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Abstract. Let X be a complex Banach space and x, y ∈ X. By definition, we say

that x is Birkhoff-James orthogonal to y if ‖x + λy‖X ≥ ‖x‖X for all λ ∈ C. We

prove that x is Birkhoff-James orthogonal to y if and only if there exists a semi-inner

product φ on X such that ‖φ‖ = 1, φ(x, x) = ‖x‖2 and φ(x, y) = 0. A similar

result holds for C∗-algebras. A key point in our approach to orthogonality is the

representations of bounded bilinear maps via projective tensor product spaces.

1. Introduction

This paper deals with the notion of Birkhoff-James orthogonality [2, 8, 9] for vectors

in Banach spaces via projective tensor product of Banach spaces. Let X be a normed

linear space over the scalar field K, where K is either R or C. Suppose x, y ∈ X. We

say that x is Birkhoff-James orthogonal (or simply orthogonal) to y if

‖x+ λy‖X ≥ ‖x‖X ,

for all λ ∈ K. We denote this by x ⊥B y. If X is a Hilbert space, then this notion

coincides with the usual orthogonality, that is, x ⊥B y if and only if

〈x, y〉X = 0.

The objective of this note is to present an abstract characterization of orthogonality of

vectors in Banach spaces over K. We are motivated by Bhatia and Šemrl’s investigation

[3, Theorem 1.1 and Remark 3.1] of orthogonality in the setting of bounded linear

operators on Hilbert spaces:

Theorem 1.1. (Bhatia and Šemrl) Let S and T be bounded operators on a Hilbert

space H.
(i) Then S ⊥B T if and only if there exists a sequence {hn} of unit vectors such that

‖Shn‖ → ‖S‖, and 〈Shn, Thn〉 → 0 as n→∞.
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(ii) If we additionally assume that H is a finite dimensional Hilbert space, then

S ⊥B T if and only if there exists a unit vector h ∈ H such that

‖Sh‖ = ‖S‖ and 〈Sh, Th〉 = 0.

We treat the above Bhatia-Šemrl result (more specifically, part (ii) of Theorem 1.1)

as a paradigm and examine orthogonality of vectors in Banach spaces in terms of

semi-inner products. Our main result, in the setting of Banach spaces, is the following:

Theorem 1.2. Let X be a Banach space, x, y ∈ X, and x 6= 0. Then x ⊥B y if and

only if there exists a semi-inner product ϕ : X ⊕∞ X → K such that ‖ϕ‖ = 1 and

ϕ(x, x) = ‖x‖2 and ϕ(x, y) = 0.

Actually, this also holds for normed linear spaces, but we will return to it at the end

of this paper.

As an immediate consequence of the above, we also prove an orthogonality result in

the setting of C∗-algebras (see Corollary 2.2). Here, for a pair of Banach spaces X and

Y , we define X ⊕∞ Y to be the Banach space

X × Y = {(x, y) : x ∈ X, y ∈ Y },

with the norm

‖(x, y)‖∞ = max{‖x‖X , ‖y‖Y },
for all x ∈ X and y ∈ Y . Also recall that a semi-inner product [6, Page 1] on a vector

space V is scalar-valued function ϕ : V × V → K such that for all x, y, z ∈ V and

α, β ∈ K, we have

(a) ϕ(αx+ βy, z) = αϕ(x, z) + βϕ(y, z),

(b) ϕ(x, y) = ϕ(y, x),

(c) ϕ(x, x) ≥ 0.

It is easy to check that, if ϕ is a semi-inner product, then ϕ is an inner product if and

only if ϕ(x, x) = 0 implies x = 0. It is worth noting that the notion of a semi-inner

product is defined somewhat differently by different researchers. In the orthogonality

context, we point out the papers by Giles [7] and Lumer [11].

The main ingredients of our approach to the orthogonality problem are: (1) Bhatia

and Šemrl’s orthogonality of bounded linear operators on infinite-dimensional Hilbert

spaces (part (i) of Theorem 1.1 above), (2) projective tensor product techniques (see

Theorem 1.3 below), and (3) some standard Banach space techniques (like Banach-

Alaoglu theorem).

Before we proceed with the main content of the paper, let us shortly review the

existing literature on orthogonality. The notion of Birkhoff-James orthogonality is an

active research area. In fact, Bhatia and Šemrl’s paper [3] on orthogonality of operators
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on Hilbert spaces has stimulated extensive research for the past two decades. For in-

stance, orthogonality of a pair of compact operators acting on a reflexive Banach space

to a normed linear space has been studied by Sain, Paul and Mal [16]. Their investiga-

tion involves finer geometric Banach space techniques. Also see [14] on orthogonality

of linear operators on finite dimensional Banach spaces, [15] on norm attainment and

orthogonality, and [12] on approximate orthogonality. More recent advances can be

found, for instance, in the quickly growing literature [1, 4, 5, 10, 18, 19] (also see the

references therein).

Given Banach spaces X and Y , we denote the Banach space of all bounded linear

operators from X to Y by B(X,Y ), and we let X1 denote the closed unit ball in X.

If Y = X, then we write B(X). A bilinear (sesquilinear) map B : X × Y → Z is said

to be bounded if there exists M > 0 such that

‖B(x, y)‖ ≤M (x ∈ X1, y ∈ Y1).

We denote the Banach space of all bounded bilinear (sesquilinear) maps from X × Y
to Z by Bil(X × Y, Z) (Ses(X × Y, Z)). Here

‖B‖ = sup{‖B(x, y)‖ : x ∈ X1, y ∈ Y1},

for all B ∈ Bil(X × Y, Z) (B ∈ Ses(X × Y, Z)). As a tool for the proof of the main

result, we use the notion of projective tensor product. The projective tensor product

X⊗̂πY of Banach spaces X and Y is the completion of the algebraic tensor product

X ⊗ Y under the projective norm

‖u‖π = inf
{ n∑

i=1

‖xi‖‖yi‖ : u =
n∑

i=1

xi ⊗ yi
}
.

Our key point is the following result [13, Theorem 2.9] concerning representations of

bounded bilinear maps via projective tensor product spaces.

Theorem 1.3. Let X,Y and Z be Banach spaces, and let B ∈ Bil(X × Y, Z). Then

there exists a unique B̃ ∈ B(X⊗̂πY, Z) such that

B̃(x⊗ y) = B(x, y) (x ∈ X, y ∈ Y ).

Moreover, the correspondence B ←→ B̃ is an isometric isomorphism between Bil(X ×
Y, Z) and B(X⊗̂πY, Z).

We fix some more notation that we will use from now on. Given a vector space X

over K, we denote by X the complex conjugate vector space of X. That is, X = X

with the same additive group structures, but with the scalar multiplication ? defined

by

(1.1) α ? x = αx,
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for all α ∈ K and x ∈ X. Clearly, if (X, ‖.‖) is normed linear space over K, then there

is an anti-linear isometric isomorphism between (X, ‖.‖) and (X, ‖.‖). If H is a Hilbert

space, then H is identified with the dual (the space of continuous linear functionals) of

H by Riesz representation theorem.

Note that the space Bil(X⊕∞X,K) is isometrically isomorphic to the space Ses(X⊕∞

X,K). The correspondence is given by

(1.2) ψ(x, y) = ϕ(x, y),

where ψ ∈ Bil(X ⊕∞ X,K), ϕ ∈ Ses(X ⊕∞ X,K), x ∈ X and y ∈ Y .

Note added in proof: After completion of the present paper, Professor Kallol Paul

kindly pointed out to us that our main result, Theorem 1.2 also follows (with a little

more work) from James [9, Theorem 2.1]. Note, however, that our result uses the

technique of projective tensor product and some basic geometric technique of Banach

spaces. Our approach connects two subtle notions, namely, orthogonality in Banach

spaces and projective tensor product of Banach spaces, which is different in the spirit

of the ongoing Birkhoff-James orthogonality program. As we will soon see, the semi-

inner product ϕ in Theorem 1.2 is naturally governed by projective tensor product of

Banach spaces. We believe that the inherited structure of projective tensor product of

Banach spaces in orthogonality will prove useful in future investigations.

2. Main Results

We begin with the proof of Theorem 1.2. But before we do so, let us recall the

classical Banach–Alaoglu theorem: Let X be a Banach space over K. Then the closed

unit ball (X∗)1 of the dual X∗ is compact with respect to the weak∗ topology on X∗.

Proof of Theorem 1.2: Suppose x ⊥B y. Note that the Banach space X is isometrically

isomorphic to a closed subspace of C((X∗)1), where (X∗)1 endowed with the weak∗

topology is a compact set. Here the correspondence is given by the formula X 3 u 7→ û,

where

û(f) = f(u) (f ∈ (X∗)1).

Next we note that the commutative Banach algebra C((X∗)1) is isometrically isomor-

phic to a closed subspace of B(L2(µ)) for some σ-finite measure µ. Here the corre-

spondence is given by the formula C((X∗)1) 3 g 7→ Mg, where Mg : L
2(µ)→ L2(µ) is

the multiplication operator defined by

Mg(h) = gh (h ∈ L2(µ)).

Using the above identifications, we have Mx̂,Mŷ ∈ B(L2(µ)) and

Mx̂ ⊥B Mŷ.
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By the infinite dimensional part of Theorem 1.1, there exists a sequence {hn} of unit
vectors in L2(µ) such that

‖Mx̂(hn)‖L2(µ) → ‖Mx̂‖B(L2(µ)),

and

〈Mx̂(hn),Mŷ(hn)〉L2(µ) → 0 as n→∞.

For each n ≥ 1, define ψn : X ⊕∞ X → K by

ψn(z, w) = 〈Mẑ(hn),Mŵ(hn)〉L2(µ) (z ∈ X,w ∈ X).

Now we prove that ψn is bilinear. Clearly, ψn is linear in its first variable. Suppose

α1, α2 ∈ K and z, w1, w2 ∈ X. Then

ψn(z, (α1 ? w1 + α2 ? w2)) = 〈Mẑ(hn),M ̂α1⋆w1+α2⋆w2
(hn)〉

= 〈Mẑ(hn),M ̂ᾱ1w1+ᾱ2w2
(hn)〉

= 〈ẑhn, (ᾱ1ŵ1 + ᾱ2ŵ2)hn〉
= α1〈ẑhn, ŵ1hn〉+ α2〈ẑhn, ŵ2hn〉,

that is

ψn (z, (α1 ? w1 + α2 ? w2)) = α1ψn(z, w1) + α2ψn(z, w2),

and hence ψn is bilinear for all n ≥ 1. To prove that ψn is bounded, suppose (z, w) ∈
X ⊕∞ X and ‖(z, w)‖∞ ≤ 1. Then

|ψn(z, w)| ≤ ‖Mẑ‖B(L2(µ)) ‖Mŵ‖B(L2(µ)) ‖hn‖2L2(µ)

= ‖ẑ‖C((X∗)1)‖ŵ‖C((X∗)1)

= ‖z‖X ‖w‖X ,

which implies that ‖ψn‖ ≤ 1 for all n. Consequently {ψn}n≥1 ⊆ Bil(X⊕∞X,K). Note,

by Theorem 1.3, that

Bil(X ⊕∞ X,K) ' B(X⊗̂πX,K).

Here the correspondence is given by Bil(X ⊕∞ X,K) 3 ψ 7→ ψ̃, where

ψ̃(z ⊗ w) = ψ(z, w) (z, w ∈ X).

Since ‖ψn‖ ≤ 1, we have ‖ψ̃n‖ ≤ 1 for each n. By applying the Banach-Alaoglu

theorem, one can find a subsequence {ψ̃nk
} of {ψ̃n} and a map ψ̃ ∈ B(X⊗̂πX,K) with

‖ψ̃‖ ≤ 1 such that

ψ̃nk

w∗
→ ψ̃.

This yields ψnk
→ ψ in the pointwise topology, that is

ψnk
(z, w)→ ψ(z, w) (z, w ∈ X).
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By isometry, ‖ψ‖ ≤ 1. Observe that

ψnk
(x, x) = 〈Mx̂(hnk

),Mx̂(hnk
)〉L2(µ) = ‖Mx̂(hnk

)‖2L2(µ).

But since

‖Mx̂(hnk
)‖2L2(µ) → ‖Mx̂‖2B(L2(µ)) = ‖x̂‖2,

it follows that

ψnk
(x, x)→ ‖x‖2,

for all x ∈ X. On the other hand, ψnk
(x, x)→ ψ(x, x). Hence

ψ(x, x) = ‖x‖2 (x ∈ X).

Since

ψnk
(x, y) = 〈Mx̂(hnk

),Mx̂(hnk
)〉L2(µ) → 0,

we have ψ(x, y) = 0. Note that if ‖ψ‖ < 1, then ψ(x, x) < ‖x‖2. Hence ‖ψ‖ = 1. Now

observe that the identification in (1.2) provides a sesquilinear map ϕ ∈ Ses(X⊕∞X,K),

with

ϕ(x, y) = ψ(x, y) (x, y ∈ X).

This gives ϕ(z, z) ≥ 0 for all z ∈ X, and ϕ(z, w) = ϕ(w, z) for all z, w ∈ X. Hence ϕ

is a semi-inner product on X such that ‖ϕ‖ = 1, ϕ(x, x) = ‖x‖2 and ϕ(x, y) = 0.

Conversely, suppose that such a ϕ exists. Then for all λ ∈ K,

‖x‖2 = |ϕ(x, x+ λy)| ≤ ‖ϕ‖‖x‖‖x+ λy‖,

which implies that ‖x‖ ≤ ‖x + λy‖, that is, x ⊥B y. This completes the proof of the

theorem.

Remark 2.1. It is worth pointing out that besides Theorem 1.1 and Theorem 1.3, the

inclusion

X ↪→ C((X∗)1) ↪→ B(L2(µ)),

also plays an important role in our proof.

Now we turn to orthogonality of elements in C∗-algebras. The following result follows

from Theorem 1.2.

Corollary 2.2. Let A be a C∗-algebra and a, b ∈ A and a 6= 0. Then a ⊥B b if and

only if there exists a bilinear map ψ : A⊕∞A → C such that ‖ψ‖ = 1, ψ(a, a∗) = ‖a‖2
and ψ(a, b∗) = 0.

Proof. Suppose a ⊥B b. Then by Theorem 1.2, there exists a semi-inner product

ϕ : A ⊕∞ A → C such that ‖ϕ‖ = 1, ϕ(a, a) = ‖a‖2 and ϕ(a, b) = 0. Define

ψ : A⊕∞ A → C by

ψ(a, b) = ϕ(a, b∗).



ORTHOGONALITY IN BANACH SPACES VIA PROJECTIVE TENSOR PRODUCT 7

Then ψ is the required map. To prove the converse, suppose such a ψ exists. Then

‖a‖2 = |ψ(a, (a+ λb)∗)|
≤ ‖ψ‖‖a‖‖(a+ λb)∗‖
= ‖a‖‖a+ λb‖,

that is, ‖a+ λb‖ ≥ ‖a‖ for all λ ∈ C. �

We refer the reader to [4, Proposition 4.1] for a more natural version of orthogonality

in the setting of C∗-algebras.

It is worth pointing out that Theorem 1.2 is also applicable to finite dimensional

Banach spaces. Clearly, Theorem 1.2 and Corollary 2.2 are analogous to Bhatia and

Šemrl classifications (see part (ii) of Theorem 1.1) of orthogonality of matrices on finite

dimensional Hilbert spaces. On the other hand, our results uses the Bhatia and Šemrl

classifications of orthogonality in the setting of infinite dimensional Hilbert spaces (see

part (i) of Theorem 1.1). In addition, it is not completely clear if our results recovers

the Bhatia and Šemrl classifications of orthogonality in the setting of finite matrices.

All in all, on one hand our results are valid for general Banach spaces and rather

abstract, and on the other hand our approach is intimately related to the delicate

structure of projective tensor product of Banach spaces (see Chapter 2 in [13]). We

also believe that our approach to orthogonality via projective tensor product is of

independent interest and may have other applications.

Finally, we remark that our main result Theorem 1.2 is also valid in full generality

in the setting of normed linear spaces. The proof works verbatim. In this case, [17,

page 443, Proposition 43.12. (b)] is the normed linear space counterpart to our key

tool Theorem 1.3.
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