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Part 1: The set-up for random Schrödinger operators

Basic random Schrödinger operator:

Hω = H0 + Vω

Hilbert space: lattice `2(Zd) or continuum L2(Rd)

H0 deterministic (fixed) self-adjoint operator: H0 = −∆, Laplacian

Vω random potential:

(Vωf )(k) = ωk f (k), on `2(Zd)
(Vωf )(x) =

∑
k∈Zd ωku(x − k)f (x), on L2(Rd)

Each ω represents a configuration of the potential function.
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The set-up for random Schrödinger operators

Randomness: The coupling constants {ωj | j ∈ Zd}
family of independent, identically distributed random variables (iid)

random variable ω0 distributed according to a probability measure ρ
on R

Single-site potential

Vω(k) = ωkΠk , where (Πk)f )(n) = f (k)δnk , for lattice Zd

Vω(x) =
∑

k∈Zd ωku(x − k), where u(x) ≥ 0 is a single-site bump

function, for continuum Rd

Deterministic spectrum: Σ ⊂ R (fixed) equals σ(Hω) almost surely
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Finite-volume operators

It is sometimes convenient to work with operators with discrete spectrum:

Restriction to cubes:

ΛL cube of side-length L > 0

HΛ
ω := Hω|ΛL plus boundary conditions

Spectrum of HΛ
ω is discrete: {EΛ

j (ω)}Nj=1,

N = |Λ| for lattice Zd

N =∞ for continuum Rd
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Density of States

Let I ⊂ R be a bounded interval and let EHΛ
ω

(I ) denote the local spectral
projector.

Average number of eigenvalues per unit volume:

nΛ(I ) :=
1

|Λ|
E{TrEHΛ

ω
(I )}

Infinite-volume limit gives the density of states measure (DOSm):

lim
|Λ|→∞

nΛ(I ) = n(I ) =

∫
I

dµρ.
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Density of States

Two functions associated with the DOSm µρ for the probability density ρ:

Integrated density of states (IDS): The right-continuous cumulative
distribution of the DOSm,

Nρ(E ) := µ(∞)
ρ ((−∞,E ]) =

∫ E

−∞
dµρ(s),

Density of states function (DOSf)

nρ(E ) :=
dNρ
dE

(E ), so dµρ(E ) = nρ(E ) dE ,

when it exists.
We drop the subscript ρ.
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Part 2: Local eigenvalue statistics (LES) overview

Local eigenvalue statistics

Recall the finite-volume restriction: HΛ
ω := Hω|ΛL, plus boundary

conditions

Spectrum of HΛ
ω is discrete: {EΛ

j (ω)}Nj=1,

Local eigenvalue statistics: Fix E0 ∈ Σ:

dξΛ
ω(s) =

N∑
j=1

δ(|ΛL|(EΛ
j (ω)− E0)− s) ds

ξΛ
ω(s) is point process on R measuring the average rescaled eigenvalue

spacing around E0.
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Local eigenvalue statistics (LES) overview

LES ξΛ
ω(s): a local point process built from rescaled eigenvalues :

ẼΛ
j (ω) := |ΛL|(EΛ

j (ω)− E0)

Questions:

1 Does ξΛ
ω converge to a point process as |Λ| → ∞ ?

2 How does one characterize the limiting process?

Answers:

1 Does ξΛ
ω converge to a point process as |Λ| → ∞ ? YES

2 How does one characterize the limiting process? Depends on E0

and the dimension d
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LES overview

CONJECTURES:

1. If E0 ∈ Σ lies in a region for which the localization length γL of
eigenfunctions for HΛL

ω is small compared to L,

γL
L
→ 0, L→∞,

then the limiting point process ξω is a Poisson point process.

2. If E0 ∈ Σ lies in a region for which the localization length γL of
eigenfunctions for HΛL

ω is large compared to L,

γL
L
> 0, L→∞,

then the limiting point process ξω is the same as random matrix theory
GOE .
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LES overview

LSD: Level spacing distribution

Order eigenvalues of HΛ
ω: EΛ

1 (ω) ≤ EΛ
2 (ω) ≤ · · · ≤ EΛ

N(ω)

For E0 ∈ Σ, set IΛ = [E0 − 1
|Λ|1−ε ,E0 + 1

|Λ|1−ε ] and n(E0) is the DOSf.

LSDΛ
ω(x ; IΛ) =

#{j | EΛ
j (ω) ∈ IΛ, |Λ|n(E0)(EΛ

j+1(ω)− EΛ
j (ω)) ≥ x}

#{j | EΛ
j (ω) ∈ IΛ}

LSD(x) = lim
|Λ|→∞

LSDΛ
ω(x ; IΛ).

Behavior of LSD(x) depends on E0 in localized or delocalized regime.
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LES overview

Poisson: Density of the LSD(s) is exponential: P(s) = e−s .
Random mstrix theory: Density of LSD(s) follows the Wigner surmise:

P(s) = Asβe−Bs
2

, A,B > 0 (β = 1 GOE, β = 2 GUE).
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LES Results

Random Schrödinger operators on Zd with E0 ∈ ΣCL

Minami: LES ξω is a Poisson point process.

Germinet-Klopp: LES for eigenvalues is Poisson and LSD with
exponential density.

Random Schrödinger operators on Rd with E0 ∈ ΣCL

Hislop-Krishna: LES always have limit points ξω that are compound
Poisson processes.

Hislop, Kirsch, Krishna: random Schrödinger operators with
δ-interactions, LES is Poisson.

Dietlein-Elgart: Anderson-type random Schrödinger operators has
LES Poisson at the bottom of the spectrum.

Peter D. Hislop
Some recent results on eigenvalue statistics for random Schrödinger operators



Overview:Random Schrödinger operators and the density of states
Local eigenvalue statistics

References

Example 1: Scaled disorder in one dimension
Example 2: Random band matrices

Example 1: Scaled disorder in one-dimension

Scaled disorder random Anderson model:

H(n)
ω = L(n) +

n∑
j=−n

σωj

〈n〉α
Πj , H = `2([−n, n]).

L(n): Finite difference Laplacian on [−n, n] with simple boundary
conditions

(Πj f )(k) = f (j)δjk and σ > 0

Localization length: γn ∼ n2α

σ2

Scaling ratio: γn
n = n2α−1

σ2
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Scaled disorder in one dimension

Transition in LES depending on α (Kritchevski, Valkò, Viràg, Kotani,
Nakano, H-Klopp)
Scaling regimes:

0 ≤ α < 1

2
γn
n → 0 LES = Poisson

α =
1

2
γn
n = 1 critical

1

2
< α 1 ≤ γn

n →∞ LES = Clock

Clock is the LES of the Laplacian L on `2(Z).
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Scaled disorder: Basic ideas in the localization regime

Localization regime: 0 ≤ α < 1
2

Scales: 0 ≤ α′′ < α < α′ < 1
2

Construction of local Hamiltonians H
(n′)
ω on scale n′ = n2α′ : Domain

decomposition: Localization length γn ∼ n2α

Divide Λn = [−n, n] into N ′ disjoint cells Λn′(j), with j = 1, . . . ,N ′, of
length n2α′ , capturing localized wave functions.

Conclusion: With probability close to one, each EV of H
(n)
ω in I is close

to an EV of H
(n′)
ω (j), for some j . EVs of H

(n′)
ω (j) are independent of the

EVs of H
(n′)
ω (j ′), for j 6= j ′.
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Scaled disorder: Localization estimates on H
(n′)
ω

Decompose Λn into disjoint subcubes Λn′(j)

Center of Localization (COL): A point j ∈ Λ is a COL for an
eigenfunction ϕ of HΛ

ω if |ϕ(j)| = maxk∈Λ |ϕ(k)|.

1 Each COL of EV of H
(n)
ω in some Λn′(j)

2 At most one COL in each Λn′(j)

3 If COL in Λn′(j) then H
(n′)
ω has EV in Ĩn near EV of Λn

This holds for a set of configurations Zn so that

P{Zn} ≥ 1− n−β , β ∈ (0, 1)
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Scaled disorder: localization estimates on H
(n′)
ω

The eigenvalues Ej(ω; Λ(n′)(j)) are independent for different j and close

to the EVs of H
(n)
ω :

|Ejk (ω; n)− Ej(ω; Λn′(j))| ≤ e−n
′′

Conclusion: So with good probability, all the eigenvalues of H
(n)
ω are

described in terms of eigenvalues of the local Hamiltonians H
(n′)
ω (j).

The LES of H
(n)
ω can be approximated by those of the independent family

H
(n′)
ω (j).
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Scaled disorder: Basic idea in the localization regime

Let {Xj | j = 1, . . . ,N} = family of independent Bernoulli random
variables

P{Xj = 1} = pN , for 0 < pN < 1;

P{X = 0} = 1− pN .

By choosing k points j from {1, . . . ,N} we get

P{#{j | Xj = 1} = k} =

(
N
k

)
pkN(1− pN)N−k .

Poisson Limit theorem: If limN→∞ pNN = λ > 0 then

lim
N→∞

(
N
k

)
pkN(1− pN)N−k = e−λ

(
λk

k!

)
.

Peter D. Hislop
Some recent results on eigenvalue statistics for random Schrödinger operators



Overview:Random Schrödinger operators and the density of states
Local eigenvalue statistics

References

Example 1: Scaled disorder in one dimension
Example 2: Random band matrices

Scaled disorder: LES for H
(n)
ω

Local Hamiltonians: H
(n′)
ω = H

(n)
ω |Λn′

Definition: Bernoulli random variable:

XI ,Λn′ (j)
:=

{
1 TrEHn′

ω (j)(I ) = 1

0 other

This family is independent. Main calculation:

P{#{j | XI ,Λn′ (j)
= 1} = k}

requires

lim
n→∞

( n

n2α′

)
P{XI ,Λn′ (j)

= 1} = n0(E0)

where n0(E0) is the DOSf of the Laplacian at energy E0.
Conclusion: Apply Poisson Limit Theorem to get Poisson statistics with
intensity measure n0(E0)ds.
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Example 2: Random band matrices (RBM)

Random band matrices (RBM): Interpolation between Wigner matrices of
the Gaussian Orthogonal Ensemble (GOE) and RSO.

Finite-size RBM: HN
L , (2N + 1)× (2N + 1) real random band matrix

Bandwidth: W = 2L + 1.

HN
L has matrix elements:

〈ei ,HN
L ej〉 =

1√
W

{
vij if |i − j | ≤ L
0 if |i − j | > L

,

with
−N ≤ i , j ≤ N.
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Overview of RBM

Random variables : vij = vji , within the band, independent and
identically distributed (up to symmetry).

Example: vij Gaussian distributed, E{vij} = 0 and Var{vij} = E{v2
ij } = 1

Two extremes:

1 W = 3. Disorder only on the diagonal–1D lattice random
Schrödinger operator: Complete localization

2 W = 2N + 1. GOE: Complete delocalization
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Overview of RBM

Interpolating models: RBM W = Nα, with 0 ≤ α ≤ 1

CONJECTURES:
1. For 0 ≤ α < 1

2 : then

1 The limiting point process ξω is a Poisson point process;

2 The eigenvectors are exponentially localized and the spectrum is
pure point almost surely pure point.

2. For 1
2 ≤ α ≤ 1: then

1 The limiting point process ξω is that of the GOE;

2 The eigenvectors are spatially extended.

The model exhibits a Localization–Delocalization transition
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RBM: Delocalization regime

Delocalization regime better understood than Localization regime

Main results: W > N
3
4 (Bourgade, Yau, Yin)

1. Eigenvectors extended: If HN
Wψ = Eψ, then ‖ψE‖2

∞ ≤ N−1+τ for
most eigenvectors with probability > 1− N−D

2.Semi-circle law: IDS N(E ) ∼ 1
2π

∫ E

−2

√
(4− s2)+ ds, with good

probability

3. GOE eigenvalue statistics : k-point correlation functions ρ
(k)
N converge

to ρ
(k)
GOE

Peter D. Hislop
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RBM: Localization regime

L ∼ Nα, for 0 ≤ α < 1
2 . Since d = 1, there is localization at all energies.

3 finite-N estimates required for HN
L (Peled, Schenker, Shamis, Sodin,

Brodie-H):

1 Wegner estimate

2 Minami estimate

3 Localization bounds

Basic Technique: Average over diagonal random variables vjj ,
−N ≤ j ≤ N.
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RBM: Localization regime

For m = 1, Wegner estimate:

E {trEH(I )} ≤ CW L1/2(2N + 1)|I |

For m = 2, Minami estimate:

E {trEH(I ) (trEH(I )− 1)} ≤ CM(L1/2(2N + 1)|I |)2

Equivalent:
P{trEH(I ) ≥ 2} ≤ CM(L1/2(2N + 1)|I |)2

Remainder: Focus on fixed-band width random matrices: L independent
of N.
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RBM: Spectral averaging

Warm-up: a priori bounds on resolvents via Spectral Averaging

Let Hω self-adjoint matrix with its diagonal entries [Hω]jj := ωj iid,
probability density function ρ with rapid decay

1 For any 0 < s < 1, there exists a finite constant Cρ,s > 0,
independent of N, so that for any z ∈ C, we have

E
{∣∣∣〈ej , (Hω − z)−1 e`

〉∣∣∣s} ≤ Cρ,s . (1)

2 There exists a finite constant Cρ > 0, independent of N, so that for
any z ∈ C,

E
{
=
〈
ej , (Hω − z)−1 ej

〉}
≤ Cρ. (2)
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RBM: Localization bounds

Theorem (Localization at all energies)

For any s ∈ (0, 1), and for all z ∈ C, there exist finite constants Cs,L > 0
and αs,L > 0, depending on L and s (but uniform in z ∈ C), such that

E
{∣∣∣〈ej , (HN

L − z
)−1

ek
〉∣∣∣s} ≤ Cs,Le

−αs,L|j−k|.

Proof combines Schenker’s bound for λ ∈ [−r , r ] ⊂ R, localization
bounds for |λ| > R via Aizenman-Molchanov, and subharmonicity to
extend to C.
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RBM:Density of states

Local density of states function nNL (E ):

nNL (E ) =
1

π

1

2N + 1

N∑
j=−N

lim
ε→0

E{=〈ej , (HN
L − E − iε)−1ej〉}

Infinite N density of states function n∞L (E ):
Iinfinite N operatorH∞L is ergodic under translation in Z so:

n∞L (E ) = lim
ε→0

E{=〈e0, (H
∞
L − E − iε)−1e0〉}.

Theorem

Let HN
L be a random symmetric band matrix with fixed bandwidth L and

random iid entries (up to symmetry) having finite moments and a density
satisfying ρ̂(λ) ∼ λ−2. Then, for each E ∈ R, we have

nNL (E ) −→ n∞L (E ).
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RBM: Poisson point process

Local eigenvalue statistics (LES): Rescaled eigenvalue point process

dξNL (s) :=
∑

j=−N,...,N

δ(N(E
(N,L)
j )− E )− s) ds

Let IN = E + 1
N [−1.1]

Main technical result:

lim
N→∞

P{trEIN (HN
L )} = n∞L (E )|I |.

Given this, localization, Wegner and Minami:

Theorem

The LES for the fixed-width random band matrices HL
N in the limit

N →∞ is a Poisson point process with intensity measure n∞L (E )ds.
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