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Overview:Random Schrédinger operators and the density of states

Density of States

Part 1: The set-up for random Schrodinger operators

Basic random Schrodinger operator:

H,=Ho+ V,
Hilbert space: lattice /2(Z9) or continuum L2(RY)
o Hy deterministic (fixed) self-adjoint operator: Hy = —A, Laplacian
e V,, random potential:
o (Vf)(k) = wif(k), on £*(Z9)
o (Vuf)(x) =D yego wru(x — k)f(x), on L*(RY)

Each w represents a configuration of the potential function.
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Density of States

The set-up for random Schrodinger operators

Randomness: The coupling constants {w; | j € Z9}
e family of independent, identically distributed random variables (iid)

@ random variable wq distributed according to a probability measure p
on R

Single-site potential
o V,, (k) = wiNy, where (My)f)(n) = f(k)dn, for lattice Z9
o Vi,(x) = > yeze wiu(x — k), where u(x) > 0 is a single-site bump
function, for continuum RY

Deterministic spectrum: ¥ C R (fixed) equals o(H,,) almost surely
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Density of States

Finite-volume operators

It is sometimes convenient to work with operators with discrete spectrum:
Restriction to cubes:
AL cube of side-length L >0

H) := H,,|A, plus boundary conditions
Spectrum of H)) is discrete: {E}\w)},,

o N = |A| for lattice Z4
e N = oo for continuum R¢
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Density of States

Density of States

Let / C R be a bounded interval and let £y (/) denote the local spectral
projector.

Average number of eigenvalues per unit volume:

R P
(1) = (BT (1)

Infinite-volume limit gives the density of states measure (DOSm):

lim na(l) = n(l) :/I du,.

|A] =00
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Density of States

Density of States

Two functions associated with the DOSm p, for the probability density p:

Integrated density of states (IDS): The right-continuous cumulative
distribution of the DOSm,

E
N,(E) = ) (o0, E]) = / A (s).

— 00

Density of states function (DOSf)

— dNP

n,(E) := d—E(E)7 so du,(E) = n,(E) dE,

when it exists.
We drop the subscript p.
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Local eigenvalue statistics
Examp

Part 2: Local eigenvalue statistics (LES) overview

Local eigenvalue statistics

Recall the finite-volume restriction: H" := H,|A., plus boundary
conditions

A s di = N
Spectrum of H}) is discrete: {E/'(w)}L,,
Local eigenvalue statistics: Fix Ey € ¥:

N
déb(s) =) S(IA(E}(w) — Eo) —s) ds

Jj=1

¢M(s) is point process on R measuring the average rescaled eigenvalue
spacing around Eg.
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Local eigenvalue statistics (LES) overview

LES ¢(s): a local point process built from rescaled eigenvalues :

ENw) = IA(ENw) — Eo)

Questions:
@ Does & converge to a point process as |A| — oo ?
@ How does one characterize the limiting process?

Answers:

@ Does & converge to a point process as |A| — co 7 YES

@ How does one characterize the limiting process? Depends on £
and the dimension d
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Example 2

LES overview

CONJECTURES:

1. If Ey € X lies in a region for which the localization length ~; of
eigenfunctions for H\ is small compared to L,

lLL—>0, L — oo,

then the limiting point process £, is a Poisson point process.

2. If Ey € X lies in a region for which the localization length 7, of
eigenfunctions for H/\t is large compared to L,

lLL>0, L - oo,

then the limiting point process &, is the same as random matrix theory
GOE.
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Local eigenvalue statistics
Example 2

LES overview

LSD: Level spacing distribution
Order eigenvalues of H: EPw) < EMw) < -+ < Ef(w)
For Eg € X, set Ia = [Eo — \/\\?’ Eo + W] and n(Ep) is the DOST.

#0 | EMw) € . [Nn(Eo)(EL,(w) — EMw)) = x}
#0 T ENw) € Ih}

LSDM\(x; Ip) =

LSD(x) = lim LSDM(x; Ip).

|A] =00

Behavior of LSD(x) depends on Eg in localized or delocalized regime.

Peter D. Hislop - -



Examp

Local eigenvalue statistics
Examp

LES overview

Poisson: Density of the LSD(s) is exponential: P(s) = e~".
Random mstrix theory: Density of LSD(s) follows the Wigner surmise:
P(s) = As’e B, A B>0(8=1GOE, 8 =2 GUE).
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Example 2

LES Results

Random Schrédinger operators on Z9 with £, € ¥
@ Minami: LES &, is a Poisson point process.

@ Germinet-Klopp: LES for eigenvalues is Poisson and LSD with
exponential density.
Random Schrédinger operators on R? with £, ¢ ¥*

@ Hislop-Krishna: LES always have limit points £, that are compound
Poisson processes.

@ Hislop, Kirsch, Krishna: random Schrodinger operators with
O-interactions, LES is Poisson.

@ Dietlein-Elgart: Anderson-type random Schrodinger operators has
LES Poisson at the bottom of the spectrum.
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hd Example 2: Random band matrices

Example 1: Scaled disorder in one-dimension

Scaled disorder random Anderson model:

—|—Z CML i, H = %([—n,n]).

j*fn

L(": Finite difference Laplacian on [—n, n] with simple boundary
conditions

(M;£)(k) = f(j)jx and 0 >0

. . 20
Localization length: v, ~ "~
20 —1
i io: Yo _ n
Scaling ratio: =
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Local eigenvalue statistics
hd Example 2: Random band matrices

Scaled disorder in one dimension

Transition in LES depending on « (Kritchevski, Valko, Virag, Kotani,
Nakano, H-Klopp)
Scaling regimes:

1
0§a<§ =0 LES = Poisson
1 .
o= 3 =1 critical

1
§<a lgln"—>oo LES = Clock

Clock is the LES of the Laplacian L on (?(Z).
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Local eigenvalue statistics
hd Example 2: Random band matrices

Scaled disorder: Basic ideas in the localization regime

Localization regime: 0 < a < 1

Scales: 0 <o’ <a<a <3

Construction of local Hamiltonians H") on scale n’ = n2®": Domain
decomposition: Localization length 7, ~ n>®

Divide A, = [—n, n] into N” disjoint cells Ay (j), with j =1,..., N, of
length n?®", capturing localized wave functions.

Conclusion: With probability close to one, each EV of H&") in [ is close
to an EV of H" )(j), for some j. EVs of HY" )(j) are independent of the
EVs of H\")(j"), for j # j'.
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Local eigenvalue statistics
hd Example 2: Random band matrices

Scaled disorder: Localization estimates on HD(J")

Decompose A, into disjoint subcubes A (j)

Center of Localization (COL): A point j € Ais a COL for an
eigenfunction ¢ of H) if |¢(j)| = maxken |p(k)|.

@ Each COL of EV of H” in some Ay (j)
@ At most one COL in each A, ())
© If COL in Ay (j) then H{" has EV in I, near EV of A,

This holds for a set of configurations Z, so that

P{Z,}>1-n"" Be(0,1)
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Local eigenvalue statistics
hd Example 2: Random band matrices
/
(')

Scaled disorder: localization estimates on H,,

The eigenvalues Ej(w; A(y)(j)) are independent for different j and close
to the EVs of H.":

|Eji(wi n) — Ej(w; Aw (/) < 7"
Conclusion: So with good probability, all the eigenvalues of HU(J") are
described in terms of eigenvalues of the local Hamiltonians H{" )(_/)

The LES of HLE,") can be approximated by those of the independent family
H ().

Peter D. Hislop - -



Example 1: Scaled disorder in one dimension

Local eigenvalue statistics
hd Example 2: Random band matrices

Scaled disorder: Basic idea in the localization regime

Let {X; | j=1,..., N} = family of independent Bernoulli random
variables

o P{X; =1} = pp, for 0 < py < 1;
o P{X=0}=1-pn.

By choosing k points j from {1,..., N} we get
. N _
P X =1h =k = () ) pht = o)
Poisson Limit theorem: If limy_, o, pyN = A > 0 then

H N k N—k _ _—X )‘k
N@w(k)p/\/(l—pm) =e ()
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Local eigenvalue statistics
hd Example 2: Random band matrices

Scaled disorder: LES for H")

Local Hamiltonians: H‘E)n/) = HLE,")|/\,,/
Definition: Bernoulli random variable:

1 TrEe () =1
Ko ={ o

This family is independent. Main calculation:

P{#{j | Xin, () =1} = k}

requires

lim ( d )P{X,,An,g,zuzno(Eo)

n—o0 \ n2¢’

where ng(Ep) is the DOST of the Laplacian at energy Eo.
Conclusion: Apply Poisson Limit Theorem to get Poisson statistics with
intensity measure ng(Ep)ds.
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Example 2: Random band matrices (RBM)

Random band matrices (RBM): Interpolation between Wigner matrices of
the Gaussian Orthogonal Ensemble (GOE) and RSO.

Finite-size RBM: HY, (2N +1) x (2N + 1) real random band matrix
Bandwidth: W =2L + 1.

H) has matrix elements:

1 (v if li—jl<L
_”N_ _ ij =
<el7 Lej> ﬁW{ 0 if ‘I—J|>L 5
with
~N<ij<N.
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Local eigenvalue statistics 3
hd Example 2: Random band matrices

Overview of RBM

Random variables : v;; = vj;, within the band, independent and
identically distributed (up to symmetry).

Example: v; Gaussian distributed, E{v;} = 0 and Var{v;} = E{vj} =1

Two extremes:

@ W = 3. Disorder only on the diagonal-1D lattice random
Schrodinger operator: Complete localization

@ W =2N+ 1. GOE: Complete delocalization
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Local eigenvalue statistics 3
hd Example 2: Random band matrices

Overview of RBM

Interpolating models: RBM W = N%, with 0 < a <1
CONJECTURES:
1. For0<a< %: then

@ The limiting point process &, is a Poisson point process;

@ The eigenvectors are exponentially localized and the spectrum is
pure point almost surely pure point.

2. For 1 < a < 1: then
@ The limiting point process &, is that of the GOE;

@ The eigenvectors are spatially extended.

The model exhibits a Localization—Delocalization transition
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RBM: Delocalization regime

Delocalization regime better understood than Localization regime
Main results: W > Ni (Bourgade, Yau, Yin)

1. Eigenvectors extended: If HY,1) = E, then |[vg|% < N71H7 for
most eigenvectors with probability > 1 — N—P

2.Semi-circle law: IDS N(E) ~ & f_Ez /(4 — s%)4 ds, with good

probability

3. GOE eigenvalue statistics : k-point correlation functions ps\l,() converge
to otk

0 PGOE
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Local eigenvalue statistics 3
hd Example 2: Random band matrices

RBM: Localization regime

L~ N for0<a< % Since d = 1, there is localization at all energies.

3 finite-V estimates required for H}Y (Peled, Schenker, Shamis, Sodin,
Brodie-H):

@ Wegner estimate
@ Minami estimate

© Localization bounds

Basic Technique: Average over diagonal random variables v;;,
~N<j<N.
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Local eigenvalue statistics 3
hd Example 2: Random band matrices

RBM: Localization regime

For m = 1, Wegner estimate:
E {tr Ex(/)} < Cwl?(2N +1)|/|
For m = 2, Minami estimate:
E {tr En(1) (ix En(1) — 1)} < Cu(LY2(2N + 1)]1])?

Equivalent:
P{tr En(l) > 2} < Cu(LY*(2N + 1)|1])?

Remainder: Focus on fixed-band width random matrices: L independent
of N.
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hd Example 2: Random band matrices

RBM: Spectral averaging

Warm-up: a priori bounds on resolvents via Spectral Averaging

Let H,, self-adjoint matrix with its diagonal entries [H,,]; = wj iid,
probability density function p with rapid decay

© For any 0 < s < 1, there exists a finite constant C, s > 0,
independent of N, so that for any z € C, we have

E{Kej, (Ho—2)"er) } <G, (1)

@ There exists a finite constant C, > 0, independent of N, so that for
any z € C,

E {s <ej, (H, —2)" ej>} <C, (2)
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hd Example 2: Random band matrices

RBM: Localization bounds

Theorem (Localization at all energies)

For any s € (0,1), and for all z € C, there exist finite constants G >0
and as; > 0, depending on L and s (but uniform in z € C), such that

I[-E{Kej7 (HY - z)fl ek>

S .
} < C, e sl

Proof combines Schenker's bound for A € [—r, r] C R, localization
bounds for |A| > R via Aizenman-Molchanov, and subharmonicity to
extend to C.
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RBM:Density of states

Local density of states function n'(E):

N
1 1 . -
n}(E) = 7T2N+1j§N !mE{%<eja(H[V —E—ie)'e)}

Infinite N density of states function n{°(E):
linfinite N operatorH[® is ergodic under translation in Z so:

0 (E) = lim B{Seo, (H* — £ — ie) Lev) .

Let HY be a random symmetric band matrix with fixed bandwidth L and
random iid entries (up to symmetry) having finite moments and a density
satisfying p(\) ~ A\=2. Then, for each E € R, we have

n’LV(E) — ni°(E).
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RBM: Poisson point process

Local eigenvalue statistics (LES): Rescaled eigenvalue point process

del(s) = Y a(N(EMY)—E) —s) ds

j=—N,...,N
Let Iy = E+ §[-1.1]
Main technical result:

lim P{tr £, (HN)} = n°(E)|).
N— oo

Given this, localization, Wegner and Minami:

The LES for the fixed-width random band matrices Hf in the limit
N — oo is a Poisson point process with intensity measure n{°(E)ds.
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