What is Brownian motion on a noncommutative manifold?

Uwe Franz (Université de Bourgogne Franche-Comté)

KBS Fest, ISI Bangalore, India

12-14 December 2019

UWE FRANZ (UBFC) (KBS FEST 2019)

BM on NC manifolds

2-14/12/2019 1/3

Several approaches, many answers, e.g.

• BM on Fock spaces (symmetric=Bose, Fermi, *q*-, free, boolean, monotone, etc., etc.)

- BM on Fock spaces (symmetric=Bose, Fermi, q-, free, boolean, monotone, etc., etc.)
- Lévy's chacterisation (Junge, Collins, Avsec, ...):
 - $(b_t)_{t\geq 0}$ is a martingale
 - $(b_t^2 t)_{t \ge 0}$ is a martingale
 - (*b*_t) has a.s. continuous paths

- BM on Fock spaces (symmetric=Bose, Fermi, q-, free, boolean, monotone, etc., etc.)
- Lévy's chacterisation (Junge, Collins, Avsec, ...):
 - $(b_t)_{t\geq 0}$ is a martingale
 - $(b_t^2 t)_{t \ge 0}$ is a martingale
 - (*b*_t) has a.s. continuous paths
- Schürmann&Skeide: Inf. gen. on *SU*_q(2) (1995-1999)

- BM on Fock spaces (symmetric=Bose, Fermi, q-, free, boolean, monotone, etc., etc.)
- Lévy's chacterisation (Junge, Collins, Avsec, ...):
 - $(b_t)_{t\geq 0}$ is a martingale
 - $(b_t^2 t)_{t \ge 0}$ is a martingale
 - (*b*_t) has a.s. continuous paths
- Schürmann&Skeide: Inf. gen. on *SU*_q(2) (1995-1999)
- Sinha&Goswami: Quantum Stochastic Processes and Noncommutative Geometry (2007)

- BM on Fock spaces (symmetric=Bose, Fermi, q-, free, boolean, monotone, etc., etc.)
- Lévy's chacterisation (Junge, Collins, Avsec, ...):
 - $(b_t)_{t\geq 0}$ is a martingale
 - $(b_t^2 t)_{t \ge 0}$ is a martingale
 - (*b*_t) has a.s. continuous paths
- Schürmann&Skeide: Inf. gen. on *SU*_q(2) (1995-1999)
- Sinha&Goswami: Quantum Stochastic Processes and Noncommutative Geometry (2007)
- Banica&Goswami: Dirac operators on NC spheres (2010)

- BM on Fock spaces (symmetric=Bose, Fermi, q-, free, boolean, monotone, etc., etc.)
- Lévy's chacterisation (Junge, Collins, Avsec, ...):
 - $(b_t)_{t\geq 0}$ is a martingale
 - $(b_t^2 t)_{t \ge 0}$ is a martingale
 - (*b*_t) has a.s. continuous paths
- Schürmann&Skeide: Inf. gen. on $SU_q(2)$ (1995-1999)
- Sinha&Goswami: Quantum Stochastic Processes and Noncommutative Geometry (2007)
- Banica&Goswami: Dirac operators on NC spheres (2010)
- Das&Goswami: BM on NC manifolds (2012)

We tried to combine and develop the NC and CQG approaches and find new (explicit) examples:

• Cipriani&F&Kula: central BM on CQG (2014)

We tried to combine and develop the NC and CQG approaches and find new (explicit) examples:

- Cipriani&F&Kula: central BM on CQG (2014)
- Das&F&Wang: Invariant Markov semigroupps on NC spheres (2019)

We tried to combine and develop the NC and CQG approaches and find new (explicit) examples:

- Cipriani&F&Kula: central BM on CQG (2014)
- Das&F&Wang: Invariant Markov semigroupps on NC spheres (2019)
- F&Kula&Lindsay&Skeide: *SU_q(N)* (Back to *q*-deformed CQG, 2019-2020)

We tried to combine and develop the NC and CQG approaches and find new (explicit) examples:

- Cipriani&F&Kula: central BM on CQG (2014)
- Das&F&Wang: Invariant Markov semigroupps on NC spheres (2019)
- F&Kula&Lindsay&Skeide: *SU_q(N)* (Back to *q*-deformed CQG, 2019-2020)

The question

What is a NC manifold????

remains interesting.

So far we have limited ourselves to CQG and their homogeneous spaces...

We obtained:

• Classif. of central convolution semigroups on CQG's O_N^+ , S_N^+

We obtained:

- Classif. of central convolution semigroups on CQG's O_N^+ , S_N^+
- Classif. of O_N^{\times} -invariant Markov semigroups on NC spheres S_{N-1}^{\times} , $\times \in \{\emptyset, *, +\}$

We obtained:

- Classif. of central convolution semigroups on CQG's O_N^+ , S_N^+
- Classif. of O_N^{\times} -invariant Markov semigroups on NC spheres S_{N-1}^{\times} , $\times \in \{\emptyset, *, +\}$
- Laplace and Dirac operators, their spectrum, their spectral dimension

We obtained:

- Classif. of central convolution semigroups on CQG's O_N^+ , S_N^+
- Classif. of O_N^{\times} -invariant Markov semigroups on NC spheres S_{N-1}^{\times} , $\times \in \{\emptyset, *, +\}$
- Laplace and Dirac operators, their spectrum, their spectral dimension
- Ultra- and hypercontractivity: F&Hong&Lemeux&Ulrich&Zhang 2017, see also Brannan&Vergnioux&Youn 2019

Outline

- Introduction and motivation
- 2 The classical case
- 3 Examples of NC manifold (with additional structure): CQG
- 4 Lévy processes on CQG
- **(5)** Central and invariant Markov semigroups
- 6 Classification via Schürmann triples
- The Hunt's Formula for $SU_q(N)$

¹This work was supported by the French "Investissements d'Avenir" program, project ISITE-BFC (contract ANR-15-IDEX-03).

UWE FRANZ (UBFC) (KBS FEST 2019)

1

What is BM?

What are Lévy processes?

- Stochastic processes with independent and stationary increments. This requires a semigroup structure on the state space.
- Equivalently, time- and space-homogeneous Markov processes. This requires that all points of the state space "look the same".
- Arise in many models of random phenonema

What is BM?

What are Lévy processes?

- Stochastic processes with independent and stationary increments. This requires a semigroup structure on the state space.
- Equivalently, time- and space-homogeneous Markov processes. This requires that all points of the state space "look the same".
- Arise in many models of random phenonema

What is Brownian motion?

- A very nice Lévy process: continuous paths, isotropic, etc.
- On compact simple connected Lie groups: a Markov process with continuous paths and bi-invariant generator (Laplace-Beltrami operator).
- On a Riemann manifold: A process whose Markov semigroup is generated by the Laplacian (defined via the metric)
- Arise in many models of random phenonema

BM on NC manifolds

What is a Compact Quantum Group?

- A possibly noncommutative analog of the algebra of continuous functions on a compact group.
- A CQG algebra (ie., a particularly nice involutive bialgebra! (has an antipode and a Haar state, spanned by the coefficients of unitary corepresentations)

The orthogonal group O_N

Theorem (Weyl)

The C*-algebra $C(O_N)$ of continuous functions on the orthogonal group O_N is the universal commutative C*-algebra generated by

$$x_{jk}$$
 $1 \le j, k \le N$

with the relations

$$x_{jk}^* = x_{jk}$$
$$\sum_{\ell=1}^N x_{j\ell} x_{k\ell} = \delta_{jk} = \sum_{\ell=1}^N x_{\ell j} x_{\ell k}$$

UWE FRANZ (UBFC) (KBS FEST 2019)

The free orthogonal quantum group O_N^+

Definition (Wang)

The (universal or full) C*-algebra $C_u(O_N^+)$ (also denoted $A_o(I_N)$ or $A_o(N)$) of "continuous functions" on the free orthogonal quantum group O_N^+ is defined as the universal C*-algebra generated by

$$x_{jk}$$
 $1 \le j, k \le N$

with the relations

$$\begin{aligned} x_{jk}^* &= x_{jk} \\ \sum_{\ell=1}^N x_{j\ell} x_{k\ell} &= \delta_{jk} = \sum_{\ell=1}^N x_{\ell j} x_{\ell k} \end{aligned}$$

Compact Quantum Groups: definition

Definition (Woronowicz)

A compact quantum group is a pair $\mathbb{G} = (A, \Delta)$, where A is a unital C^* -algebra, $\Delta : A \to A \otimes A$ is a unital, *-homomorphism which is coassociative (i.e. $(\Delta \otimes id_A) \circ \Delta = (id_A \otimes \Delta) \circ \Delta$) such that the quantum cancellation rules are satisfied

$$\overline{\mathrm{Lin}}((1\otimes \mathsf{A})\Delta(\mathsf{A}))=\overline{\mathrm{Lin}}((\mathsf{A}\otimes 1)\Delta(\mathsf{A}))=\mathsf{A}\otimes\mathsf{A}.$$

A is called the algebra of "continuous functions" on \mathbb{G} and denoted by $C(\mathbb{G})$.

O_N^+ is a compact quantum group

Remark

There exists a unique unital *-algebra homomorphism $\Delta : C_u(O_N^+) \to C_u(O_N^+) \otimes C_u(O_N^+)$ with

$$\Delta(x_{jk}) = \sum_{\ell=1}^N x_{j\ell} \otimes x_{\ell k}.$$

 $O_N^+ = (C_u(O_N^+), \Delta)$ is a compact quantum group.

The Haar state

Theorem (Woronowicz)

Let (A, Δ) be a compact quantum group. There exists unique state (called the Haar state) h on A such that

$$a \star h := (h \otimes id) \circ \Delta(a) = h \star a = h(a)I, \quad a \in A.$$

In general, *h* is not a trace. If it is, we say $\mathbb{G} = (A, \Delta)$ is of Kac type. *h* need not be faithful, either.

The reduced C^{*}-algebra $C_r(O_N^+)$ of "cont. functions" on O_N^+

For $N \ge 3$ the Haar state of O_N^+ is not faithful on $C_u(O_N^+)$. One defines the reduced C*-algebra $C_r(O_N^+)$ of "cont. functions" on O_N^+ as the image of the GNS representation of $C_u(O_N^+)$ w.r.t. *h*.

 \Rightarrow By construction *h* is faithful on $C_r(O_N^+)$.

The *-Hopf algebra $\operatorname{Pol}(O_N^+)$ of "polynomials" on O_N^+

 $\operatorname{Pol}(O_N^+)$ is the *-subalgebra of $C_u(O_N^+)$ or $C_r(O_N^+)$ generated by x_{jk} , $1 \leq j, k \leq N$. It has a natural *-Hopf algebra structure.

 O_N^+ is of Kac type, i.e. the Haar state h is a trace and $S^2 = id$.

(人間) (人) (人) (人) (人)

For $q \in \mathbb{R} \setminus \{0\}$ the universal C*-algebra generated by α, γ and the relations

$$\alpha^* \alpha + \gamma^* \gamma = 1 \qquad \alpha \alpha^* + q^2 \gamma \gamma^* = 1$$
$$\gamma \gamma^* = \gamma^* \gamma \qquad \alpha \gamma = q \gamma \alpha \qquad \alpha \gamma^* = q \gamma^* \alpha$$

can be turned into a compact quantum group, with the comultiplication

$$\Delta \left(\begin{array}{cc} \alpha & -\boldsymbol{q}\gamma^* \\ \gamma & \alpha^* \end{array}\right) = \left(\begin{array}{cc} \alpha & -\boldsymbol{q}\gamma^* \\ \gamma & \alpha^* \end{array}\right) \otimes \left(\begin{array}{cc} \alpha & -\boldsymbol{q}\gamma^* \\ \gamma & \alpha^* \end{array}\right).$$

- For q = 1: $C(SU_1(2)) = C(SU(2)) = \{$ continuous functions on the special unitary group $SU(2)\};$
- $SU_q(2)$ is coamenable, i.e., $C_u(SU(2)) \cong C_r(SU(2))$, type I, etc.

More examples: $SU_q(N)$

For $q \in (0,1)$ and $N \in \mathbb{N}$ the universal unital C*-algebra $A = C(SU_q(N))$ is generated by $u = (u_{jk})_{j,k=1}^N$ with the relations *a)* (unitarity condition):

$$\sum_{s=1}^{N} u_{js} u_{ks}^* = \delta_{jk} \mathbf{1} = \sum_{s=1}^{N} u_{sj}^* u_{sk} \tag{U}$$

b) (twisted determinant condition): for all $\tau \in S_N$,

$$\sum_{\sigma \in S_N} (-q)^{i(\sigma)} u_{\sigma(1),\tau(1)} u_{\sigma(2),\tau(2)} \dots u_{\sigma(N),\tau(N)} = (-q)^{i(\tau)} \mathbf{1}$$
 (TD)

 $(i(\tau) =$ number of inversions) and equipped with the coproduct

$$\Delta(u_{jk}) = \sum_{s=1}^N u_{js} \otimes u_{sk}.$$

Inclusions between these quantum groups

We have

$$SU_q(N-1) \subseteq SU_q(N).$$

i.e. there exist surjective quantum group morphisms

$$C(SU_q(N)) \rightarrow C(SU_q(N-1)).$$

The morphism is $s_{N-1} : C(SU_q(N)) \to C(SU_q(N-1))$,

 $\begin{pmatrix} u_{11} & \dots & u_{1,N-1} & u_{1N} \\ \vdots & \ddots & \vdots & \vdots \\ u_{N-1,1} & \dots & u_{N-1,N-1} & u_{N-1,N} \\ u_{N1} & \dots & u_{N,N-1} & u_{NN} \end{pmatrix} \mapsto \begin{pmatrix} u_{11} & \dots & u_{1,N-1} & 0 \\ \vdots & \ddots & \vdots & \vdots \\ u_{N-1,1} & \dots & u_{N-1,N-1} & 0 \\ 0 & \dots & 0 & \mathbf{1} \end{pmatrix}.$

The compact quantum groups $SU_q(N)$ are coamenable, their C*-algebras are type I.

From conv. semigroups to transl.inv. Markov semigroups

Theorem

Let $(\varphi_t)_{t\geq 0}$ be a continuous convolution semigroup of states on $\operatorname{Pol}(\mathbb{G})$, i.e.

$$orall s, t \ge 0, \quad \varphi_{s+t} = \varphi_s \star \varphi_t := (\varphi_s \otimes \varphi_t) \circ \Delta, \ orall s \in \operatorname{Pol}(\mathbb{G}), \quad \lim_{t \searrow 0} \varphi_t(s) = \varphi_0(s) = \varepsilon(s).$$

The semigroup $(T_t)_{t\geq 0}$,

$${\mathcal T}_t = (\mathrm{id} \otimes arphi_t) \circ \Delta : \mathrm{Pol}(\mathbb{G}) o \mathrm{Pol}(\mathbb{G})$$

extends continuously to $C_u(\mathbb{G})$ and $C_r(\mathbb{G})$. The T_t are translation invariant in the sense that

$$\Delta \circ T_t = (\mathrm{id} \otimes T_t) \circ \Delta.$$

UWE FRANZ (UBFC) (KBS FEST 2019)

From transl.inv. Markov semigroups conv. semigroups

Theorem

Let $\mathbb{G} = (A, \Delta)$ be a compact quantum group and $(\mathcal{T}_t)_{t\geq 0}$ a Markov semigroup on $C(\mathbb{G})$. Then $(\mathcal{T}_t|_{\operatorname{Pol}(\mathbb{G})})_{t\geq 0}$ is of the form

 $T_t|_{\operatorname{Pol}(\mathbb{G})} = (\operatorname{id}\otimes\varphi_t)\circ\Delta$

if and only if T_t is translation invariant for all $t \ge 0$.

Corollary

One-to-one correspondence between translation invariant Markov semigroups on $C_r(\mathbb{G})$ and convolution semigroups (and Lévy processes in the sense of Schürmann) on $Pol(\mathbb{G})$.

Lévy processes on compact quantum groups

We have one-to-one correspondences between the following objects:

- Lévy processes $(j_{st})_{0 \le s \le t}$ on $\operatorname{Pol}(\mathbb{G})$
- Translation invariant Markov semigroups $(T_t)_{t\geq 0}$ on $C_r(\mathbb{G})$ or $C_u(\mathbb{G})$
- (Weak-*) cont. convolutions semigroups $(\varphi_t)_{t\geq 0}$ of states on $\operatorname{Pol}(\mathbb{G})$
- Generating functionals $L : \operatorname{Pol}(\mathbb{G}) \to \mathbb{C}$
 - $L(\mathbf{1}) = 0$

•
$$\forall a \in \operatorname{Pol}(\mathbb{G}), L(a^*) = L(a)$$

•
$$\forall a \in \ker \varepsilon, \ L(a^*a) \geq 0$$

Remark

$$L = \left. \frac{\mathrm{d}}{\mathrm{d}t} \right|_{t=0} \varphi_t \quad \longleftrightarrow \quad \varphi_t = \exp_{\star} tL, \quad t \ge 0$$

Central convolution semigroups

Definition

A linear functional $L \in Pol(\mathbb{G})'$ is called central, if $L \star \phi = \phi \star L$ for all $\phi \in Pol(\mathbb{G})'$.

Proposition

If $\mathbb G$ is of Kac type, then $\mathbb E:{\rm Pol}(\mathbb G)\to{\rm Pol}(\mathbb G)_0$ defined by

$$\mathbb{E}(a) = h(a_{(1)}S(a_{(3)}))a_{(2)}$$

satisfies preserves positivity. Furthermore, it is a conditional expectation onto

$$\operatorname{Pol}(\mathbb{G})_0 = \{ a \in \operatorname{Pol}(\mathbb{G}); \tau \circ \Delta(a) = \Delta(a) \}.$$

UWE FRANZ (UBFC) (KBS FEST 2019)

Classifyng central convolution semigroups

Important observation

In order to classify central generating functionals on a compact quantum group \mathbb{G} of Kac type, it is sufficient to classify the generating functionals on its algebra $\operatorname{Pol}(\mathbb{G})_0$ of central polynomial functions.

For $n \ge 2$, we have $\operatorname{Pol}(O_n^+)_0 \cong \operatorname{Pol}([-n, n]).$ and $\varepsilon(f) = f(n)$ for $f \in \operatorname{Pol}(O_n^+)_0 \cong \operatorname{Pol}([-n, n]).$ The generating functionals on $\operatorname{Pol}(O_n^+)_0 \cong \operatorname{Pol}([-n, n])$ are of the form

$$L_{b,\nu}f = -bf'(n) + \int_{-n}^{n} (f(x) - f(n)) \frac{\mathrm{d}\nu(x)}{n-x}$$

where b > 0 is a real number and ν a finite measure on [-n, n].

Spectrum of the generator

In the case b = 1, $\nu = 0$, the eigenvalues of the generator are

$$\lambda_s = -rac{U_s'(N)}{U_s(N)} \sim -rac{s}{N} \qquad ext{for } s \in \mathbb{N}.$$

This gives spectral dimension

$$d_N = \begin{cases} 3 & \text{if } N = 2, \\ \infty & \text{if } N \ge 3. \end{cases}$$

Using norm estimates

$$\|a\|_{\infty} \leq D(s+1)\|a\|_2$$
 for $a \in V_s$

due to Vergnioux, we can prove ultra- and hypercontractivity.

See F&Hong&Lemeux&Ulrich&Zhang 2017, or Brannan&Vergnioux&Youn 2019 for lower bounds and improved estimates.

Uwe Franz (UBFC) (KBS Fest 2019)

BM on NC manifolds

Invariant Markov semigroups on NC spheres

We can define the free sphere via its algebra of "continuous functions@

$$C_u(S^{N-1}_+) = C^*\left(x_1, \cdots, x_N \middle| x_i = x_i^*, \sum_i x_i^2 = 1\right)$$

It has an action of the free orthogonal group defined by

$$\alpha: C_u(S^{N-1}_+) \to C_u(O^+_N) \otimes C_u(S^{N-1}_+), \qquad \alpha(x_i) = \sum_{j=1}^N x_j \otimes x_{ji}.$$

Similar procedure (use bi-inv. functions and functionals instead of central ones) yields

$$\lambda_s = -bq'_s(1) + \int_{-1}^1 \frac{q_s(x) - 1}{x - 1} \mathrm{d}\nu(x)$$

for the eigenvalues gen. of inv. Markov semigroups on the free sphere, with $b \ge 0$ and ν a finite measure on [-1,1]. The $(q_s)_{s\in\mathbb{N}}$ are a family of orthogonal polynomials on [-1,1], for the distribution of x_{11} w.r.t. to the Haar state on O_N^+ .

For b = 1, $\nu = 0$, we get

$$d_L = \begin{cases} 2 & \text{if } N = 2, \\ +\infty & \text{if } N \ge 3, \end{cases}$$

for the spectral dimension.

General approach

To classify Lévy processes, translation invariant Markov semigroups, etc., we can classify

Schürmann triples (π, η, L)

- π : Pol(G) → L(H) is a unital *-representation of Pol(G) on some (pre-)Hilbert space H
- $\eta : \operatorname{Pol}(\mathbb{G}) \to H$ is a π - ε -cocycle, i.e.

$$\eta(ab) = \pi(a)\eta(b) + \eta(a)\varepsilon(b)$$

 L : Pol(G) → C is a hermitian linear functional, whose ε-ε-coboundary is

$$\mathrm{Pol}(\mathbb{G})\otimes\mathrm{Pol}(\mathbb{G})
i(a,b)\mapsto-\langle\eta(a^*),\eta(b)
angle$$

i.e.

$$-\langle \eta(a^*), \eta(b)
angle = arepsilon(a)L(b) - L(ab) + L(a)arepsilon(b)$$

Gaussian generating functionals

Definition

A generating functional $L : Pol(\mathbb{G}) \to \mathbb{C}$ is called Gaussian, if one (and all) of the following equivalent conditions are satisfied:

•
$$L|_{K_3} = 0$$

• $\eta|_{K_2} = 0$
• η is an ε - ε -derivation
• $\pi|_{K_1} = 0$
• $\pi = \varepsilon(\cdot) \operatorname{id}_H$

Here we denote

$$K_n = \operatorname{span}\{a_1 \cdots a_n; a_1, \ldots, a_n \in \ker \varepsilon\}.$$

Generating functionals on $SU_q(N)$

General strategy: " $\pi \rightsquigarrow \eta \rightsquigarrow L$ "

- Step 1: It is not difficult to classify the Gaussian generating functionals on $SU_q(N)$, they correspond to classical Gauss processes on the "classical torus" \mathbb{T}^{N-1} , resp.
- Step 2: decompose representation and cocycle (π, η, L) according to

$$egin{aligned} & \mathcal{H}_{\mathrm{Gauss}} = igcap_{j=1}^{N} \kerig(\pi(u_{jj} - \mathrm{id}_{\mathcal{H}})ig), & \mathcal{H}_{N} = \kerig(\pi(u_{NN} - \mathrm{id}_{\mathcal{H}})ig)^{\perp}, \ & \mathcal{H} = \mathcal{H}_{\mathrm{Gauss}} \oplus \mathcal{H}_{N} \oplus \mathcal{H}_{\mathrm{Rest}} \end{aligned}$$

and show that $\eta_N = P_{H_N}\eta$ can be approximated by coboundaries, and that $\eta - \eta_{\text{Gauss}} - \eta_N$ "lives" on $SU_q(N-1)$, resp.

• Step 3: Induction

We get a decomposition of the triple

 $(\pi,\eta,L) = (\pi|_{H_N},\eta_N,L_N) \oplus \cdots \oplus (\pi|_{H_2},\eta_2,L_2) \oplus (\pi|_{H_{\text{Gauss}}},\eta_{\text{Gauss}},L_{\text{Gauss}})$

where η_N, \ldots, η_2 are limits of coboundaries.

Corollary

Any non-Gaussian cocycle on $\operatorname{Pol}(SU_q(N))$ admits a generating functional, i.e., these algebras the property NGC introduced by F&Gerhold&Thom (2015).

Open Problems

• Identify "nice" (ie. central) generating functionals on $SU_q(N)$ (\rightsquigarrow Brownian motion, Laplace operator)

We know (in principle) the central generating functionals on $SU_q(2)$, thanks to De Commer&Freslon&Yamashita(2014)'s work on the CCAP

 Do we have similar results for the q-deformation G_q of the other simple compact Lie groups, e.g., O_q(N) or Sp_q(N) (cf. Rosso, Klimyk&Schmüdgen)?

(We did also $U_q(N)$)

Selected references

- F. Cipriani, U. Franz, A. Kula, Symmetries of Lévy processes, their Markov semigroups and potential theory on compact quantum groups, J. Funct. Anal. 266, pp. 2789-2944, 2014.
- B. Das, U. Franz, X. Wang, Invariant Markov semigroups on quantum homogeneous spaces, to appear in J. Noncomm. Geom.
- U. Franz, A. Kula, M. Lindsay, M. Skeide, Hunt's formula for the compact quantum groups $SU_q(N)$ and $U_q(N)$, 2019-2020
- D. Goswami, K.B. Sinha, *Quantum Stochastic Processes and Noncommutative Geometry*, Cambridge University Press, 2007.
- M. Schürmann, *White Noise on Bialgebras*, Lecture Notes in Math. 1544, Springer 1993.
- S.L. Woronowicz, Compact quantum groups, Les Houches, Session LXIV, 1995, Quantum Symmetries, Elsevier 1998.