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KBS Fest, ISI Bangalore, India

12-14 December 2019

Uwe Franz (UBFC) (KBS Fest 2019) BM on NC manifolds 12-14/12/2019 1 / 31



What is noncomm. BM?

Several approaches, many answers, e.g.

BM on Fock spaces (symmetric=Bose, Fermi, q-, free, boolean,
monotone, etc., etc.)

Lévy’s chacterisation (Junge, Collins, Avsec, . . .):

(bt)t≥0 is a martingale
(b2t − t)t≥0 is a martingale
(bt) has a.s. continuous paths

Schürmann&Skeide: Inf. gen. on SUq(2) (1995-1999)

Sinha&Goswami: Quantum Stochastic Processes and
Noncommutative Geometry (2007)

Banica&Goswami: Dirac operators on NC spheres (2010)

Das&Goswami: BM on NC manifolds (2012)
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What is NC BM? (cont’d)

We tried to combine and develop the NC and CQG approaches and find
new (explicit) examples:

Cipriani&F&Kula: central BM on CQG (2014)

Das&F&Wang: Invariant Markov semigroupps on NC spheres (2019)

F&Kula&Lindsay&Skeide: SUq(N) (Back to q-deformed CQG,
2019-2020)

The question

What is a NC manifold????

remains interesting.
So far we have limited ourselves to CQG and their homogeneous spaces. . .
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Main results

We obtained:

Classif. of central convolution semigroups on CQG’s O+
N , S+

N

Classif. of O×N -invariant Markov semigroups on NC spheres S×N−1,
× ∈ {∅, ∗,+}
Laplace and Dirac operators, their spectrum, their spectral dimension

Ultra- and hypercontractivity: F&Hong&Lemeux&Ulrich&Zhang
2017, see also Brannan&Vergnioux&Youn 2019
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Outline

1 Introduction and motivation

2 The classical case

3 Examples of NC manifold (with additional structure): CQG

4 Lévy processes on CQG

5 Central and invariant Markov semigroups

6 Classification via Schürmann triples

7 Hunt’s Formula for SUq(N)

1

1This work was supported by the French “Investissements d’Avenir” program, project
ISITE-BFC (contract ANR-15-IDEX-03).
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What is BM?

What are Lévy processes?

Stochastic processes with independent and stationary increments.
This requires a semigroup structure on the state space.

Equivalently, time- and space-homogeneous Markov processes. This
requires that all points of the state space “look the same”.

Arise in many models of random phenonema

What is Brownian motion?

A very nice Lévy process: continuous paths, isotropic, etc.

On compact simple connected Lie groups: a Markov process with
continuous paths and bi-invariant generator (Laplace-Beltrami
operator).

On a Riemann manifold: A process whose Markov semigroup is
generated by the Laplacian (defined via the metric)

Arise in many models of random phenonema
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What is a Compact Quantum Group?

A possibly noncommutative analog of the algebra of continuous
functions on a compact group.

A CQG algebra (ie., a particularly nice involutive bialgebra!
(has an antipode and a Haar state, spanned by the coefficients of
unitary corepresentations)
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The orthogonal group ON

Theorem (Weyl)

The C∗-algebra C (ON) of continuous functions on the orthogonal group
ON is the universal commutative C∗-algebra generated by

xjk 1 ≤ j , k ≤ N

with the relations

x∗jk = xjk
N∑
`=1

xj`xk` = δjk =
N∑
`=1

x`jx`k
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The free orthogonal quantum group O+
N

Definition (Wang)

The (universal or full) C∗-algebra Cu(O+
N ) (also denoted Ao(IN) or Ao(N))

of “continuous functions” on the free orthogonal quantum group O+
N is

defined as the universal C∗-algebra generated by

xjk 1 ≤ j , k ≤ N

with the relations

x∗jk = xjk
N∑
`=1

xj`xk` = δjk =
N∑
`=1

x`jx`k
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Compact Quantum Groups: definition

Definition (Woronowicz)

A compact quantum group is a pair G = (A,∆), where A is a unital
C ∗-algebra, ∆ : A→ A⊗ A is a unital, ∗-homomorphism which is
coassociative (i.e. (∆⊗ idA) ◦∆ = (idA ⊗∆) ◦∆) such that the quantum
cancellation rules are satisfied

Lin((1⊗ A)∆(A)) = Lin((A⊗ 1)∆(A)) = A⊗ A.

A is called the algebra of “continuous functions” on G and denoted by
C (G).
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O+
N is a compact quantum group

Remark

There exists a unique unital ∗-algebra homomorphism
∆ : Cu(O+

N )→ Cu(O+
N )⊗ Cu(O+

N ) with

∆(xjk) =
N∑
`=1

xj` ⊗ x`k .

O+
N = (Cu(O+

N ),∆) is a compact quantum group.

Uwe Franz (UBFC) (KBS Fest 2019) BM on NC manifolds 12-14/12/2019 11 / 31



The Haar state

Theorem (Woronowicz)

Let (A,∆) be a compact quantum group. There exists unique state (called
the Haar state) h on A such that

a ? h := (h ⊗ id) ◦∆(a) = h ? a = h(a)I , a ∈ A.

In general, h is not a trace. If it is, we say G = (A,∆) is of Kac type.
h need not be faithful, either.
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Two more algebras of “functions” on O+
N

The reduced C∗-algebra Cr (O+
N ) of “cont. functions” on O+

N

For N ≥ 3 the Haar state of O+
N is not faithful on Cu(O+

N ). One defines
the reduced C∗-algebra Cr (O+

N ) of “cont. functions” on O+
N as the image

of the GNS representation of Cu(O+
N ) w.r.t. h.

⇒ By construction h is faithful on Cr (O+
N ).

The ∗-Hopf algebra Pol(O+
N ) of “polynomials” on O+

N

Pol(O+
N ) is the ∗-subalgebra of Cu(O+

N ) or Cr (O+
N ) generated by xjk ,

1 ≤ j , k ≤ N. It has a natural ∗-Hopf algebra structure.

O+
N is of Kac type, i.e. the Haar state h is a trace and S2 = id.
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Another example: SUq(2)

For q ∈ R\{0} the universal C∗-algebra generated by α, γ and the relations

α∗α + γ∗γ = 1 αα∗ + q2γγ∗ = 1

γγ∗ = γ∗γ αγ = qγα αγ∗ = qγ∗α

can be turned into a compact quantum group, with the comultiplication

∆

(
α −qγ∗
γ α∗

)
=

(
α −qγ∗
γ α∗

)
⊗
(
α −qγ∗
γ α∗

)
.

For q = 1: C (SU1(2)) = C (SU(2)) = {continuous functions on the
special unitary group SU(2)};
SUq(2) is coamenable, i.e., Cu(SU(2)) ∼= Cr (SU(2)), type I, etc.
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More examples: SUq(N)

For q ∈ (0, 1) and N ∈ N the universal unital C∗-algebra A = C
(
SUq(N)

)
is generated by u = (ujk)Nj ,k=1 with the relations

a) (unitarity condition):

N∑
s=1

ujsu
∗
ks = δjk1 =

N∑
s=1

u∗sjusk (U)

b) (twisted determinant condition): for all τ ∈ SN ,∑
σ∈SN

(−q)i(σ)uσ(1),τ(1)uσ(2),τ(2) . . . uσ(N),τ(N) = (−q)i(τ)1 (TD)

(i(τ) = number of inversions) and equipped with the coproduct

∆(ujk) =
N∑

s=1

ujs ⊗ usk .
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Inclusions between these quantum groups

We have
SUq(N − 1) ⊆ SUq(N).

i.e. there exist surjective quantum group morphisms

C (SUq(N))→ C (SUq(N − 1)).

The morphism is sN−1 : C (SUq(N))→ C (SUq(N − 1)),
u11 . . . u1,N−1 u1N

...
. . .

...
...

uN−1,1 . . . uN−1,N−1 uN−1,N
uN1 . . . uN,N−1 uNN

 7→


u11 . . . u1,N−1 0
...

. . .
...

...
uN−1,1 . . . uN−1,N−1 0

0 . . . 0 1

 .

The compact quantum groups SUq(N) are coamenable, their C∗-algebras
are type I.
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From conv. semigroups to transl.inv. Markov semigroups

Theorem

Let (ϕt)t≥0 be a continuous convolution semigroup of states on Pol(G),
i.e.

∀s, t ≥ 0, ϕs+t = ϕs ? ϕt := (ϕs ⊗ ϕt) ◦∆,

∀a ∈ Pol(G), lim
t↘0

ϕt(a) = ϕ0(a) = ε(a).

The semigroup (Tt)t≥0,

Tt = (id⊗ ϕt) ◦∆ : Pol(G)→ Pol(G)

extends continuously to Cu(G) and Cr (G).
The Tt are translation invariant in the sense that

∆ ◦ Tt = (id⊗ Tt) ◦∆.
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From transl.inv. Markov semigroups conv. semigroups

Theorem

Let G = (A,∆) be a compact quantum group and (Tt)t≥0 a Markov
semigroup on C (G).
Then (Tt |Pol(G))t≥0 is of the form

Tt |Pol(G) = (id⊗ ϕt) ◦∆

if and only if Tt is translation invariant for all t ≥ 0.

Corollary

One-to-one correspondence between translation invariant Markov
semigroups on Cr (G) and convolution semigroups (and Lévy processes in
the sense of Schürmann) on Pol(G).
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Lévy processes on compact quantum groups

We have one-to-one correspondences between the following objects:

Lévy processes (jst)0≤s≤t on Pol(G)

Translation invariant Markov semigroups (Tt)t≥0 on Cr (G) or Cu(G)

(Weak-*) cont. convolutions semigroups (ϕt)t≥0 of states on Pol(G)

Generating functionals L : Pol(G)→ C
L(1) = 0
∀a ∈ Pol(G), L(a∗) = L(a)
∀a ∈ ker ε, L(a∗a) ≥ 0

Remark

L =
d

dt

∣∣∣∣
t=0

ϕt ←→ ϕt = exp? tL, t ≥ 0
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Central convolution semigroups

Definition

A linear functional L ∈ Pol(G)′ is called central, if L ? φ = φ ? L for all
φ ∈ Pol(G)′.

Proposition

If G is of Kac type, then E : Pol(G)→ Pol(G)0 defined by

E(a) = h
(
a(1)S(a(3))

)
a(2)

satisfies preserves positivity. Furthermore, it is a conditional expectation
onto

Pol(G)0 = {a ∈ Pol(G); τ ◦∆(a) = ∆(a)}.
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Classifyng central convolution semigroups

Important observation

In order to classify central generating functionals on a compact quantum
group G of Kac type, it is sufficient to classify the generating functionals
on its algebra Pol(G)0 of central polynomial functions.
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Example: The free orthogonal quantum group O+
n

For n ≥ 2, we have
Pol(O+

n )0 ∼= Pol([−n, n]).

and ε(f ) = f (n) for f ∈ Pol(O+
n )0 ∼= Pol([−n, n]).

The generating functionals on Pol(O+
n )0 ∼= Pol([−n, n]) are of the form

Lb,ν f = −bf ′(n) +

∫ n

−n

(
f (x)− f (n)

)dν(x)

n − x

where b > 0 is a real number and ν a finite measure on [−n, n].

Uwe Franz (UBFC) (KBS Fest 2019) BM on NC manifolds 12-14/12/2019 22 / 31



Spectrum of the generator

In the case b = 1, ν = 0, the eigenvalues of the generator are

λs = −U ′s(N)

Us(N)
∼ − s

N
for s ∈ N.

This gives spectral dimension

dN =

{
3 if N = 2,
∞ if N ≥ 3.

Using norm estimates

‖a‖∞ ≤ D(s + 1)‖a‖2 for a ∈ Vs

due to Vergnioux, we can prove ultra- and hypercontractivity.

See F&Hong&Lemeux&Ulrich&Zhang 2017, or Brannan&Vergnioux&Youn
2019 for lower bounds and improved estimates.
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Invariant Markov semigroups on NC spheres

We can define the free sphere via its algebra of ”continuous functions@

Cu(SN−1
+ ) = C ∗

(
x1, · · · , xN

∣∣∣xi = x∗i ,
∑
i

x2i = 1

)

It has an action of the free orthogonal group defined by

α : Cu(SN−1
+ )→ Cu(O+

N )⊗ Cu(SN−1
+ ), α(xi ) =

N∑
j=1

xj ⊗ xji .
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Spectrum for SN−1
+

Similar procedure (use bi-inv. functions and functionals instead of central
ones) yields

λs = −bq′s(1) +

∫ 1

−1

qs(x)− 1

x − 1
dν(x)

for the eigenvalues gen. of inv. Markov semigroups on the free sphere, with
b ≥ 0 and ν a finite measure on [−1, 1]. The (qs)s∈N are a family of
orthogonal polynomials on [−1, 1], for the distribution of x11 w.r.t. to the
Haar state on O+

N .

For b = 1, ν = 0, we get

dL =

{
2 if N = 2,

+∞ if N ≥ 3,

for the spectral dimension.
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General approach

To classify Lévy processes, translation invariant Markov semigroups, etc.,
we can classify

Schürmann triples (π, η, L)

π : Pol(G)→ L(H) is a unital ∗-representation of Pol(G) on some
(pre-)Hilbert space H

η : Pol(G)→ H is a π-ε-cocycle, i.e.

η(ab) = π(a)η(b) + η(a)ε(b)

L : Pol(G)→ C is a hermitian linear functional, whose
ε-ε-coboundary is

Pol(G)⊗ Pol(G) 3 (a, b) 7→ −〈η(a∗), η(b)〉

i.e.
−〈η(a∗), η(b)〉 = ε(a)L(b)− L(ab) + L(a)ε(b)

Uwe Franz (UBFC) (KBS Fest 2019) BM on NC manifolds 12-14/12/2019 26 / 31



Gaussian generating functionals

Definition

A generating functional L : Pol(G)→ C is called Gaussian, if one (and all)
of the following equivalent conditions are satisfied:

L|K3 = 0

η|K2 = 0

η is an ε-ε-derivation

π|K1 = 0

π = ε(·)idH

Here we denote

Kn = span{a1 · · · an; a1, . . . , an ∈ ker ε}.
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Generating functionals on SUq(N)

General strategy: “π  η  L”

Step 1: It is not difficult to classify the Gaussian generating
functionals on SUq(N), they correspond to classical Gauss processes
on the “classical torus” TN−1, resp.

Step 2: decompose representation and cocycle (π, η, L) according to

HGauss =
N⋂
j=1

ker
(
π(ujj − idH)

)
, HN = ker

(
π(uNN − idH)

)⊥
,

H = HGauss ⊕ HN ⊕ HRest

and show that ηN = PHN
η can be approximated by coboundaries, and

that η − ηGauss − ηN “lives” on SUq(N − 1), resp.

Step 3: Induction
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Generating functionals on SUq(N)

We get a decomposition of the triple

(π, η, L) = (π|HN
, ηN , LN)⊕ · · · ⊕ (π|H2 , η2, L2)⊕ (π|HGauss

, ηGauss, LGauss)

where ηN , . . . , η2 are limits of coboundaries.

Corollary

Any non-Gaussian cocycle on Pol(SUq(N)) admits a generating functional,
i.e., these algebras the property NGC introduced by F&Gerhold&Thom
(2015).
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Open Problems

Identify “nice” (ie. central) generating functionals on SUq(N) ( 
Brownian motion, Laplace operator)

We know (in principle) the central generating functionals on SUq(2),
thanks to De Commer&Freslon&Yamashita(2014)’s work on the
CCAP

Do we have similar results for the q-deformation Gq of the other
simple compact Lie groups, e.g., Oq(N) or Spq(N) (cf. Rosso,
Klimyk&Schmüdgen)?

(We did also Uq(N))
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