Some recent results on eigenvalue statistics for random Schrödinger operators

Peter D. Hislop

Mathematics Department University of Kentucky Lexington, KY USA

KBS Fest Bangaluru, India, 12–14 December 2019

< ロ > < 同 > < 回 > < 回 > .

э

イロト イポト イヨト イヨト

э.

1 Overview:Random Schrödinger operators and the density of states

- Basics of random Schrödinger operators
- Density of States

2 Local eigenvalue statistics

- Example 1: Scaled disorder in one dimension
- Example 2: Random band matrices
 - Random band matrices: Delocalization regime
 - Random band matrices: Localization regime

Overview:Random Schrödinger operators and the density of states Local eigenvalue statistics References

Part 1: The set-up for random Schrödinger operators

Basic random Schrödinger operator:

$$H_{\omega} = H_0 + V_{\omega}$$

Hilbert space: lattice $\ell^2(\mathbb{Z}^d)$ or continuum $L^2(\mathbb{R}^d)$

• H_0 deterministic (fixed) self-adjoint operator: $H_0 = -\Delta$, Laplacian

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三 シのので

V_ω random potential:

•
$$(V_{\omega}f)(k) = \omega_k f(k)$$
, on $\ell^2(\mathbb{Z}^d)$
• $(V_{\omega}f)(x) = \sum_{k \in \mathbb{Z}^d} \omega_k u(x-k)f(x)$, on $L^2(\mathbb{R}^d)$

Each ω represents a configuration of the potential function.

The set-up for random Schrödinger operators

Randomness: The coupling constants $\{\omega_j \mid j \in \mathbb{Z}^d\}$

- family of independent, identically distributed random variables (iid)
- $\bullet\,$ random variable ω_0 distributed according to a probability measure $\rho\,$ on $\mathbb R$

Single-site potential

- $V_{\omega}(k) = \omega_k \Pi_k$, where $(\Pi_k)f(n) = f(k)\delta_{nk}$, for lattice \mathbb{Z}^d
- $V_{\omega}(x) = \sum_{k \in \mathbb{Z}^d} \omega_k u(x k)$, where $u(x) \ge 0$ is a single-site bump function, for continuum \mathbb{R}^d

(ロ) (同) (ヨ) (ヨ) (ヨ) (0)

Deterministic spectrum: $\Sigma \subset \mathbb{R}$ (fixed) equals $\sigma(H_{\omega})$ almost surely

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三 シのので

Finite-volume operators

It is sometimes convenient to work with operators with discrete spectrum:

Restriction to cubes:

 Λ_L cube of side-length L > 0

 $H_{\omega}^{\Lambda} := H_{\omega} | \Lambda_L$ plus boundary conditions

Spectrum of H^{Λ}_{ω} **is discrete**: $\{E^{\Lambda}_{j}(\omega)\}_{j=1}^{N}$,

- $N = |\Lambda|$ for lattice \mathbb{Z}^d
- $N = \infty$ for continuum \mathbb{R}^d

Density of States

Let $I \subset \mathbb{R}$ be a bounded interval and let $E_{H^{\wedge}_{\omega}}(I)$ denote the local spectral projector.

Average number of eigenvalues per unit volume:

$$n_{\Lambda}(I) := \frac{1}{|\Lambda|} \mathbb{E}\{\mathrm{Tr} E_{H^{\Lambda}_{\omega}}(I)\}$$

Infinite-volume limit gives the density of states measure (DOSm):

$$\lim_{|\Lambda|\to\infty}n_{\Lambda}(I)=n(I)=\int_{I}d\mu_{\rho}.$$

イロト イヨト イヨト --

3

Density of States

Two functions associated with the DOSm μ_{ρ} for the probability density ρ :

Integrated density of states (IDS): The right-continuous cumulative distribution of the DOSm,

$$N_
ho(E):=\mu_
ho^{(\infty)}((-\infty,E])=\int_{-\infty}^E \ d\mu_
ho(s),$$

Density of states function (DOSf)

$$n_{
ho}(E) := rac{dN_{
ho}}{dE}(E), \quad ext{so} \quad d\mu_{
ho}(E) = n_{
ho}(E) \; dE,$$

イロト 不得 トイヨト イヨト

э.

when it exists. We drop the subscript ρ .

イロト イヨト イヨト 一度

Part 2: Local eigenvalue statistics (LES) overview

Local eigenvalue statistics

Recall the finite-volume restriction: $H^{\Lambda}_{\omega}:=H_{\omega}|\Lambda_L$, plus boundary conditions

Spectrum of H^{\wedge}_{ω} is discrete: $\{E^{\wedge}_{j}(\omega)\}_{j=1}^{N}$,

Local eigenvalue statistics: Fix $E_0 \in \Sigma$:

$$d\xi^{\Lambda}_{\omega}(s) = \sum_{j=1}^{N} \delta(|\Lambda_L|(E_j^{\Lambda}(\omega) - E_0) - s) ds$$

 $\xi^{\Lambda}_{\omega}(s)$ is point process on \mathbb{R} measuring the average rescaled eigenvalue spacing around E_0 .

Example 1: Scaled disorder in one dimension Example 2: Random band matrices

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三 シのので

Local eigenvalue statistics (LES) overview

LES $\xi_{\omega}^{\Lambda}(s)$: a local point process built from rescaled eigenvalues :

$$\widetilde{E}_{j}^{\Lambda}(\omega) := |\Lambda_{L}|(E_{j}^{\Lambda}(\omega) - E_{0})|$$

Questions:

- Does ξ^{Λ}_{ω} converge to a point process as $|\Lambda| \to \infty$?
- e How does one characterize the limiting process?

Answers:

- **()** Does ξ^{Λ}_{ω} converge to a point process as $|\Lambda| \to \infty$? **YES**
- How does one characterize the limiting process? Depends on E₀ and the dimension d

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三 シのので

LES overview

CONJECTURES:

1. If $E_0 \in \Sigma$ lies in a region for which the localization length γ_L of eigenfunctions for $H_{\omega}^{\Lambda_L}$ is small compared to L,

$$\frac{\gamma_L}{L} \to 0, \quad L \to \infty,$$

then the limiting point process ξ_{ω} is a **Poisson point process**.

2. If $E_0 \in \Sigma$ lies in a region for which the localization length γ_L of eigenfunctions for $H_{\omega}^{\Lambda_L}$ is large compared to L,

$$\frac{\gamma_L}{L} > 0, \qquad L \to \infty,$$

then the limiting point process ξ_{ω} is the same as **random matrix theory** *GOE*.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三 シのので

LES overview

LSD: Level spacing distribution

Order eigenvalues of H^{Λ}_{ω} : $E^{\Lambda}_1(\omega) \leq E^{\Lambda}_2(\omega) \leq \cdots \leq E^{\Lambda}_N(\omega)$

For $E_0 \in \Sigma$, set $I_{\Lambda} = [E_0 - \frac{1}{|\Lambda|^{1-\epsilon}}, E_0 + \frac{1}{|\Lambda|^{1-\epsilon}}]$ and $n(E_0)$ is the DOSf.

$$LSD^{\Lambda}_{\omega}(x;I_{\Lambda}) = \frac{\#\{j \mid E^{\Lambda}_{j}(\omega) \in I_{\Lambda}, \ |\Lambda|n(E_{0})(E^{\Lambda}_{j+1}(\omega) - E^{\Lambda}_{j}(\omega)) \ge x\}}{\#\{j \mid E^{\Lambda}_{j}(\omega) \in I_{\Lambda}\}}$$

$$LSD(x) = \lim_{|\Lambda| \to \infty} LSD^{\Lambda}_{\omega}(x; I_{\Lambda}).$$

Behavior of LSD(x) depends on E_0 in *localized* or *delocalized* regime.

イロト イポト イヨト イヨト

3

LES overview

Poisson: Density of the LSD(s) is exponential: $P(s) = e^{-s}$. **Random mstrix theory**: Density of LSD(s) follows the Wigner surmise: $P(s) = As^{\beta}e^{-Bs^{2}}$, A, B > 0 ($\beta = 1$ GOE, $\beta = 2$ GUE).

LES Results

Random Schrödinger operators on \mathbb{Z}^d with $\textit{E}_0 \in \Sigma^{\rm CL}$

- Minami: LES ξ_{ω} is a Poisson point process.
- Germinet-Klopp: LES for eigenvalues is Poisson and LSD with exponential density.

Random Schrödinger operators on \mathbb{R}^d with $E_0 \in \Sigma^{CL}$

- Hislop-Krishna: LES always have limit points ξ_{ω} that are compound Poisson processes.
- Hislop, Kirsch, Krishna: random Schrödinger operators with δ-interactions, LES is Poisson.
- Dietlein-Elgart: Anderson-type random Schrödinger operators has LES Poisson at the bottom of the spectrum.

Example 1: Scaled disorder in one dimension Example 2: Random band matrices

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三 シのので

Example 1: Scaled disorder in one-dimension

Scaled disorder random Anderson model:

$$H^{(n)}_{\omega} = L^{(n)} + \sum_{j=-n}^{n} \frac{\sigma \omega_j}{\langle n \rangle^{\alpha}} \Pi_j, \quad \mathcal{H} = \ell^2([-n, n]).$$

 $L^{(n)}$: Finite difference Laplacian on [-n, n] with simple boundary conditions

$$(\Pi_j f)(k) = f(j)\delta_{jk}$$
 and $\sigma > 0$

Localization length: $\gamma_n \sim \frac{n^{2\alpha}}{\sigma^2}$

Scaling ratio: $\frac{\gamma_n}{n} = \frac{n^{2\alpha-1}}{\sigma^2}$

Overview:Random Schrödinger operators and the density of states Local eigenvalue statistics References

(

Example 1: Scaled disorder in one dimension Example 2: Random band matrices

イロト イヨト イヨト

3

Scaled disorder in one dimension

Transition in LES depending on α (Kritchevski, Valkò, Viràg, Kotani, Nakano, H-Klopp) Scaling regimes:

$$0 \le lpha < rac{1}{2}$$
 $rac{\gamma_n}{n} o 0$ $LES = Poisson$
 $lpha = rac{1}{2}$ $rac{\gamma_n}{n} = 1$ critical
 $rac{1}{2} < lpha$ $1 \le rac{\gamma_n}{n} o \infty$ $LES = Clock$

Clock is the LES of the Laplacian *L* on $\ell^2(\mathbb{Z})$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ● ● ●

Scaled disorder: Basic ideas in the localization regime

Localization regime: $0 \le \alpha < \frac{1}{2}$

Scales: $0 \le \alpha'' < \alpha < \alpha' < \frac{1}{2}$

Construction of local Hamiltonians $H^{(n')}_{\omega}$ on scale $n' = n^{2\alpha'}$: Domain decomposition: Localization length $\gamma_n \sim n^{2\alpha}$

Divide $\Lambda_n = [-n, n]$ into N' disjoint cells $\Lambda_{n'}(j)$, with $j = 1, \ldots, N'$, of length $n^{2\alpha'}$, capturing localized wave functions.

Conclusion: With probability close to one, each EV of $H_{\omega}^{(n)}$ in *I* is close to an EV of $H_{\omega}^{(n')}(j)$, for some *j*. EVs of $H_{\omega}^{(n')}(j)$ are **independent** of the EVs of $H_{\omega}^{(n')}(j')$, for $j \neq j'$.

イロト イヨト イヨト

3

Scaled disorder: Localization estimates on $H^{(n')}_\omega$

Decompose Λ_n into disjoint subcubes $\Lambda_{n'}(j)$

Center of Localization (COL): A point $j \in \Lambda$ is a COL for an eigenfunction φ of H^{Λ}_{ω} if $|\varphi(j)| = \max_{k \in \Lambda} |\varphi(k)|$.

• Each COL of EV of
$$H^{(n)}_{\omega}$$
 in some $\Lambda_{n'}(j)$

2 At most one COL in each
$$\Lambda_{n'}(j)$$

• If COL in $\Lambda_{n'}(j)$ then $H^{(n')}_{\omega}$ has EV in \tilde{I}_n near EV of Λ_n

This holds for a set of configurations \mathcal{Z}_n so that

$$\mathbb{P}\{\mathcal{Z}_n\} \geq 1 - n^{-\beta}, \quad \beta \in (0,1)$$

(ロ) (同) (ヨ) (ヨ) (ヨ) (0)

Scaled disorder: localization estimates on $H^{(n')}_\omega$

The eigenvalues $E_j(\omega; \Lambda_{(n')}(j))$ are independent for different j and close to the EVs of $H^{(n)}_{\omega}$:

$$|E_{j_k}(\omega;n) - E_j(\omega;\Lambda_{n'}(j))| \leq e^{-n''}$$

Conclusion: So with good probability, all the eigenvalues of $H_{\omega}^{(n)}$ are described in terms of eigenvalues of the local Hamiltonians $H_{\omega}^{(n')}(j)$.

The LES of $H_{\omega}^{(n)}$ can be approximated by those of the independent family $H_{\omega}^{(n')}(j)$.

◆□ > ◆□ > ◆三 > ◆三 > ・ 三 ・ のへで

Scaled disorder: Basic idea in the localization regime

Let $\{X_j \mid j = 1, \dots, N\}$ = family of independent Bernoulli random variables

•
$$\mathbb{P}{X_j = 1} = p_N$$
, for $0 < p_N < 1$;

•
$$\mathbb{P}\{X=0\}=1-p_N$$
.

By choosing k points j from $\{1, \ldots, N\}$ we get

$$\mathbb{P}\{\#\{j \mid X_j=1\}=k\}=\binom{N}{k}p_N^k(1-p_N)^{N-k}.$$

Poisson Limit theorem: If $\lim_{N\to\infty} p_N N = \lambda > 0$ then

$$\lim_{N\to\infty} \begin{pmatrix} N\\k \end{pmatrix} p_N^k (1-p_N)^{N-k} = e^{-\lambda} \left(\frac{\lambda^k}{k!}\right).$$

Overview:Random Schrödinger operators and the density of states
Local eigenvalue statistics
References

Example 1: Scaled disorder in one dimension Example 2: Random band matrices

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三 シのので

Scaled disorder: LES for $H^{(n)}_{\omega}$

Local Hamiltonians: $H_{\omega}^{(n')} = H_{\omega}^{(n)} | \Lambda_{n'}$

Definition: Bernoulli random variable:

$$X_{I,\Lambda_{n'}(j)} := \left\{egin{array}{cc} 1 & \mathrm{Tr} E_{\mathcal{H}^{n'}_{\omega}(j)}(I) = 1 \ 0 & \mathrm{other} \end{array}
ight.$$

This family is *independent*. Main calculation:

$$\mathbb{P}\{\#\{j \mid X_{I,\Lambda_{n'}(j)}=1\}=k\}$$

requires

$$\lim_{n\to\infty}\left(\frac{n}{n^{2\alpha'}}\right)\mathbb{P}\{X_{I,\Lambda_{n'}(j)}=1\}=n_0(E_0)$$

where $n_0(E_0)$ is the DOSf of the Laplacian at energy E_0 . **Conclusion:** Apply Poisson Limit Theorem to get Poisson statistics with intensity measure $n_0(E_0)ds$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三 シのので

Example 2: Random band matrices (RBM)

Random band matrices (RBM): Interpolation between Wigner matrices of the Gaussian Orthogonal Ensemble (GOE) and RSO.

Finite-size RBM: H_I^N , $(2N+1) \times (2N+1)$ real random band matrix

Bandwidth: W = 2L + 1.

 H_L^N has matrix elements:

$$\langle e_i, H_L^N e_j \rangle = \frac{1}{\sqrt{W}} \begin{cases} v_{ij} & \text{if } |i-j| \leq L \\ 0 & \text{if } |i-j| > L \end{cases},$$

with

$$-N \leq i, j \leq N.$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 シののや

Overview of RBM

Random variables : $v_{ij} = v_{ji}$, within the band, independent and identically distributed (up to symmetry).

Example: v_{ij} Gaussian distributed, $\mathbb{E}\{v_{ij}\} = 0$ and $\operatorname{Var}\{v_{ij}\} = \mathbb{E}\{v_{ij}^2\} = 1$

Two extremes:

- W = 3. Disorder only on the diagonal-1D lattice random Schrödinger operator: Complete localization
- **2** W = 2N + 1. GOE: Complete delocalization

イロト 不得 トイヨト イヨト 二日

Overview of RBM

Interpolating models: RBM $W = N^{\alpha}$, with $0 \leq \alpha \leq 1$

CONJECTURES:

- 1. For $0 \le \alpha < \frac{1}{2}$: then
 - **(**) The limiting point process ξ_{ω} is a Poisson point process;
 - The eigenvectors are exponentially localized and the spectrum is pure point almost surely pure point.
- 2. For $\frac{1}{2} \leq \alpha \leq 1$: then
 - The limiting point process ξ_{ω} is that of the GOE;
 - Intering envectors are spatially extended.

The model exhibits a Localization-Delocalization transition

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ● ● ●

RBM: Delocalization regime

Delocalization regime better understood than Localization regime Main results: $W > N^{\frac{3}{4}}$ (Bourgade, Yau, Yin)

1. Eigenvectors extended: If $H_W^N \psi = E \psi$, then $\|\psi_E\|_\infty^2 \leq N^{-1+\tau}$ for most eigenvectors with probability $> 1 - N^{-D}$

2.Semi-circle law: IDS $N(E) \sim \frac{1}{2\pi} \int_{-2}^{E} \sqrt{(4-s^2)_+} ds$, with good probability

3. GOE eigenvalue statistics : k-point correlation functions $\rho_N^{(k)}$ converge to $\rho_{\rm GOE}^{(k)}$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 シののや

RBM: Localization regime

 $L \sim N^{\alpha}$, for $0 \leq \alpha < \frac{1}{2}$. Since d = 1, there is localization at all energies.

3 finite-*N* estimates required for H_L^N (Peled, Schenker, Shamis, Sodin, Brodie-H):

- Wegner estimate
- Olinami estimate
- Iccalization bounds

Basic Technique: Average over diagonal random variables v_{jj} , $-N \le j \le N$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 シののや

RBM: Localization regime

For m = 1, Wegner estimate:

$$\mathbb{E}\left\{\operatorname{tr} E_{H}(I)\right\} \leq C_{W}L^{1/2}(2N+1)|I|$$

For m = 2, Minami estimate:

$$\mathbb{E} \{ \operatorname{tr} E_H(I) (\operatorname{tr} E_H(I) - 1) \} \le C_M(L^{1/2}(2N+1)|I|)^2$$

Equivalent:

$$\mathbb{P}\{\operatorname{tr} E_H(I) \ge 2\} \le C_M(L^{1/2}(2N+1)|I|)^2$$

Remainder: Focus on fixed-band width random matrices: L independent of N.

RBM: Spectral averaging

Warm-up: a priori bounds on resolvents via Spectral Averaging

Let H_{ω} self-adjoint matrix with its diagonal entries $[H_{\omega}]_{jj} := \omega_j \text{ iid,}$ probability density function ρ with rapid decay

• For any 0 < s < 1, there exists a finite constant $C_{\rho,s} > 0$, independent of N, so that for any $z \in \mathbb{C}$, we have

$$\mathbb{E}\left\{\left|\left\langle e_{j},\left(H_{\omega}-z\right)^{-1}e_{\ell}\right\rangle\right|^{s}\right\}\leq C_{\rho,s}.$$
(1)

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 シののや

② There exists a finite constant C_ρ > 0, independent of N, so that for any z ∈ C, $\mathbb{E}\left\{\Im\left\langle e_{j}, (H_{\omega} - z)^{-1} e_{j}\right\rangle\right\} \leq C_{\rho}.$ (2)

Overview:Random Schrödinger operators and the density of states Local eigenvalue statistics References

Example 1: Scaled disorder in one dimension Example 2: Random band matrices

イロト イヨト イヨト --

3

RBM: Localization bounds

Theorem (Localization at all energies)

For any $s \in (0, 1)$, and for all $z \in \mathbb{C}$, there exist finite constants $C_{s,L} > 0$ and $\alpha_{s,L} > 0$, depending on L and s (but uniform in $z \in \mathbb{C}$), such that

$$\mathbb{E}\left\{\left|\left\langle e_{j},\left(H_{L}^{N}-z\right)^{-1}e_{k}\right\rangle\right|^{s}\right\}\leq C_{s,L}e^{-\alpha_{s,L}|j-k|}.$$

Proof combines Schenker's bound for $\lambda \in [-r, r] \subset \mathbb{R}$, localization bounds for $|\lambda| > R$ via Aizenman-Molchanov, and subharmonicity to extend to \mathbb{C} .

RBM:Density of states

Local density of states function $n_L^N(E)$:

$$n_L^N(E) = \frac{1}{\pi} \frac{1}{2N+1} \sum_{j=-N}^N \lim_{\epsilon \to 0} \mathbb{E} \{ \Im \langle e_j, (H_L^N - E - i\epsilon)^{-1} e_j \rangle \}$$

Infinite *N* density of states function $n_L^{\infty}(E)$: linfinite *N* operator H_L^{∞} is ergodic under translation in \mathbb{Z} so:

$$n_L^{\infty}(E) = \lim_{\epsilon \to 0} \mathbb{E}\{\Im \langle e_0, (H_L^{\infty} - E - i\epsilon)^{-1} e_0 \rangle\}.$$

Theorem

Let H_L^N be a random symmetric band matrix with fixed bandwidth L and random iid entries (up to symmetry) having finite moments and a density satisfying $\hat{\rho}(\lambda) \sim \lambda^{-2}$. Then, for each $E \in \mathbb{R}$, we have

$$n_L^N(E) \longrightarrow n_L^\infty(E).$$

イロト イポト イヨト イヨト

RBM: Poisson point process

Local eigenvalue statistics (LES): Rescaled eigenvalue point process

$$d\xi_{L}^{N}(s) := \sum_{j=-N,...,N} \delta(N(E_{j}^{(N,L)}) - E) - s) ds$$

Let $I_N = E + \frac{1}{N}[-1.1]$

Main technical result:

$$\lim_{N\to\infty} \mathbb{P}\{\operatorname{tr} E_{I_N}(H_L^N)\} = n_L^\infty(E)|I|.$$

Given this, localization, Wegner and Minami:

Theorem

The LES for the fixed-width random band matrices H_N^L in the limit $N \to \infty$ is a Poisson point process with intensity measure $n_L^{\infty}(E)ds$.

References

Local eigenvalue statistics

- A. Deitlein, A. Elgart, *Level spacing for continuum random Schrödinger operators with applications*, preprint.
- F. Germinet, F. Klopp, Spectral statistics for random Schrödinger operators in the localized regime, J. Eur. Math. Soc. 16 (2014), no. 9, 1967-2031.
- P. D. Hislop, M. Krishna, Eigenvalue statistics for random Schrödinger operators with non rank one perturbations, Comm. Math. Phys. 340 (2015), no. 1, 125–143.
- N. Minami, Local fluctuations of the spectrum of a multidimensional Anderson tight-binding model, Commun. Math. Phys. 177, 709–725 (1996).

イロト イポト イヨト ・ヨー

References

One dimensional scaled disorder model

- S. Klopp, P. D. Hislop, in preparation
- E. Kritchevski, B. Valkò, B. Viràg, *The scaling limit of the critical one-dimensional randoms Schrödinger operator*, Comm. Math. Phys. 314 (2012), no. 3, 775-806; arXiv.1107.3058v1.
- F. Nakano, Level statistics for one-dimensional Schrödinger operators and Gaussian beta ensemble, J. Stat. Phys. 156 (2014), no. 1, 66-93.
- S. Kotani, F. Nakano, Poisson statistics for 1d Schrödinger operators with random decaying potentials, Electron. J. Probab. 22 (2017), Paper No. 69; arXiv:1605.02416.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

References

Random band matrices

- **9** P. Bourgade, *Random band matrices*, arXiv:1807.03031
- P. Bourgade, H.-T. Yau, J. Yin, Random band matrices in the delocalized phase, I: Quantum unique ergodicity and universality, arXiv:1807.01559
- J. Schenker, Eigenvector localization for random band matrices with power law width, Comm. Math. Phys. 290 (2009), 1065-1097.
- J. Schenker, R. Peled, M. Shamis, S. Sodin, On the Wegner orbital model, Int. Math. Res. Not (2017), rnx145; arXiv:1608.02922.
- D. R. Dolai, M. Krishna, A. Mallick, Regularity of the density of states of Random Schrödinger Operators, arXiv:1904.11854.