A class of Sub-Hardy Hilbert Spaces Associated with Weighted Shifts

Sneh Lata
Shiv Nadar University

December 14, 2018

Joint work with Dinesh Singh
Outline of the talk

- History and Motivation
- Some Notations and Definitions
- Statement of our Main Result
- Analogue of Wold’s Decomposition
- Sketch of the proof of the main result
- Important consequences
History and Motivation

- **Arne Beurling (1949)** - Characterizes the closed subspaces of H^2 that are invariant under the action of T_z, the operator of multiplication with the coordinate function z.

- **Peter Lax (1959)** - Vector-valued generalization of Beurling’s work for shifts of finite multiplicity.

- **Paul Halmos (1961)** - Vector-valued generalization of Beurling’s work for shifts of infinite multiplicity.

- **Louis de Branges** - Not only extended Beurling’s theorem but also its vector-valued generalizations due to Lax and Halmos.

H^2- the class of analytic function on \mathbb{D} whose Taylor coefficients are square summable.

(i) H^2 is a Hilbert space with respect to the inner product

$$\langle f, g \rangle = \sum_{n=0}^{\infty} a_n \overline{b_n}$$

for $f = \sum_{n=0}^{\infty} a_n z^n$ and $g = \sum_{n=0}^{\infty} b_n z^n$ in H^2.

(ii) $\{z^n\}_{n=0}^{\infty}$ forms an orthonormal basis for H^2.

Sneh Lata | Sub-Hardy spaces and weighted shifts
Notations and Definitions

- H^2 - the class of analytic function on \mathbb{D} whose Taylor coefficients are square summable.

 (i) H^2 is a Hilbert space with respect to the inner product

 $$\langle f, g \rangle = \sum_{n=0}^{\infty} a_n \overline{b_n}$$

 for $f = \sum_{n=0}^{\infty} a_n z^n$ and $g = \sum_{n=0}^{\infty} b_n z^n$ in H^2.

 (ii) $\{z^n\}_{n=0}^{\infty}$ forms an orthonormal basis for H^2.

- H^∞ - the class of bounded analytic functions on \mathbb{D}.

 (i) H^∞ is a Banach algebra with $||\phi||_\infty = sup\{|\phi(z)| : z \in \mathbb{D}\}$.

 (ii) $H^\infty = \{\phi \in H^2 : \phi H^2 \subseteq H^2\}$.

Sneh Lata Sub-Hardy spaces and weighted shifts
Let \(\{\beta_n\} \) be a sequence of positive numbers.

\[
H^2(\beta) = \left\{ f(z) = \sum_{n=0}^{\infty} \alpha_n z^n : \sum_{n=0}^{\infty} |\alpha_n|^2 \beta_n^2 < \infty \right\}
\]

with the inner product

\[
\langle f, g \rangle = \sum_{n=0}^{\infty} \alpha_n \overline{\gamma_n} \beta_n^2
\]

for all \(f = \sum_{n=0}^{\infty} \alpha_n z^n \) and \(g = \sum_{n=0}^{\infty} \gamma_n z^n \) in \(H^2(\beta) \).

\(H^2(\beta) \) is a Hilbert space with respect to the above inner product space.

For \(\beta_n = 1 \) for all \(n \), \(H^2(\beta) = H^2 \).
Notations and Definition contd...

- $T \in \mathcal{B}(H)$ is called an **injective weighted shift** with weight sequence $\{w_n\}_{n=0}^{\infty}$ if

$$Te_n = w_n e_{n+1},$$

where $\{e_n\}_{n=0}^{\infty}$ is an orthonormal basis for H and $\{w_n\}_{n=0}^{\infty}$ is a bounded sequence of positive numbers.

When $H = H^2$, $e_n = z^n$ and $w_n = 1$, we use T_z to denote the injective weighted shift operator.

- $T \in \mathcal{B}(H)$ is said to **shift an orthogonal basis** $\{h_n\}$ of H if $Th_n = h_{n+1}$ for each n.
A. Beurling: If M is a closed subspace of H^2 invariant under the action of T_z, then there is an inner function b (i.e., $|b| = 1$ a.e. on \mathbb{T}) such that $M = bH^2$.
A. Beurling: If \(M \) is a closed subspace of \(H^2 \) invariant under the action of \(T_z \), then there is an inner function \(b \) (i.e., \(|b| = 1 \) a.e. on \(\mathbb{T} \)) such that \(M = bH^2 \).

de Branges: Let \(M \) be a Hilbert space such that:

(i) \(M \) is contractively contained in \(H^2 \), that is, \(M \subseteq H^2 \) and \(\|f\|_2 \leq \|f\|_M \),

(ii) \(T_z(M) \subseteq M \) and \(T_z \) is an isometry on \(M \).

Then there exists a \(b \in H^\infty \) with \(\|b\|_\infty \leq 1 \) such that

\[
M = bH^2 \quad \text{and} \quad \|bf\|_M = \|f\|_2 \quad \forall f \in H^2
\]
A. Beurling: If M is a closed subspace of H^2 invariant under the action of T_z, then there is an inner function b (i.e., $|b| = 1$ a.e. on \mathbb{T}) such that $M = bH^2$.

de Branges: Let M be a Hilbert space such that:

(i) M is contractively contained in H^2, that is, $M \subseteq H^2$ and $\|f\|_2 \leq \|f\|_M$,

(ii) $T_z(M) \subseteq M$ and T_z is an isometry on M.

Then there exists a $b \in H^\infty$ with $\|b\|_\infty \leq 1$ such that

$$M = bH^2 \quad \text{and} \quad \|bf\|_M = \|f\|_2 \quad \forall f \in H^2$$

Singh and Singh: Let M be a Hilbert space such that:

(i) $M \subseteq H^2$,

(ii) $T_z(M) \subseteq M$ and T_z acts isometrically on M.

Then there exists a $b \in H^\infty$ such that

$$M = bH^2 \quad \text{and} \quad \|bf\|_M = \|f\|_2 \quad \forall f \in H^2.$$
Can we weaken the hypotheses any further?
Our Theorem

Theorem (L. & Singh)

Let M be a Hilbert space contained in H^2. Suppose the operator T_z, which denotes multiplication by z, is well defined on M, and satisfies:

(i) There exists a $\delta > 0$ such that $\delta \|f\|_M \leq \|T_z f\|_M \leq \|f\|_M$ for all $f \in M$.

(ii) For each $n \in \mathbb{N}$, $T_z^* T_z^{n+1}(M) \subseteq T_z(M)$ (the adjoint of T_z is with respect to the inner product on M).
Theorem (L. & Singh)

Let M be a Hilbert space contained in H^2. Suppose the operator T_z, which denotes multiplication by z, is well defined on M, and satisfies:

(i) There exists a $\delta > 0$ such that $\delta \|f\|_M \leq \|T_z f\|_M \leq \|f\|_M$ for all $f \in M$.

(ii) For each $n \in \mathbb{N}$, $T_z^* T_z^{n+1}(M) \subseteq T_z(M)$ (the adjoint of T_z is with respect to the inner product on M).

Then T_z acts as a weighted shift on M, and there exists a $b \in H^\infty$ such that

$$M = \overline{bH^2} \quad \text{(the closure is in the norm of } M)$$

and

$$\|bf\|_M \leq \|f\|_2 \quad \text{for all } f \in H^2.$$
Lemma (L. & Singh)

Let $T \in \mathcal{B}(H)$ be bounded below and $T^* T^{n+1}(H) \subseteq T(H)$ for all $n \in \mathbb{N}$. Let N be the orthogonal complement of the range of T. Then:

(i) $H = \bigoplus_{n=0}^{\infty} T^n(N) \oplus \bigcap_{n=1}^{\infty} T^n(H)$.

(ii) The subspace $\bigcap_{n=1}^{\infty} T^n(H)$ is reducing for T and T restricted to it is an invertible operator.
Analogue of Wold’s decomposition

Lemma (L. & Singh)

Let $T \in \mathcal{B}(H)$ be bounded below and $T^* T^{n+1}(H) \subseteq T(H)$ for all $n \in \mathbb{N}$. Let N be the orthogonal complement of the range of T. Then:

(i) $H = \sum_{n=0}^{\infty} \oplus T^n(N) \oplus \bigcap_{n=1}^{\infty} T^n(H)$.

(ii) The subspace $\bigcap_{n=1}^{\infty} T^n(H)$ is reducing for T and T restricted to it is an invertible operator.

Example

Take $H = H^2(\beta)$ and $T = T_z$ where

$$
\beta_n = \begin{cases}
\frac{1}{2^{n/2}} & \text{if } n \text{ even}, \\
\frac{1}{2^{(n-1)/2}} & \text{if } n \text{ odd}.
\end{cases}
$$
Outline of the proof

- Using the lemma,

\[M = \sum_{n=0}^{\infty} T_z^n(N) \oplus \bigcap_{n=1}^{\infty} T_z^n(M), \]

where \(N = M \ominus T_z(M) \).

- Since elements of \(M \) are analytic on \(\mathbb{D} \), \(\bigcap_{n=1}^{\infty} T_z^n(M) = \{0\} \).
Outline of the proof

- Using the lemma,

\[M = \sum_{n=0}^{\infty} T_z^n(N) \oplus \bigcap_{n=1}^{\infty} T_z^n(M), \]

where \(N = M \ominus T_z(M) \).

- Since elements of \(M \) are analytic on \(\mathbb{D} \), \(\bigcap_{n=1}^{\infty} T_z^n(M) = \{0\} \).

- \(N \) multiplies \(H^2 \) into \(M \) which implies that \(N \subseteq H^\infty \).
Outline of the proof

- Using the lemma,

\[M = \sum_{n=0}^{\infty} T_z^n(N) \oplus \bigcap_{n=1}^{\infty} T_z^n(M), \]

where \(N = M \ominus T_z(M). \)

- Since elements of \(M \) are analytic on \(\mathbb{D}, \bigcap_{n=1}^{\infty} T_z^n(M) = \{0\}. \)

- \(N \) multiplies \(H^2 \) into \(M \) which implies that \(N \subseteq H^\infty. \)

- \(\text{dim}(N) = 1. \)

- Take \(b \) a unit vector in \(N. \) Then \(\{bz^n\}_{n=0}^{\infty} \) is an orthogonal basis for \(M. \) Therefore, \(bH^2 \) is dense in \(M. \)
Outline of the proof

- Using the lemma,

\[M = \sum_{n=0}^{\infty} T_z^n(N) \oplus \bigcap_{n=1}^{\infty} T_z^n(M), \]

where \(N = M \ominus T_z(M) \).

- Since elements of \(M \) are analytic on \(\mathbb{D} \), \(\bigcap_{n=1}^{\infty} T_z^n(M) = \{0\} \).

- \(N \) multiplies \(H^2 \) into \(M \) which implies that \(N \subseteq H^\infty \).

- \(\text{dim}(N) = 1 \).

- Take \(b \) a unit vector in \(N \). Then \(\{bz^n\}_{n=0}^{\infty} \) is an orthogonal basis for \(M \). Therefore, \(bH^2 \) is dense in \(M \).

- \(T_z \) shifts this orthogonal basis.
Theorem (A. Shields, 1974)

$T \in \mathcal{B}(H)$ is an injective weighted shift if and only if T shifts an orthogonal basis of H.
Theorem

Let M be a Hilbert space contained in H^2. Suppose the operator T_z, which denotes multiplication by z, is well defined on M, and satisfies:

(i) There exists a $\delta > 0$ such that $\delta \|f\|_M \leq \|T_z f\|_M \leq \|f\|_M$ for all $f \in M$.

(ii) For each $n \in \mathbb{N}$, $T_z^n T_z^{n+1}(M) \subseteq T_z(M)$ (the adjoint of T_z is with respect to the inner product on M).

Then T_z acts as a weighted shift on M, and there exists a $b \in H^\infty$ such that

$$M = \overline{bH^2} \quad \text{(the closure is in the norm of } M)$$

and

$$\|bf\|_M \leq \|f\|_2 \quad \text{for all } f \in H^2.$$
Remark

When is bH^2 closed in M, that is, when can we have $M = bH^2$?
Remark

When is bH^2 closed in M, that is, when can we have $M = bH^2$?

The subspace bH^2 is closed in $M \iff$ there exists a $\delta > 0$ such that

$$\delta \|f\|_M \leq \|T_z^n f\|_M \leq \|f\|_M$$

(1)

for all $f \in M$ and all $n \geq 0$.

Example

Choose $\{\beta_n\}$ such that $c \leq \beta_n + 1 \leq \beta_n$ for some $c > 0$ and for all n.

Take $\beta_n = (n + 3)^{1/(n+3)}$ for $n \geq 0$.
Remark

When is bH^2 closed in M, that is, when can we have $M = bH^2$?

The subspace bH^2 is closed in $M \iff$ there exists a $\delta > 0$ such that
\[
\delta \| f \|_M \leq \| T^n_z f \|_M \leq \| f \|_M
\]
for all $f \in M$ and all $n \geq 0$.

Example

Choose $\{\beta_n\}$ such that $c \leq \beta_{n+1} \leq \beta_n$ for some $c > 0$ and for all n.

Take $\beta_n = (n+3)^{1/(n+3)}$ for $n \geq 0$.
Important consequences

Corollary (Singh and Singh, 1991)

Let M be a Hilbert space contained in H^2 as a vector subspace and such that $T_z(M) \subseteq M$ and let T_z act isometrically on M. Then there exists a $b \in H^\infty$ such that $M = bH^2$, and $\|bf\|_M = \|f\|_2$ for all $f \in H^2$.

The above result generalizes the result of de Branges and therefore of Beurling as well. Hence our result also implies these two classical results.