
Moments in the history of positivity

Apoorva Khare
IISc and APRG (Bangalore, India)

KBS Fest,
ISI-Bangalore, December 2018

(Partly joint with Alexander Belton, Dominique Guillot, Mihai Putinar;

and partly with Terence Tao)



Classical results: Schur, Schoenberg, Bochner, Rudin, . . .
Fixed dimension results

From Schur to Schoenberg and Rudin
Metric space embeddings and positive definite functions

Entrywise functions preserving positivity
Definitions:

1 A real symmetric matrix An×n is positive semidefinite if its quadratic
form is so: xTAx ≥ 0 for all x ∈ Rn. (Hence σ(A) ⊂ [0,∞).)

2 Given n ≥ 1 and I ⊂ R, let Pn(I) denote the n× n positive
(semidefinite) matrices, with entries in I. (Say Pn = Pn(R).)

3 A function f : I → R acts entrywise on a matrix A ∈ In×n via:
f [A] := (f(ajk))nj,k=1.

Problem: For which functions f : I → R is it true that

f [A] ∈ Pn for all A ∈ Pn(I)?

(Long history:) The Schur Product Theorem [Schur, Crelle 1911] says:
If A,B ∈ Pn, then so is A ◦B := (ajkbjk).

As a consequence, f(x) = xk (k ≥ 0) preserves positivity on Pn for all n.

(Pólya–Szegö, 1925): Taking sums and limits, if f(x) =
∑∞
k=0 ckx

k is
convergent and ck ≥ 0, then f [−] preserves positivity.

Question: Anything else?
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Classical results: Schur, Schoenberg, Bochner, Rudin, . . .
Fixed dimension results

From Schur to Schoenberg and Rudin
Metric space embeddings and positive definite functions

Schoenberg’s theorem

Interestingly, the answer is no, for preserving positivity in all dimensions:

Theorem (Schoenberg, Duke Math. J. 1942; Rudin, Duke Math. J. 1959)

Suppose I = (−1, 1) and f : I → R. The following are equivalent:

1 f [A] ∈ Pn for all A ∈ Pn(I) and all n ≥ 1.

2 f is analytic on I and has nonnegative Taylor coefficients.
In other words, f(x) =

∑∞
k=0 ckx

k on I, with all ck ≥ 0.

Schoenberg’s result is the (harder) converse to that of his advisor: Schur.

Vasudeva (IJPAM 1979) proved a variant, over I = (0,∞).

Upshot: Preserving positivity in all dimensions is a rigid condition  
implies real analyticity, absolute monotonicity. . .

We show stronger versions of Vasudeva’s and Schoenberg’s theorems.
(Outlined below.)
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Classical results: Schur, Schoenberg, Bochner, Rudin, . . .
Fixed dimension results

From Schur to Schoenberg and Rudin
Metric space embeddings and positive definite functions

Schoenberg’s motivations: metric geometry

Endomorphisms of matrix spaces with positivity constraints related to:

matrix monotone functions (Loewner)

preservers of matrix properties (rank, inertia, . . . )

real-stable/hyperbolic polynomials (Borcea, Branden, Liggett,
Marcus, Spielman, Srivastava. . . )

positive definite functions (von Neumann, Bochner, Schoenberg . . . )

Definition

f : [0,∞)→ R is positive definite on a metric space (X, d) if
[f(d(xj , xk))]nj,k=1 ∈ Pn, for all n ≥ 1 and all x1, . . . , xn ∈ X.
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Classical results: Schur, Schoenberg, Bochner, Rudin, . . .
Fixed dimension results

From Schur to Schoenberg and Rudin
Metric space embeddings and positive definite functions

Distance geometry

How did the study of positivity and its preservers begin?

In the 1900s, the notion of a metric space emerged from the works of Fréchet
and Hausdorff. . .

Now ubiquitous in science (mathematics, physics, economics, statistics,
computer science. . . ).

Fréchet [Math. Ann. 1910]. If (X, d) is a metric space with |X| = n+ 1,
then (X, d) isometrically embeds into (Rn, `∞).

This avenue of work led to the exploration of metric space embeddings.
Natural question: Which metric spaces isometrically embed into
Euclidean space?
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Classical results: Schur, Schoenberg, Bochner, Rudin, . . .
Fixed dimension results

From Schur to Schoenberg and Rudin
Metric space embeddings and positive definite functions

Euclidean metric spaces and positive matrices

Which metric spaces isometrically embed into a Euclidean space?

Menger [Amer. J. Math. 1931] and Fréchet [Ann. of Math. 1935]
provided characterizations.

Reformulated by Schoenberg, using matrix positivity:

Theorem (Schoenberg, Ann. of Math. 1935)

Fix integers n, r ≥ 1, and a finite set X = {x0, . . . , xn} together with a metric
d on X. Then (X, d) isometrically embeds into Rr (with the Euclidean
distance/norm) but not into Rr−1 if and only if the n× n matrix

A := (d(x0, xj)
2 + d(x0, xk)2 − d(xj , xk)2)nj,k=1

is positive semidefinite of rank r.

Connects metric geometry and matrix positivity.
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Classical results: Schur, Schoenberg, Bochner, Rudin, . . .
Fixed dimension results

From Schur to Schoenberg and Rudin
Metric space embeddings and positive definite functions

Schoenberg: from metric geometry to matrix positivity

Sketch of one implication: If (X, d) isometrically embeds into (Rr, ‖ · ‖), then

d(x0, xj)
2 + d(x0, xk)2 − d(xj , xk)2

= ‖x0 − xj‖2 + ‖x0 − xk‖2 − ‖(x0 − xj)− (x0 − xk)‖2

= 2〈x0 − xj , x0 − xk〉.

But then the matrix A above, is the Gram matrix of a set of vectors in Rr,
hence is positive semidefinite, of rank ≤ r.

In fact the rank is exactly r.

Also observe: the matrix A := (d(x0, xj)
2 + d(x0, xk)2 − d(xj , xk)2)nj,k=1

is positive semidefinite,
if and only if the matrix A′(n+1)×(n+1) := (−d(xj , xk)2)nj,k=0 is

conditionally positive semidefinite: uTA′u ≥ 0 whenever
∑n
j=0 uj = 0.

This is how positive / conditionally positive matrices emerged from
metric geometry.
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Classical results: Schur, Schoenberg, Bochner, Rudin, . . .
Fixed dimension results

From Schur to Schoenberg and Rudin
Metric space embeddings and positive definite functions

Distance transforms: positive definite functions
As we saw, applying the function −x2 entrywise sends any distance matrix
from Euclidean space, to a conditionally positive semidefinite matrix A′.

What operations send distance matrices to positive semidefinite matrices?

These are the positive definite functions. Example: Gaussian kernel:

Theorem (Schoenberg, Trans. AMS 1938)

The function f(x) = exp(−x2) is positive definite on Rr, for all r ≥ 1.

Schoenberg showed this using Bochner’s theorem on Rr, and the fact that the
Gaussian function is its own Fourier transform (up to constants).

Alternate proof (K.):
(1) An observation of Gantmakher and Krein: Generalized Vandermonde
matrices are totally positive. In other words, if 0 < y1 < · · · < yn and
x1 < · · · < xn in R, then det(y

xk
j )nj,k=1 is positive.

(2) A result by Pólya: The Gaussian kernel is positive definite on R1. Indeed,(
exp(−(xj − xk)2)

)n
j,k=1

= diag(e−x
2
j )×

(
exp(2xjxk)

)n
j,k=1

× diag(e−x
2
k ).

(3) A result of Schur: The Schur product theorem implies the result for Rr.
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Classical results: Schur, Schoenberg, Bochner, Rudin, . . .
Fixed dimension results

From Schur to Schoenberg and Rudin
Metric space embeddings and positive definite functions

Spherical embeddings, via positive definite maps

In fact, Schoenberg [Trans. Amer. Math. Soc. 1938] showed: Euclidean spaces
Rr, or their direct limit R∞ = `2(N) (called Hilbert space by Schoenberg) are
characterized by the property that the maps

exp(−λ2x2), λ > 0

are all positive definite on each (finite) metric subspace.

What about distinguished subsets of Rr or of R∞? Can one find similar
families of functions for them?

Schoenberg explored this question for spheres: Sr−1 ⊂ Rr and S∞ ⊂ R∞.
It turns out, the characterization now involves a single function!

This is the cosine.

Apoorva Khare, IISc Math and APRG, Bangalore 9 / 26
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Classical results: Schur, Schoenberg, Bochner, Rudin, . . .
Fixed dimension results

From Schur to Schoenberg and Rudin
Metric space embeddings and positive definite functions

Spherical embeddings via cosines

Notice that the Hilbert sphere S∞ (hence every subspace such as Sr−1) has a
rotation-invariant distance – arc-length along a great circle:

d(x, y) := ^(x, y) = arccos〈x, y〉, x, y ∈ S∞.

Hence applying cos[−] entrywise to any distance matrix on S∞ yields:

cos[(d(xj , xk))j,k≥0] = (〈xj , xk〉)j,k≥0,

and this is a Gram matrix, so positive semidefinite.

Moreover, if X ↪→ S∞ then
X must have diameter at most diam S∞ = π. This shows one half of:

Theorem (Schoenberg, Ann. of Math. 1935)

A finite metric space (X, d) embeds isometrically into the Hilbert sphere S∞

if and only if (a) cos(x) is positive definite on X, and (b) diam X ≤ π.

For more on the history/overview: survey article by
Belton–Guillot–K.–Putinar, 2019.

For full proofs of these and below results: lecture notes (K.), 2019.
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rotation-invariant distance – arc-length along a great circle:

d(x, y) := ^(x, y) = arccos〈x, y〉, x, y ∈ S∞.

Hence applying cos[−] entrywise to any distance matrix on S∞ yields:

cos[(d(xj , xk))j,k≥0] = (〈xj , xk〉)j,k≥0,

and this is a Gram matrix, so positive semidefinite. Moreover, if X ↪→ S∞ then
X must have diameter at most diam S∞ = π. This shows one half of:

Theorem (Schoenberg, Ann. of Math. 1935)

A finite metric space (X, d) embeds isometrically into the Hilbert sphere S∞

if and only if (a) cos(x) is positive definite on X, and (b) diam X ≤ π.

For more on the history/overview: survey article by
Belton–Guillot–K.–Putinar, 2019.

For full proofs of these and below results: lecture notes (K.), 2019.
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Classical results: Schur, Schoenberg, Bochner, Rudin, . . .
Fixed dimension results

From Schur to Schoenberg and Rudin
Metric space embeddings and positive definite functions

Positive definite functions on spheres

These results characterize R∞ and S∞ in terms of positive definite functions.

At the same time (1930s), Bochner proved his famous theorem classifying all
positive definite functions on Euclidean space [Math. Ann. 1933].
Simultaneously generalized in 1940 by Weil, Povzner, and Raikov to arbitrary
locally compact abelian groups.

After understanding that cos(·) is positive definite on S∞, Schoenberg was
interested in classifying positive definite functions on spheres.
This is the main result – and the title! – of his 1942 paper:
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Classical results: Schur, Schoenberg, Bochner, Rudin, . . .
Fixed dimension results

From Schur to Schoenberg and Rudin
Metric space embeddings and positive definite functions

Positive definite functions on spheres (cont.)

Theorem (Schoenberg, Duke Math. J. 1942)

Suppose f : [−1, 1]→ R is continuous. Then f(cos ·) is positive definite on the
Hilbert sphere S∞ ⊂ R∞ = `2(N) if and only if f(cos θ) =

∑
k≥0

ck cosk θ,

where ck ≥ 0 ∀k are such that
∑
k ck <∞.

Freeing this result from the sphere context, one obtains Schoenberg’s theorem
on entrywise positivity preservers: If f is continuous, then
f [−] : Pn → Pn for all n ⇐⇒ f is a power series with all coefficients ≥ 0.
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Classical results: Schur, Schoenberg, Bochner, Rudin, . . .
Fixed dimension results

From Loewner, to Vasudeva, to Schoenberg
Schur polynomials and weak majorization

Toeplitz and Hankel matrices

Rudin (1959) strengthened Schoenberg’s theorem to all functions.

Motivations: Rudin was motivated by harmonic analysis and Fourier analysis
on locally compact groups. On G = S1, he studied preservers of positive
definite sequences (an)n∈Z. This means the Toeplitz kernel (ai−j)i,j>0 is
positive semidefinite.

In [Duke Math. J. 1959] Rudin showed: f preserves positive definite
sequences (Toeplitz matrices) if and only if f is absolutely monotonic.
Suffices to work with measures with 3-point supports.

Important parallel notion: moment sequences.
Given positive measures µ on [−1, 1], with moment sequences

s(µ) := (sk(µ))k>0, where sk(µ) :=

∫
R
xk dµ,

classify the moment-sequence transformers: f(sk(µ)) = sk(σµ), ∀k ≥ 0.

With Belton–Guillot–Putinar  a parallel result to Rudin:
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Classical results: Schur, Schoenberg, Bochner, Rudin, . . .
Fixed dimension results

From Loewner, to Vasudeva, to Schoenberg
Schur polynomials and weak majorization

Toeplitz and Hankel matrices (cont.)

Let 0 < ρ ≤ ∞ be a scalar, and set I = (−ρ, ρ).

Theorem (Rudin, Duke Math. J. 1959)

Given a function f : I → R, the following are equivalent:

1 f [−] preserves the set of positive definite sequences with entries in I.

2 f [−] preserves positivity on Toeplitz matrices of all sizes and rank ≤ 3.

3 f is analytic on I and has nonnegative Maclaurin coefficients.
In other words, f(x) =

∑∞
k=0 ckx

k on (−1, 1) with all ck ≥ 0.

Theorem (Belton–Guillot–K.–Putinar, 2016)

Given a function f : I → R, the following are equivalent:

1 f [−] preserves the set of moment sequences with entries in I.

2 f [−] preserves positivity on Hankel matrices of all sizes and rank ≤ 3.

3 f is analytic on I and has nonnegative Maclaurin coefficients.
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Classical results: Schur, Schoenberg, Bochner, Rudin, . . .
Fixed dimension results

From Loewner, to Vasudeva, to Schoenberg
Schur polynomials and weak majorization

Preserving positivity in fixed dimension

Preserving positivity for fixed n:

Natural refinement of original problem of Schoenberg.

Known for n = 2 (Vasudeva [Indian J. Pure Appl. Math. 1979]).

Open when n ≥ 3.

To date, there is essentially only one result for fixed n ≥ 3, due to Charles
Loewner. It appeared in the [Trans. Amer. Math. Soc. 1969] paper of his
student, Roger A. Horn:

Theorem (Loewner/Horn, 1969)

Suppose I = (0,∞), and a continuous function f : I → R entrywise preserves
positivity on Pn(I) for fixed n ≥ 3. Then f ∈ Cn−3(I), and

f (k)(x) ≥ 0, ∀0 ≤ k ≤ n− 3, x ∈ I.
If n ≥ 1 and f ∈ Cn−1(I) then this holds for all 0 ≤ k ≤ n− 1.
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Horn’s 1969 paper
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Classical results: Schur, Schoenberg, Bochner, Rudin, . . .
Fixed dimension results

From Loewner, to Vasudeva, to Schoenberg
Schur polynomials and weak majorization

Stronger form of the Loewner/Horn result

Define a special Hankel matrix to be ((a+ txj+k))n−1
j,k=0,

where a, t, x ≥ 0 and n ≥ 1. (This is a rank ≤ 2 Hankel psd matrix.)

Similar to Rudin’s strengthening of Schoenberg’s theorem, we now weaken the
hypotheses of Loewner’s theorem:

Theorem (Belton–Guillot–K.–Putinar, 2016)

Let 0 < ρ ≤ ∞ and set I = (0, ρ). Given any function f : I → R, suppose
f [−] preserves positivity on P2(I) and the special Hankel matrices in Pn(I) for
fixed n ≥ 3. Then the same conclusions as above hold: f ∈ Cn−3(I), and

f (k)(x) ≥ 0, ∀0 ≤ k ≤ n− 3, x ∈ I.
If n ≥ 1 and f ∈ Cn−1(I) then this holds for all 0 ≤ k ≤ n− 1.
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Classical results: Schur, Schoenberg, Bochner, Rudin, . . .
Fixed dimension results

From Loewner, to Vasudeva, to Schoenberg
Schur polynomials and weak majorization

The proof for smooth functions: Loewner’s calculation
Suppose f smooth, entrywise preserves positivity on Pn((0, ρ)). Why are
f, f ′, . . . , f (n−1) non-negative on (0, ρ)?

Proceed by induction on n; for n = 1 there is nothing to prove.

Induction step: Suppose f [−] takes special Hankel matrices in Pn(I) to
Pn, hence for (n− 1)× (n− 1) too – so f, f ′, . . . , f (n−2) ≥ 0 on I.

Now define fε(x) := f(x) + εxn−1 for ε > 0. Then fε satisfies the
hypotheses, and fε, f ′ε, . . . , f

(n−2)
ε > 0 on I.

Let a ∈ (0, ρ) and choose x ∈ (0, 1), t ∈ (0, ρ− a). Then
A(a, t, x) := (a+ txj+k)n−1

j,k=0 is a special Hankel matrix. Hence

∆(t) := det fε[A(a, x, t)] ≥ 0, so
∆(t)

tN
≥ 0, where N =

(
n

2

)
.

Now Loewner computed:

0 = ∆(0) = ∆′(0) = · · · = ∆(N−1)(0),

whence by L’Hopital’s Rule,

0 ≤ lim
t→0+

∆(t)

tN
= lim
t→0+

∆′(t)

NtN−1
= · · · = lim

t→0+

∆(N)(t)

N !
=

∆(N)(0)

N !
.
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0 = ∆(0) = ∆′(0) = · · · = ∆(N−1)(0),

whence by L’Hopital’s Rule,

0 ≤ lim
t→0+

∆(t)

tN
= lim
t→0+

∆′(t)

NtN−1
= · · · = lim

t→0+

∆(N)(t)

N !
=

∆(N)(0)

N !
.
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Smooth functions: Loewner’s calculation (cont.)

But now Loewner also computed:

∆(N)(0) =

(
N

0, 1, . . . , n− 1

) ∏
0≤j<k≤n−1

(xj − xk)2 · fε(a)f ′ε(a) · · · f (n−1)
ε (a).

Hence f (n−1)
ε (a) ≥ 0 for all ε > 0, so f (n−1)(a) ≥ 0.

Loewner’s computation can be made completely algebraic, using the
derivation ∂t over any unital commutative ring. (K., 2018 preprint.) This
leads to novel symmetric function identities arising out of analysis.

This line of attack is useful in classifying the entrywise polynomials
preserving positivity. (Belton–Guillot–K.–Putinar, [Adv. in Math. 2016],
K.–Tao, 2017 preprint).

Loewner had initially summarized these computations in a letter to
Josephine Mitchell (Penn. State University) on October 24, 1967:
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Loewner’s computations
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Corollary: Schoenberg–Rudin theorem on (0,∞)

Using mollifiers, pass from smooth functions to all continuous functions.
By a result of Ostrowski (1925), every preserver must be continuous.

Corollary (Belton–Guillot–K.–Putinar, 2016)

Suppose 0 < ρ ≤ ∞ and I = (0, ρ). The following are equivalent for any
function f : I → R:

1 f [A] ∈ Pn for all A ∈ Pn(I) and all n.

2 f [−] preserves positivity on special Hankel matrices in Pn(I), ∀n ≥ 1.

3 f is analytic on I and has nonnegative Maclaurin coefficients. In other
words, f(x) =

∑∞
k=0 ckx

k on I with all ck ≥ 0.

The implications (3) =⇒ (1) =⇒ (2) are easy. That (1) =⇒ (3) was shown
by H.L. Vasudeva [Indian J. Pure Appl. Math. 1979].

Sketch: By the stronger Loewner theorem, f is smooth and all derivatives are
≥ 0 on I. Extend f continuously to 0+, then apply Bernstein’s theorem: such
an f can be extended analytically to the complex disc D(0, ρ).
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Stronger Schoenberg theorem: outline of proof

Step 1: By an integration trick (connecting positive measures to positivity
certificates for limiting s.o.s. polynomials on compact semi-algebraic sets),
we show f is continuous on (−ρ, ρ).

Step 2: If f is assumed to also be smooth on (−ρ, ρ), then it is real analytic
on (−ρ, ρ). Now done by previous slide and the Identity Theorem.

Step 3: Use three Ms (Mollifiers, Montel, Morera) to pass from smooth
functions to continuous functions.
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Preservers in fixed dimensions: polynomials

Recall: classifying the entrywise preservers of PN for fixed N ≥ 3 is open
to date. For

⋃
N PN it was

∑
k≥0 ckx

k with ck ≥ 0.

How about polynomial preservers of PN for N ≥ 3? Until 2016,
not a single example known with a negative coefficient.

Joint with Belton–Guillot–Putinar [Adv. Math. 2016] and Tao (2017):
(a) we found the first such examples,
(b) we classified which coefficients can be negative,
(c) we classified the polynomials with at most N + 1 monomials which
are preservers. Again, features rank ≤ 3 Hankel matrices.

The proofs use representation-theoretic tools: Schur polynomials,
Harish-Chandra–Itzykson–Zuber integrals, Gelfand–Tsetlin patterns, and
Schur positivity.

It is the mixing of positivity and representation theory / algebra that led
us to the first examples and characterization results.
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Schur polynomials

Key ingredient in computations – representation theory / symmetric functions:

(Cauchy’s definition:) Given a non-increasing n-tuple
mn−1 ≥ mn−2 ≥ · · · ≥ m0 ≥ 0, the corresponding
Schur polynomial equals the integer-coefficient polynomial

s(mn−1,...,m0)(u1, . . . , un) :=
det(u

mk−1

j )

det(uk−1
j )

.

Note that the denominator is precisely the Vandermonde determinant V (u).

Example: If n = 2 and m = (k > l), then

sm(u1, u2) =
uk1u

l
2 − ul1uk2
u1 − u2

= (u1u2)l(uk−l−1
1 + uk−l−2

1 u2 + · · ·+ uk−l−1
2 ).

Basis of homogeneous symmetric polynomials in u1, . . . , un.
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From positivity and algebra, to inequalities
Treat Schur polynomials as functions on the positive orthant:

Let sm(u) := det(u
mj

i )/ det(uj−1
i ) be the Schur polynomial corresponding to

m (abusing notation). Using deep results in representation theory, (K.–Tao: )

sm(u)

sn(u)

is coordinatewise nondecreasing for u in the positive orthant (0,∞)N ,
whenever m ≥ n coordinatewise.

Using this (with the H-C–I–Z integral) yields a novel characterization of weak
majorization for real tuples:

Theorem (K.–Tao, 2017)

Suppose m,n are N -tuples of pairwise distinct non-negative real powers. Then

|det(u◦m0 | · · · |u◦mN−1)|
|V (m)| ≥ | det(u◦n0 | · · · |u◦nN−1)|

|V (n)| , ∀u ∈ [1,∞)N ,

if and only if m weakly majorizes n.
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