Subnormality of operators of class Q

Jan Stochel

coauthors: S. Chavan, Z. J. Jabłoński, I. B. Jung

OTOA 2018, December 13-19, Bangalore
The Cauchy dual operator T' of a left-invertible operator $T \in B(H)$ is defined by

$$T' = T(T^* T)^{-1}.$$

If T is left-invertible, then T' is again left-invertible and

$$(T')' = T,$$

$$T^* T' = I \text{ and } T' T = I.$$

This notion has been introduced and studied by Shimorin in the context of the wandering subspace problem for Bergman-type operators (2001).
The Cauchy dual (operator) T' of a left-invertible operator $T \in B(\mathcal{H})$ is defined by

$$T' = T(T^* T)^{-1}.$$

If T is left-invertible, then T' is again left-invertible and

$$(T')' = T,$$

$$T^* T' = I \quad \text{and} \quad T' T = I.$$

This notion has been introduced and studied by Shimorin in the context of the wandering subspace problem for Bergman-type operators (2001).
The Cauchy dual (operator) T' of a left-invertible operator $T \in \mathcal{B}(\mathcal{H})$ is defined by

$$T' = T(T^* T)^{-1}.$$

If T is left-invertible, then T' is again left-invertible and

$$(T')' = T, \quad T^* T' = I \quad \text{and} \quad T'^* T = I.$$

This notion has been introduced and studied by Shimorin in the context of the wandering subspace problem for Bergman-type operators (2001).
Given \(m \geq 1 \), we say that an operator \(T \in B(\mathcal{H}) \) is an \(m \)-isometry if \(B_m(T) = 0 \), where

\[
B_m(T) = \sum_{k=0}^{m} (-1)^k \binom{m}{k} T^* T^k.
\]

We say that \(T \) is:
- completely hyperexpansive if \(B_m(T) \leq 0 \) for all \(m \geq 1 \).
- 2-hyperexpansive if \(B_2(T) \leq 0 \).
- 2-hyperexpansive operator \(\leadsto \) Richter (1988)
- \(m \)-isometric operator \(\leadsto \) Agler (1990)
- completely hyperexpansive operator \(\leadsto \) Athavale (1996)
- a 2-isometry is \(m \)-isometric for every \(m \geq 2 \), and thus it is completely hyperexpansive,
 - a 2-hyperexpansive (e.g. 2-isometric) operator is left-invertible and its Cauchy dual \(T' \) is a contraction.
Complete hyperexpansivity; \(m \)-isometries

Given \(m \geq 1 \), we say that an operator \(T \in \mathcal{B}(\mathcal{H}) \) is an \(m \)-isometry if \(B_m(T) = 0 \), where

\[
B_m(T) = \sum_{k=0}^{m} (-1)^k \binom{m}{k} T^* k T^k.
\]

We say that \(T \) is:

- completely hyperexpansive if \(B_m(T) \leq 0 \) for all \(m \geq 1 \).
- 2-hyperexpansive if \(B_2(T) \leq 0 \).

- 2-hyperexpansive operator \(\rightsquigarrow \) Richter (1988)
- \(m \)-isometric operator \(\rightsquigarrow \) Agler (1990)
- completely hyperexpansive operator \(\rightsquigarrow \) Athavale (1996)
- a 2-isometry is \(m \)-isometric for every \(m \geq 2 \), and thus it is completely hyperexpansive,
- a 2-hyperexpansive (e.g. 2-isometric) operator is left-invertible and its Cauchy dual \(T' \) is a contraction.
Complete hyperexpansivity; m-isometries

- Given $m \geq 1$, we say that an operator $T \in \mathcal{B}(\mathcal{H})$ is an m-isometry if $B_m(T) = 0$, where

$$B_m(T) = \sum_{k=0}^{m} (-1)^k \binom{m}{k} T^* k T^k.$$

We say that T is:
- completely hyperexpansive if $B_m(T) \leq 0$ for all $m \geq 1$.
- 2-hyperexpansive if $B_2(T) \leq 0$.
- 2-hyperexpansive operator \rightsquigarrow Richter (1988)
- m-isometric operator \rightsquigarrow Agler (1990)
- completely hyperexpansive operator \rightsquigarrow Athavale (1996)
- a 2-isometry is m-isometric for every $m \geq 2$, and thus it is completely hyperexpansive,
- a 2-hyperexpansive (e.g. 2-isometric) operator is left-invertible and its Cauchy dual T' is a contraction.
Complete hyperexpansivity; m-isometries

Given $m \geq 1$, we say that an operator $T \in B(\mathcal{H})$ is an m-isometry if $B_m(T) = 0$, where

$$B_m(T) = \sum_{k=0}^{m} (-1)^k \binom{m}{k} T^* k T^k.$$

We say that T is:

- **completely hyperexpansive** if $B_m(T) \leq 0$ for all $m \geq 1$.
- **2-hyperexpansive** if $B_2(T) \leq 0$.

- 2-hyperexpansive operator \rightsquigarrow Richter (1988)
- m-isometric operator \rightsquigarrow Agler (1990)
- completely hyperexpansive operator \rightsquigarrow Athavale (1996)

- a 2-isometry is m-isometric for every $m \geq 2$, and thus it is completely hyperexpansive,
- a 2-hyperexpansive (e.g. 2-isometric) operator is left-invertible and its Cauchy dual T' is a contraction.
An operator $T \in B(\mathcal{H})$ is said to be:

- **hyponormal** if $TT^* \leq T^*T$ (Halmos 1950),
- **subnormal** if there exist a Hilbert space \mathcal{K} and a normal operator $N \in B(\mathcal{K})$, i.e. $N^*N = NN^*$, such that $\mathcal{H} \subseteq \mathcal{K}$ and $Th = Nh$ for all $h \in \mathcal{H}$ (Halmos 1950),
- **quasinormal** if $TTT^* = TT^*T$ (A. Brown 1953).

Quasinormal operators are subnormal and subnormal operators are hyponormal, but not reversely (if \mathcal{H} is infinite dimensional).
An operator $T \in B(\mathcal{H})$ is said to be:

- **hyponormal** if $TT^* \leq T^* T$ (Halmos 1950),
- **subnormal** if there exist a Hilbert space \mathcal{K} and a normal operator $N \in B(\mathcal{K})$, i.e. $N^* N = NN^*$, such that $\mathcal{H} \subseteq \mathcal{K}$ and $Th = Nh$ for all $h \in \mathcal{H}$ (Halmos 1950),
- **quasinormal** if $TTT^* = TT^* T$ (A. Brown 1953).

Quasinormal operators are subnormal and subnormal operators are hyponormal, but not reversely (if \mathcal{H} is infinite dimensional).
The Cauchy dual subnormality problem

- The map $T \mapsto T'$ sends
 - ♣ 2-hyperexpansive operators into hyponormal contractions (Shimorin 2002),
 - ♣ completely hyperexpansive unilateral weighted shifts into subnormal contractions (Athavale 1996).

- This leads to the Cauchy dual subnormality problem originally posed by Chavan (2007):
 - Is the Cauchy dual of a completely hyperexpansive operator a subnormal contraction?

- The Cauchy dual operator of a 2-hyperexpansive operator is power hyponormal contractions (Chavan 2013).

- The answer is NO even for 2-isometries (Anand, Chavan, Jablonski, JS 2017).
The map $T \mapsto T'$ sends

- 2-hyperexpansive operators into hyponormal contractions (Shimorin 2002),
- completely hyperexpansive unilateral weighted shifts into subnormal contractions (Athavale 1996).

This leads to the Cauchy dual subnormality problem originally posed by Chavan (2007):

- Is the Cauchy dual of a completely hyperexpansive operator a subnormal contraction?
- The Cuchy dual operator of a 2-hyperexpansive operator is power hyponormal contractions (Chavan 2013).
- The answer is NO even for 2-isometries (Anand, Chavan, Jablonski, JS 2017).
The Cauchy dual subnormality problem

- The map $T \mapsto T'$ sends
 - ♣ 2-hyperexpansive operators into hyponormal contractions (Shimorin 2002),
 - ♣ completely hyperexpansive unilateral weighted shifts into subnormal contractions (Athavale 1996).

- This leads to the Cauchy dual subnormality problem originally posed by Chavan (2007):

- **Is the Cauchy dual of a completely hyperexpansive operator a subnormal contraction?**

- The Cauchy dual operator of a 2-hyperexpansive operator is power hyponormal contractions (Chavan 2013).

- The answer is NO even for 2-isometries (Anand, Chavan, Jablonski, JS 2017).
The map $T \mapsto T'$ sends
- 2-hyperexpansive operators into hyponormal contractions (Shimorin 2002),
- completely hyperexpansive unilateral weighted shifts into subnormal contractions (Athavale 1996).

This leads to the Cauchy dual subnormality problem originally posed by Chavan (2007):

- Is the Cauchy dual of a completely hyperexpansive operator a subnormal contraction?

The Cauchy dual operator of a 2-hyperexpansive operator is power hyponormal contractions (Chavan 2013).

The answer is NO even for 2-isometries (Anand, Chavan, Jablonski, JS 2017).
The Cauchy dual subnormality problem

- The map $T \mapsto T'$ sends
 - ♣ 2-hyperexpansive operators into hyponormal contractions (Shimorin 2002),
 - ♣ completely hyperexpansive unilateral weighted shifts into subnormal contractions (Athavale 1996).

- This leads to the Cauchy dual subnormality problem originally posed by Chavan (2007):

 - Is the Cauchy dual of a completely hyperexpansive operator a subnormal contraction?

- The Cauchy dual operator of a 2-hyperexpansive operator is power hyponormal contractions (Chavan 2013).

- The answer is NO even for 2-isometries (Anand, Chavan, Jablonski, JS 2017).
The following question was addressed in (ACJS 2017):

- find subclasses of the class of 2-isometries for which the Cauchy dual subnormality problem has an affirmative solution.

It was proved in (ACJS 2017) that this is the case for:

- 2-isometries satisfying the kernel condition

\[T^* T(\ker(T^*)) \subseteq \ker(T^*), \]

- the so-called quasi-Brownian isometries.

A recent generalization: in the class of quasi-Brownian isometries the map \(T \mapsto T' \) sends bijectively hyperexpansive operators onto subnormal contractions (Badea, Suciu 2018).

The following question was addressed in (ACJS 2017):
• find subclasses of the class of 2-isometries for which the Cauchy dual subnormality problem has an affirmative solution.

It was proved in (ACJS 2017) that this is the case for:
• 2-isometries satisfying the kernel condition

\[T^* T(\ker(T^*)) \subseteq \ker(T^*), \]

• the so-called quasi-Brownian isometries.

A recent generalization: in the class of quasi-Brownian isometries the map \(T \mapsto T' \) sends bijectively hyperexpansive operators onto subnormal contractions (Badea, Suciu 2018).

Affirmative solutions

• The following question was addressed in (ACJS 2017):
 • find subclasses of the class of 2-isometries for which the Cauchy dual subnormality problem has an affirmative solution.

• It was proved in (ACJS 2017) that this is the case for:
 • 2-isometries satisfying the kernel condition

\[T^* T(\ker(T^*)) \subseteq \ker(T^*), \]

• the so-called quasi-Brownian isometries.

• A recent generalization: in the class of quasi-Brownian isometries the map \(T \mapsto T' \) sends bijectively hyperexpansive operators onto subnormal contractions (Badea, Suciu 2018).

• Quasi-Brownian isometries = \(\triangle_\gamma \)-regular 2-isometries (Majdak, Mbekhta, Suciu 2016) generalize Brownian isometries studied by Agler and Stankus (1995-1996).
The following question was addressed in (ACJS 2017):
- find subclasses of the class of 2-isometries for which the Cauchy dual subnormality problem has an affirmative solution.

It was proved in (ACJS 2017) that this is the case for:
- 2-isometries satisfying the kernel condition
 \[T^* T(\ker(T^*)) \subseteq \ker(T^*), \]
- the so-called quasi-Brownian isometries.

A recent generalization: in the class of quasi-Brownian isometries the map \(T \mapsto T' \) sends bijectively hyperexpansive operators onto subnormal contractions (Badea, Suciu 2018).

A block matrix representation

Theorem

If $T \in \mathcal{B}(\mathcal{H})$, then TFAE:

(i) T is a quasi-Brownian isometry (resp., Brownian isometry),

(ii) T has a block matrix form

$$
T = \begin{bmatrix}
V & E \\
0 & U
\end{bmatrix}
$$

with respect to an orthogonal decomposition $\mathcal{H} = \mathcal{H}_1 \oplus \mathcal{H}_2$, where $V \in \mathcal{B}(\mathcal{H}_1)$, $E \in \mathcal{B}(\mathcal{H}_2, \mathcal{H}_1)$ and $U \in \mathcal{B}(\mathcal{H}_2)$ are such that

V isometry, $V^*E = 0$, U isometry, $UE^*E = E^*EU$ \hspace{1cm} (2)

(resp., V isometry, $V^*E = 0$, U unitary, $UE^*E = E^*EU$), \hspace{1cm} (3)

(iii) T is either an isometry or it has the block matrix form (1) with respect to a nontrivial orthogonal decomposition $\mathcal{H} = \mathcal{H}_1 \oplus \mathcal{H}_2$, where $V \in \mathcal{B}(\mathcal{H}_1)$, $E \in \mathcal{B}(\mathcal{H}_2, \mathcal{H}_1)$ and $U \in \mathcal{B}(\mathcal{H}_2)$ satisfy (2) (resp. (3)) and $\ker E = \{0\}$.

Jan Stochel coauthors: S. Chavan, Z. J. Jabło´nski, I. B. Jung

Subnormality of operators of class Q
Aims of the talk

- This leads to a question why this phenomenon can happen.
- We will attempt to answer this by indicating and testing a certain class of operators closed for the operation of taking the Cauchy dual.

For this, we embed the class of quasi-Brownian isometries into an essentially larger class of operators having the 2×2 block matrix representation described by (1) and (2), not requiring that U (the bottom right corner) is an isometry.

The entry U can be replaced by a more general operator, namely by a normal, a quasinormal or a subnormal operator; \mathcal{N}, \mathcal{Q} and \mathcal{S} denote the respective classes of operators.

The most challenging problem is to characterize subnormality and complete hyperexpansivity within these classes. In my talk I will concentrate on the class \mathcal{Q}.
Aims of the talk

- This leads to a question why this phenomenon can happen.
 - We will attempt to answer this by indicating and testing a certain class of operators closed for the operation of taking the Cauchy dual.

For this, we embed the class of quasi-Brownian isometries into an essentially larger class of operators having the 2×2 block matrix representation described by (1) and (2), not requiring that U (the bottom right corner) is an isometry.

The entry U can be replaced by a more general operator, namely by a normal, a quasinormal or a subnormal operator; \mathcal{N}, \mathcal{Q} and \mathcal{S} denote the respective classes of operators.

The most challenging problem is to characterize subnormality and complete hyperexpansivity within these classes. In my talk I will concentrate on the class \mathcal{Q}.

Jan Stochel [4ex]
coauthors: S. Chavan, Z. J. J. Subnormality of operators of class \mathcal{Q}.
Aims of the talk

- This leads to a question why this phenomenon can happen.
- We will attempt to answer this by indicating and testing a certain class of operators closed for the operation of taking the Cauchy dual.

For this, we embed the class of quasi-Brownian isometries into an essentially larger class of operators having the 2×2 block matrix representation described by (1) and (2), not requiring that U (the bottom right corner) is an isometry.

The entry U can be replaced by a more general operator, namely by a normal, a quasinormal or a subnormal operator; \mathcal{N}, \mathcal{Q} and \mathcal{S} denote the respective classes of operators.

The most challenging problem is to characterize subnormality and complete hyperexpansivity within these classes. In my talk I will concentrate on the class \mathcal{Q}.
Aims of the talk

− This leads to a question why this phenomenon can happen.
− We will attempt to answer this by indicating and testing a certain class of operators closed for the operation of taking the Cauchy dual.

For this, we embed the class of quasi-Brownian isometries into an essentially larger class of operators having the 2×2 block matrix representation described by (1) and (2), not requiring that U (the bottom right corner) is an isometry.

The entry U can be replaced by a more general operator, namely by a normal, a quasinormal or a subnormal operator; \mathcal{N}, \mathcal{Q} and \mathcal{S} denote the respective classes of operators.

The most challenging problem is to characterize subnormality and complete hyperexpansivity within these classes. In my talk I will concentrate on the class \mathcal{Q}.
The class \mathcal{Q}

Definition

We say that an operator $T \in \mathcal{B}(\mathcal{H})$ is of class \mathcal{Q} if T has a block matrix form

$$
T = \begin{bmatrix}
V & E \\
0 & Q
\end{bmatrix}
$$

with respect to a nontrivial orthogonal decomposition $\mathcal{H} = \mathcal{H}_1 \oplus \mathcal{H}_2$, where $V \in \mathcal{B}(\mathcal{H}_1)$, $E \in \mathcal{B}(\mathcal{H}_2, \mathcal{H}_1)$ and $Q \in \mathcal{B}(\mathcal{H}_2)$ satisfy the conditions

- V isometry, $V^*E = 0$, $QE^*E = E^*EQ$,
- Q is a quasinormal operator.

If this is the case, then we write $T = \begin{bmatrix} V & E \\ 0 & Q \end{bmatrix} \in \mathcal{Q}_{\mathcal{H}_1, \mathcal{H}_2}$.
Proposition

Suppose \(T = \begin{bmatrix} V & E \\ 0 & Q \end{bmatrix} \in \mathcal{Q}_{\mathcal{H}_1, \mathcal{H}_2} \) is left invertible. Then \(\Omega := E^*E + Q^*Q \) is invertible in \(\mathcal{B}(\mathcal{H}) \), \(T' \in \mathcal{Q}_{\mathcal{H}_1, \mathcal{H}_2} \) and

\[
T' = \begin{bmatrix} V & \tilde{E} \\ 0 & \tilde{Q} \end{bmatrix},
\]

where

\[
\tilde{E} = E\Omega^{-1} \quad \text{and} \quad \tilde{Q} = Q\Omega^{-1}.
\]
Suppose $T = \begin{bmatrix} V & E \\ 0 & Q \end{bmatrix} \in \mathcal{Q}_{\mathcal{H}_1, \mathcal{H}_2}$. Then

(i) $T^n = \begin{bmatrix} V^n & E^n \\ 0 & Q^n \end{bmatrix} \in \mathcal{Q}_{\mathcal{H}_1, \mathcal{H}_2}$ for any $n \in \mathbb{Z}_+$, where

$$E_n = \begin{cases} 0 & \text{if } n = 0, \\ \sum_{j=1}^{n} V^{j-1} EQ^{n-j} & \text{if } n \geq 1, \end{cases}$$

(ii) $T^*n T^n = \begin{bmatrix} I & 0 \\ 0 & \Omega_n \end{bmatrix} \in \mathcal{Q}_{\mathcal{H}_1, \mathcal{H}_2}$ for any $n \in \mathbb{Z}_+$, where

$$\Omega_n = \begin{cases} I & \text{if } n = 0, \\ E^* E \left(\sum_{j=0}^{n-1} (Q^* Q)^j \right) + (Q^* Q)^n & \text{if } n \geq 1. \end{cases}$$
Corollary

Suppose \(T = \begin{bmatrix} V & E \\ 0 & Q \end{bmatrix} \in \mathcal{Q}_{\mathcal{H}_1, \mathcal{H}_2} \). Then \(T \) is an isometry if and only if

\[
|Q|^2 + |E|^2 = I,
\]

(4)

or equivalently if and only if

\[
\sigma(|Q|, |E|) \subseteq \mathbb{T}_+,
\]

where \(\mathbb{T}_+ := \{(x_1, x_2) \in \mathbb{R}^2_+: x_1^2 + x_2^2 = 1\} \).

A pair \((T_1, T_2) \in \mathcal{B}(\mathcal{H})^2\) is said to be a spherical isometry if \(T_1^* T_1 + T_2^* T_2 = I \). Thus (4) means that the pair \((|Q|, |E|)\) is a spherical isometry.
Isometries

Corollary

Suppose $T = \begin{bmatrix} V & E \\ 0 & Q \end{bmatrix} \in \mathcal{Q}_{\mathcal{H}_1, \mathcal{H}_2}$. Then T is an isometry if and only if

$$|Q|^2 + |E|^2 = I,$$

(4)

or equivalently if and only if

$$\sigma(|Q|, |E|) \subseteq \mathbb{T}_+,$$

where $\mathbb{T}_+ := \{(x_1, x_2) \in \mathbb{R}_+^2 : x_1^2 + x_2^2 = 1\}$.

A pair $(T_1, T_2) \in \mathcal{B(H)}^2$ is said to be a spherical isometry if $T_1^* T_1 + T_2^* T_2 = I$. Thus (4) means that the pair $(|Q|, |E|)$ is a spherical isometry.
\(\triangle_T \)-regularity

Proposition

Suppose \(T = \begin{bmatrix} V & E \\ 0 & Q \end{bmatrix} \in \mathcal{Q}_{\mathcal{H}_1, \mathcal{H}_2} \). Set \(\triangle_T = T^*T - I \) and \(\Omega = E^*E + Q^*Q \). Then the following conditions are equivalent:

(i) \(T \) is \(\triangle_T \)-regular, i.e., \(\triangle_T \geq 0 \) and \(\triangle_T T = \triangle_T^{1/2} T \triangle_T^{1/2} \) with \(\triangle_T = T^*T - I \),

(ii) \(\triangle_T \geq 0 \),

(iii) \(\Omega \geq I \),

(iv) \(\sigma(|Q|, |E|) \cap \mathbb{D}_+ = \emptyset \), where \(\mathbb{D}_+ = \{ (x_1, x_2) \in \mathbb{R}_+^2 : x_1^2 + x_2^2 < 1 \} \).
Theorem

Suppose \(T = \begin{bmatrix} V & E \\ 0 & Q \end{bmatrix} \in \mathcal{Q}_{\mathcal{H}_1, \mathcal{H}_2} \). Then the following conditions are equivalent:

(i) \(T \) is a quasi-Brownian isometry,

(ii) \(T \) is a 2-isometry,

(iii) \((|Q|^2 - I)(|Q|^2 + |E|^2 - I) = 0,\)

(iv) \(\sigma(|Q|, |E|) \subseteq \mathbb{T}_+ \cup (\{1\} \times \mathbb{R}_+) \),

(v) there exists an orthogonal decomposition \(\mathcal{H}_2 = \mathcal{H}_{2,1} \oplus \mathcal{H}_{2,2} \) such that \(\mathcal{H}_{2,1} \) and \(\mathcal{H}_{2,2} \) reduce \(Q \) and \(|E| \), \(Q|_{\mathcal{H}_{2,1}} \) is an isometry and \(\left(Q|_{\mathcal{H}_{2,2}}, |E|_{\mathcal{H}_{2,2}} \right) \) is a spherical isometry.
Proposition

Suppose $T = \begin{bmatrix} V & E \\ 0 & Q \end{bmatrix} \in Q_{\mathcal{H}_1, \mathcal{H}_2}$. Then the following conditions are equivalent:

(i) T is a Brownian isometry, i.e., T is a 2-isometry such that
\[\triangle_T \triangle_T^* \triangle_T = 0, \]

(ii) $(|Q|^2 - I)(|Q|^2 + |E|^2 - I) = 0$

and

$(|Q^*|^2 - I)(|Q|^2 + |E|^2 - I)^2 = 0,$

(iii) there exists an orthogonal decomposition $\mathcal{H}_2 = \mathcal{H}_{2,1} \oplus \mathcal{H}_{2,2}$ such that $\mathcal{H}_{2,1}$ and $\mathcal{H}_{2,2}$ reduce Q and $|E|$, $Q|_{\mathcal{H}_{2,1}}$ is an isometry,

\[\left(Q|_{\mathcal{H}_{2,2}}, |E||_{\mathcal{H}_{2,2}} \right) \text{ is a spherical isometry and the spaces } \mathcal{H}_{2,1} \ominus Q(\mathcal{H}_{2,1}) \text{ and } |E|(\mathcal{H}_{2,1}) \text{ are orthogonal.} \]
Suppose $T = \begin{bmatrix} V & E \\ 0 & Q \end{bmatrix} \in \mathcal{O}_{\mathcal{H}_1, \mathcal{H}_2}$. Then the following conditions are equivalent:

(i) T is subnormal,

(ii) $\sigma(|Q|, |E|) \subseteq \bar{D}_+ \cup \left((1, \infty) \times \{0\}\right)$,

where $\sigma(|Q|, |E|)$ stands for the Taylor spectrum of $(|Q|, |E|)$ and

$\bar{D}_+ = \{(x_1, x_2) \in \mathbb{R}_+^2 : x_1^2 + x_2^2 < 1\}$.
We say that a multi-sequence \(\{ \gamma_\alpha \}_{\alpha \in \mathbb{Z}^d_+} \subseteq \mathbb{R} \) is a Hamburger moment multi-sequence (or Hamburger moment sequence if \(d = 1 \)) if there exists a positive Borel measure \(\mu \) on \(\mathbb{R}^d \), called a representing measure of \(\{ \gamma_\alpha \}_{\alpha \in \mathbb{Z}^d_+} \), such that

\[
\gamma_\alpha = \int_{\mathbb{R}^d} x^\alpha \, d\mu(x), \quad \alpha \in \mathbb{Z}^d_+.
\] (5)

If such \(\mu \) is unique, then \(\{ \gamma_\alpha \}_{\alpha \in \mathbb{Z}^d_+} \) is said to be determinate. If (5) holds for some positive Borel measure \(\mu \) on \(\mathbb{R}^d \) supported in \(\mathbb{R}^d_+ \), then \(\{ \gamma_\alpha \}_{\alpha \in \mathbb{Z}^d_+} \) is called a Stieltjes moment multi-sequence (or Stieltjes moment sequence if \(d = 1 \)).
Lambert’s characterization of subnormality

Theorem (Lambert 1976)

An operator $T \in B(H)$ is subnormal if and only if for every $f \in H$, the sequence $\{\|T^n f\|^2\}_{n=0}^{\infty}$ is a Stieltjes moment sequence, i.e., there exists a positive Borel measure μ_f on $[0, \infty)$ such that

$$\|T^n f\|^2 = \int_{[0, \infty)} t^n d\mu_f(t), \quad n = 0, 1, 2, \ldots.$$
Lemma

Let $G : \mathcal{B}(X) \to \mathcal{B}(\mathcal{H})$ be a regular Borel spectral measure on a topological Hausdorff space X such that $\text{supp} \ G$ is compact. Suppose that for every $n \in \mathbb{Z}_+$, $\varphi_n : X \to \mathbb{R}$ is a continuous function. Then TFAE:

(i) $\left\{ \int_X \varphi_n(x) \langle G(dx)f, f \rangle \right\}_{n=0}^\infty$ is a Stieltjes moment sequence for every $f \in \mathcal{H}$,

(ii) $\left\{ \varphi_n(x) \right\}_{n=0}^\infty$ is a Stieltjes moment sequence for every $x \in \text{supp} \ G$.

Jan Stochel [4ex] coauthors: S. Chavan, Z. J. J. Subnormality of operators of class Q
A characterization of subnormality

Theorem

Let $G : \mathcal{B}(X) \rightarrow \mathcal{B}(\mathcal{H})$ be a regular Borel spectral measure on a topological Hausdorff space X such that $\text{supp } G$ is compact and let $T \in \mathcal{B}(\mathcal{H})$ be such that

$$T^* T^n = \int_X \varphi_n \, dG, \quad n \in \mathbb{Z}_+,$$

where $\varphi_n : X \rightarrow \mathbb{R}, n \in \mathbb{Z}_+$, are continuous functions. Suppose that for every $x \in X$, there exists a compactly supported complex Borel measure μ_x on \mathbb{R}_+ such that

$$\varphi_n(x) = \int_{\mathbb{R}_+} t^n \, d\mu_x(t), \quad n \in \mathbb{Z}_+, \ x \in X.$$

Then T is subnormal if and only if for every $x \in \text{supp } G$, μ_x is a positive measure.
Let \(d \in \mathbb{N} \), \(\mu \) be a compactly supported complex Borel measure on \(\mathbb{R}^d \) and

\[
\gamma_{\alpha} = \int_{\mathbb{R}^d} x^\alpha d\mu(x), \quad \alpha \in \mathbb{Z}^d_+.
\]

Then the following conditions are equivalent:

(i) \(\{\gamma_{\alpha}\}_{\alpha \in \mathbb{R}^d} \) is a Hamburger moment multi-sequence,

(ii) \(\mu \) is a positive measure.

Moreover, if (i) holds, then \(\{\gamma_{\alpha}\}_{\alpha \in \mathbb{R}^d} \) is determinate.
Lemma

Suppose $d \geq 1$ and μ_1 and μ_2 are compactly supported complex Borel measures on \mathbb{R}^d such that

$$\int_{\mathbb{R}^d} x^\alpha d\mu_1(x) = \int_{\mathbb{R}^d} x^\alpha d\mu_2(x), \quad \alpha \in \mathbb{Z}_+^d.$$

Then $\mu_1 = \mu_2$.

Jan Stochel [4ex] coauthors: S. Chavan, Z. J. J. Subnormality of operators of class Q
Any sequence \(\{ \gamma_n \}_{n=0}^{\infty} \subseteq \mathbb{R} \) has infinitely many representing complex measures. Indeed, by [Boas 1938, Durán], there is a complex Borel measure \(\rho \) on \(\mathbb{R} \) such that

\[
\gamma_n = \int_{\mathbb{R}} x^n d\rho(x), \quad n \in \mathbb{Z}_+.
\]

Let \(\{ s_n \}_{n=0}^{\infty} \) be an indeterminate Hamburger moment sequence with two distinct representing measures \(\mu_1 \) and \(\mu_2 \). Then \(\mu := \mu_1 - \mu_2 \) is a signed Borel measure on \(\mathbb{R} \) such that (Stieltjes)

\[
\int_{\mathbb{R}} x^n d\mu(x) = 0, \quad n \in \mathbb{Z}_+.
\]

As a consequence, we have

\[
\gamma_n = \int_{\mathbb{R}} x^n d(\rho + \vartheta \mu)(x), \quad n \in \mathbb{Z}_+, \quad \vartheta \in \mathbb{C}.
\]

Moreover, the mapping \(\mathbb{C} \ni \vartheta \mapsto \rho + \vartheta \mu \) is injective.
Lemma

Let for \(k = 1, 2, \) \(\{\gamma_k(n)\}_{n=0}^{\infty} \) be a Hamburger moment sequence having a compactly supported representing measure \(\mu_k \) and let \(p \in \mathbb{C}[x] \) be such that

\[
\gamma_1(n) = \gamma_2(n) + p(n), \quad n \in \mathbb{Z}_+.
\] (6)

Then \(p \) is a constant polynomial and \(\mu_1 = \mu_2 + p(0)\delta_1 \).

Corollary

Suppose \(p \in \mathbb{C}[x] \). Then the following conditions are equivalent:

(i) \(\{p(n)\}_{n=0}^{\infty} \) is a Hamburger moment sequence,

(ii) \(\{p(n)\}_{n=0}^{\infty} \) is a Stieltjes moment sequence,

(iii) \(p \) is a constant polynomial and \(p(0) \geq 0 \).
Lemma

Let for \(k = 1, 2 \), \(\{\gamma_k(n)\}_{n=0}^{\infty} \) be a Hamburger moment sequence having a compactly supported representing measure \(\mu_k \) and let \(p \in \mathbb{C}[x] \) be such that

\[
\gamma_1(n) = \gamma_2(n) + p(n), \quad n \in \mathbb{Z}_+.
\]

(6)

Then \(p \) is a constant polynomial and \(\mu_1 = \mu_2 + p(0)\delta_1 \).

Corollary

Suppose \(p \in \mathbb{C}[x] \). Then the following conditions are equivalent:

(i) \(\{p(n)\}_{n=0}^{\infty} \) is a Hamburger moment sequence,

(ii) \(\{p(n)\}_{n=0}^{\infty} \) is a Stieltjes moment sequence,

(iii) \(p \) is a constant polynomial and \(p(0) \geq 0 \).
References

THANK YOU!