma 2.1. Let T = (T1, . . . , Tn) be an n-tuple of commuting operators on a Hilbert space
H. Let S1 and S2 be two joint T -invariant subspaces of H and S2 ⊆ S1. If S = S1 ⊖S2, then

rank (PST1|S , . . . , PSTn|S) ≤ rank (T1|S1 , . . . , Tn|S1).

Proof. Let m ∈ N be the right side of the above inequality. Let {fj}mj=1 ⊆ S1 be a generating
set for (T1|S1 , . . . , Tn|S1). Clearly, PSTjPS = PSTj|S1 for all j = 1, . . . , n. This yields

(PSTiPS)(PSTjPS) = PS(TiTj)|S1 (i, j = 1, . . . , n).

It hence follows that {PSfj}mj=1 is a generating set for (PST1|S , . . . , PSTn|S). This completes
the proof. �

We now prove the main result of this paper.

Theorem 2.1. Let φ, ψ ∈ H∞(D) be two inner functions. If

S = (Qφ ⊗Qψ)
⊥ ,

then rank S = 2.

Proof. Let X = IH2(D2) − (IH2(D2) −MφM
∗
φ ⊗ IH2(D))(IH2(D2) − IH2(D) ⊗MψM

∗
ψ). Since

S = ranX,

and
X = ((MφM

∗
φ)⊗ (IH2(D) −MψM

∗
ψ))⊕ (IH2(D) ⊗MψM

∗
ψ),

it follows that
S = (Sφ ⊗Qψ)⊕

(
H2(D)⊗ Sψ

)
.

Since by Theorem 6.2 of [1], rank S ≤ 2, we only need to show that rank S ≥ 2. Set

E = S ⊖ (Sφ ⊗ Sψ) .
It follows that

E = (Sφ ⊗Qψ)⊕ (Qφ ⊗ Sψ) .
Since Sφ ⊗ Sψ ⊆ S is a submodule of H2(D2), by Lemma 2.1, it follows that

(2.1) rank(PEMz|E , PEMw|E) ≤ rank(Mz|S ,Mw|S) = rank(S).
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Note that
PE = (PSφ ⊗ PQψ)⊕ (PQφ ⊗ PSψ).

and hence, an easy calculation yields

PEMz|E = (Mz|Sφ ⊗ PQψ)⊕ (PQφMz|Qφ ⊗ PSψ),

and
PEMw|E = (PSφ ⊗ PQψMw|Qψ)⊕ (PQφ ⊗Mw|Sψ).

Therefore it follows from the above equalities that (Sφ2 ⊗ Qψ) ⊕ (Qφ ⊗ Sψ2) is a joint
(PEMz|E , PEMw|E) invariant subspace of E . Set

Ẽ = E ⊖ ((Sφ2 ⊗Qψ)⊕ (Qφ ⊗ Sψ2)).

Notice that for any inner function θ ∈ H∞(D), we have

Sθ ⊖ Sθ2 = θQθ.

From this and the representation of E = (Sφ ⊗Qψ)⊕ (Qφ ⊗ Sψ) it follows that

Ẽ = ((Sφ ⊗Qψ)⊕ (Qφ ⊗ Sψ))⊖ ((Sφ2 ⊗Qψ)⊕ (Qφ ⊗ Sψ2))

= (φQφ ⊗Qψ)⊕ (Qφ ⊗ ψQψ).

Then Lemma 2.1 and (2.1) implies that

rank(PẼMz|Ẽ , PẼMw|Ẽ) ≤ rank(PEMz|E , PEMw|E) ≤ rank(S) ≤ 2.

To finish the proof of the theorem it is now enough to prove the following:

rank(PẼMz|Ẽ , PẼMw|Ẽ) > 1.

Equivalently, it is enough to prove that the set {ξ}, for any ξ ∈ Ẽ , is not a generating set
corresponding to (PẼMz|Ẽ , PẼMw|Ẽ). Equivalently, given ξ ∈ Ẽ , we show that there exists

ηξ (̸= 0) ∈ Ẽ such that
⟨(zp ⊗ wq)ξ, ηξ⟩ = 0 (p, q ∈ N).

To this end, let {fi} and {gj} be orthonormal bases of Qφ and Qψ, respectively, and let ξ ∈ Ẽ
where

ξ = (
∑
k,l

aklφfk ⊗ gl)⊕ (
∑
k,l

bklfk ⊗ ψgl),

{akl}, {bkl} ⊆ C, and ∑
k,l

|akl|2,
∑
k,l

|bkl|2 <∞.

Again we observe that for any inner function θ ∈ H∞(D) and f =
∑

m≥0 cmz
m ∈ Qθ we have

M∗
z (θf̄) ∈ Qθ,

where f̄ =
∑

m≥0 c̄me
−imt ∈ L2(T). This follows from the fact that θ is a bounded holomorphic

function on D and M∗
z (θf̄) ⊥ zm for all m < 0 (which gives that M∗

z (θf̄) ∈ H2(D)), and then
M∗

z (θf̄) ⊥ θzm in L2(T) for all m ≥ 0 (which gives that M∗
z (θf̄) ∈ Qθ). It should be noted

that M∗
z (θf̄) = θzf = Cθ(f), where the conjugation map Cθ : Qθ → Qθ, f 7→ M∗

z (θf̄), is
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called a C-symmetry and it is used extensively in the study of Toeplitz operators on model
spaces (for more details see [5]).
Coming back to our context, this immediately yields that

M∗
z (φfk)⊗M∗

w(ψgl) ∈ Qφ ⊗Qψ (k, l ≥ 0),

and hence s0 ⊗ s1, t0 ⊗ t1 ∈ Qφ ⊗Qψ, where

s0 ⊗ s1 := −
∑
k,l

aklM
∗
z (φfk)⊗M∗

w(ψgl) = −(M∗
z ⊗M∗

w)(φ⊗ ψ)(
∑
k,l

āklf̄k ⊗ ḡl)

and

t0 ⊗ t1 :=
∑
k,l

bklM
∗
z (φfk)⊗M∗

w(ψgl) = (M∗
z ⊗M∗

w)(φ⊗ ψ)(
∑
k,l

b̄klf̄k ⊗ ḡl).

Set

ηξ = (φt0 ⊗ t1)⊕ (s0 ⊗ ψs1) ∈ Ẽ .
Then ηξ ̸= 0 and for every p, q ∈ N we have

⟨(zp ⊗ wq)ξ, ηξ⟩ = ⟨(zp ⊗ wq)((
∑
k,l

aklφfk ⊗ gl)⊕ (
∑
k,l

bklfk ⊗ ψgl)), (φt0 ⊗ t1)⊕ (s0 ⊗ ψs1)⟩

= ⟨(zp ⊗ wq)(
∑
k,l

aklφfk ⊗ gl), φt0 ⊗ t1⟩

+ ⟨(zp ⊗ wq)(
∑
k,l

bklfk ⊗ ψgl), s0 ⊗ ψs1⟩

= ⟨(zp ⊗ wq)(
∑
k,l

aklfk ⊗ gl), t0 ⊗ t1⟩+ ⟨(zp ⊗ wq)(
∑
k,l

bklfk ⊗ gl), s0 ⊗ s1⟩

= ⟨(zp+1 ⊗ wq+1)(
∑
k,l

akl fk ⊗ gl), (φ⊗ ψ)(
∞∑

k,l=1

b̄klf̄k ⊗ ḡl)⟩

− ⟨(zp+1 ⊗ wq+1)(
∑
k,l

bklfk ⊗ gl), (φ⊗ ψ)(
∑
k,l

āklf̄k ⊗ ḡl)⟩

= 0.

We have thus shown that {ξ} is not a minimal generating subset of Ẽ with respect to
(PẼMz|Ẽ , PẼMw|Ẽ) as desired. �

As a consequence of the above theorem we have the following corollary which provides an
affirmative answer of the question raised by Douglas and Yang [4].

Corollary 2.2. Let S be a co-doubly commuting submodule of H2(D2). Then rank (S) = 1
if and only if S = ΘH2(D2) for some one variable inner function Θ ∈ H∞(D).

Proof. If S = ΘH2(D2) for some one variable inner function Θ ∈ H∞(D), then S ∼= H2(D2)
and hence rank S = 1. To prove the the sufficient part let S be a rank one co-doubly
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commuting submodule of H2(D2). Then there exist quotient modules Q1 and Q2 of H2(D)
such that (see [9, 11])

S = (Q1 ⊗Q2)
⊥.

Since rank (S) = 1, it follows from Theorem 2.1 that Qj = H2(D), for some j = 1, 2. This
shows that

S = Sφ ⊗H2(D), or S = H2(D)⊗ Sψ,
for some inner functions φ, ψ ∈ H∞(D). This concludes the proof of the corollary. �

There is now the following interesting and natural question: Let m ≥ 2 and let {φj}mj=1 ⊆
H∞(D) be inner functions. Is then

rank (Qφ1 ⊗ · · · ⊗ Qφm)
⊥ = m?

Our present approach does not seem to work for m > 2 case.
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