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Let B the Bergman kernel on the domain 0n, m of n_m contractive complex
matrices (m�n�1). Let W=Wn, m be the associated Wallach set consisting of the
*�0 for which B*�(m+n) is (non-negative definite and hence) the reproducing kernel
of a functional Hilbert space H(*). For * # W, we examine the mn-tuple M(*) of
operators on H(*) whose components are multiplications by the mn co-ordinate
functions. This tuple is homogeneous with respect to the group action of PSU(n, m)
on the matrix ball. Utilising this group action we are able to determine the set of
all * # W for which (i) M(*) is bounded, and for which (ii) M (*) is (bounded and)
jointly subnormal. Further, the joint Taylor spectrum of M(*) is determined for all
* as in (i). The subnormality of M(*) turns out to be closely tied with the represen-
tation theory of PSU(n, m). Namely, M(*) is subnormal precisely when the natural
(projective) representation of PSU(n, m) on the twisted Bergman space H(*) is a
subrepresentation of an induced representation of multiplicity 1. Finally, we
examine the values of * for which M(*) admits its Taylor spectrum as a k-spectral
set, and obtain incomplete results on this question. This question remains open and
interesting on n&1 gaps, that is, for * belonging to the union of n&1 pairwise dis-
joint open intervals. Most of the techniques developed in this paper are applicable
to all bounded Cartan domains, though we stick to the matrix domains 0n, m for
concreteness. � 1996 Academic Press, Inc.

1. Introduction and Main Results

1.1. The Twisted Bergman Spaces

Let m�n�1 be integers. Throughout this paper 0=0n, m will denote
the open unit ball of the Banach space Cn_m of n_m complex matrices
with operator norm. H will denote the Bergman space on 0; it is the
Hilbert space of analytic functions on 0 which are absolutely square
integrable with respect to Lebesgue measure. It is well known that H is
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a functional Hilbert space with reproducing kernel B, the so-called Bergman
kernel, given by:

B(z, w)=det(In&zw*)&(m+n), z, w # 0n, m . (1.1)

Here In is the identity in Cn_n, and V is matrix adjoint.
The Wallach set W=Wn, m associated with the above set up is the set of

all complex numbers * for which B(*) =def B*�(m+n) (pointwise power) is a
non-negative definite kernel on 0. The set W has been determined by
several authors (see [5] and [10]). It is:

W=Wd _ Wc , (1.2)

where Wd , the discrete part of the Wallach set, and Wc , its continuous part,
are given by:

Wd=[0, 1, ..., n&1], Wc=[*: *>n&1]. (1.3)

The standard theory [2] of functional Hilbert spaces implies that for
each * # W, there is a uniquely determined Hilbert space H(*)=
H(*)(0n, m) of analytic functions on 0=0n, m whose reproducing kernel is
B(*). These spaces H(*) are the twisted Bergman spaces of the title. (Note
that for *=m+n this is the ordinary Bergman space. Also, as is well
known, for *=m it is the usual Hardy space on 0.)

For * # W, we define the mn-tuple M(*)=(M (*)
ij ) of (a priori densely

defined, possibly unbounded) multiplication operators on H(*) by:

(M (*)
ij f )(z)=zij f (z), z=(zij) # 0, f # H(*), 1�i�n, 1�j�m.

(1.4)

This operator tuple M(*) is the basic object of our study.

1.2. Main Results

Our main results are:

Theorem 1.1. M(*) is bounded if and only if * # Wc .

Theorem 1.2. For * # Wc , the joint Taylor spectrum of M(*) is 0� .

Theorem 1.3. For * # Wc , the following are equivalent:

(i) M(*) is jointly subnormal.
(ii) * # m+W.

(iii) There is a probability measure +* supported on 0� such that the
inner product ( } , } ) * on H (*) is given by ( f, g) *=� fg� d+* for polynomials
f, g # H(*).
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(iv) The natural projective representation of PSU(n, m) on H(*) is a
subrepresentation of an induced representation of multiplicity 1.

Note that (a) m+W�Wc ; (b) the polynomials belonging to H(*) are
dense in H(*) (and for * # Wc , all analytic polynomials belong to H (*)), so
that in (iii) above, the probability +* and the inner product ( } , } ) * deter-
mine each other; (c) the natural representation mentioned in Theorem 1.3
(iv) will be discussed in the next section; (d) throughout this paper by
``measure'' we shall mean regular Borel measure. For the rest of the
terminology in this theorem, see [13].

Recall that a d-tuple T of commuting bounded operators on a Hilbert
space is said to admit a compact subset C of Cd as a k-spectral set if for
all rational functions p with poles off C, we have &p(T)&�k supz # C | p(z)|.
The d-tuple T is said to admit C as a complete k-spectral set if the same
holds for matrix valued p, where | p(z)| is to be interpreted as the operator
norm of the matrix p(z). A famous conjecture due to Halmos [6, Problem
6] says that: k-spectral implies complete k$-spectral for some k$�k [9,
Theorem 8.11]. This conjecture, originally stated for a single operator and
open even in that case, makes sense and is equally interesting for operator
tuples as well. This is the problem that originally motivated our study of
the tuple M(*). In fact, we had hoped for a counterexample to this conjec-
ture (for tuples) among the tuples M(*). Clearly a jointly subnormal
operator tuple admits the joint spectrum of its minimal normal extension
as a complete spectral set (i.e., k=1). Therefore, the above results imply
that M(*) admits 0� as a complete spectral set if * # m+W. On the negative
side, we find that for *<m, M(*) does not admit 0� as a k-spectral set for
any k<�. Indeed, this is well known for n=1: in this case the monomials
are elements of sup norm 1 whose norm in H(*), *<m, goes to infinity as
the exponent of the monomial goes to infinity component-wise. The general
case is an easy consequence of this since 01, m sits inside 0n, m as the set of
all n_m contractive matrices all whose rows, except possibly the first, are
zero - and the kernel B(*) on 0n, m restricts to the corresponding kernel on
01, m .

It turns out that though the tuple M(*) appears to have a complicated
structure, the single operator det (M(*)) has a simple and tractable struc-
ture at least in the case m=n. Namely, we find:

Theorem 1.4. Let m=n. Then for * # Wc , det (M(*)) is a direct sum of
weighted forward shifts with explicitly computed weights.

(i) If *<n (resply if *�n) then det (M(*)) does not (resply does)
admit the closed unit disc in C as k-spectral set (resply complete k-spectral
set) for any k<� (resply for k=1).
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(ii) If *�n then det(M(*)) is a subnormal contraction and hence
admits the closed unit disc as a complete spectral set.

In view of the results in this paper, the possibility of M(*) being a coun-
terexample to the Halmos conjecture remains alive only for * in one of the
n&1 ``gaps'' (m+i&1, m+i), i=1, ..., n&1. This leads to

1.3. Open Question

(i) For * in one of the above mentioned gaps, does M (*) admit 0� as
a k-spectral (or complete k-spectral) set? If yes, what is the best possible
value of k=k(*)?

(ii) A second question is the extension of Theorem 1.4 to the case
m>n. On 0 there is a special polynomial (a spherical function) which
generalises the usual determinant in the square case m=n. This we call the
(generalised) determinant on 0, and det (M(*)) must be interpreted as
multiplication by this generalised determinant. It is not difficult to prove
that this operator continues to be a direct sum of weighted shifts in the case
m>n, but explicit computation of the weights presents unexpected new dif-
ficulties.

1.4. Concluding Remarks

Let us say that a functional Hilbert space H of analytic functions on a
domain D�Cd is a Hardy like space if the polynomials are densely
contained in H, and there is a (uniquely determined) probability measure
+ supported in D� such that the inner product ( f, g) is given by
( f, g)=� fg� d+, for analytic polynomials f, g # H. Thus, Theorem 1.3 says
in particular that Hardy likeness of H(*) is equivalent to joint subnor-
mality of M(*). Of course, when H(*) is known to be Hardy-like, bounded-
ness and subnormality of M(*) are trivial consequences. It is a measure of
the success of the techniques evolved in this paper that the main results
outlined do go through even when H(*) is not Hardy like. Indeed, as far
as we know, there is no prior instance in the literature where the question
of boundedness, subnormality and joint spectrum of a multiplication
operator tuple M on a functional Hilbert space H has been completely
settled even though M is not a joint weighted shift and H is not a Hardy
like space. (Clearly M(*) is not a weighted shift for n�2.)

In this connection, it is perhaps worth pointing out that a d-tuple of multi-
plication operators on a functional Hilbert space of analytic functions is a
joint weighted shift precisely when it is homogeneous in the sense of [8]
with respect to the action of the d-dimensional torus group, i.e., the con-
nected component of identity in the full group of linear isometries of
the Banach space l 1(d ). (Conversely, any joint weighted shift is unitarily
equivalent to such a tuple of multiplication operators.) These are well
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understood classes of operator tuples. A natural generalisation of joint
weighted shifts would be the d-tuples of operators homogeneous with
respect to the connected component of identity in the full group of linear
isometries of some ``nice'' norm on Cd. A natural choice of ``nice'' norms are
those having the Cartan domains as open unit balls. The tuples M(*)

belong to this class. Indeed, implicit in our discussion of boundedness and
subnormality of M(*) are general criteria for boundedness and subnor-
mality of operator tuples in this general class. For instance, if an mn-tuple
of operators has 0� n, m as spectrum, and is homogeneous with respect to the
natural action of PS(U(n)_U(m)) on this spectrum, then the arguments
leading to Lemma 5.2 below actually yield a subnormality criterion for this
tuple, which is very similar to the usual moment-sequence criterion [6, p.
895-896] for the subnormality of joint weighted shifts - with the Schur
polynomials taking up the role of monomials.

However, crucial to the techniques used in the determination of the
Taylor spectrum, and of course in establishing the connection between sub-
normality and induced representation, is the fact that M(*) is homogeneous
with respect to the natural action of an even larger (non-linear, non-
compact) group of biholomorphic automorphisms, namely PSU(n, m), on
its spectrum 0� n, m . This fact and other preliminaries are described in
Section 2.1. In Section 2.2 we derive an explicit formula for the elementary
spherical functions (esf 's) in terms of the Schur polynomials. We also
obtain a recursion formula (Proposition 2.4) for the Schur polynomials of
n variables in terms of those of fewer number of variables. This recursion
is used to re-derive Faraut and Koranyi's norm formula for the esf's as
elements of the twisted Bergman spaces. While the Faraut-Koranyi proof
of their norm formula is computationally simpler, we believe that ours is
conceptually simpler. More over, the formula in [5] is not entirely explicit
in as much as it involves the dimensions of the S(U(n)_U(m))-irreducible
spaces. These dimensions were determined by Upmeier in [12]. On the
other hand, we first obtain a completely explicit norm formula and then
use it to re-derive Upmeier's dimension formula in an elementary way.
However, the results in [5] and [12] are for general Cartan domains,
while our proofs apply, as yet, only to domains 0n, m . Our justification for
including the rather lengthy subsection 2.2, devoted mostly to re-deriving
known results, (one exception seems to be the recursion formula for Schur
polynomials, which we could not locate in the literature) is three-fold:
(i) we have tried to make this paper as self-complete and widely access-
ible as we could, keeping the average operator theorist reader in mind,
(ii) the methods and results developed here will be later used to prove the
results on boundedness and subnormality, and (iii) we have framed the
proofs in such a way that the results here will painlessly generalise to
arbitrary Cartan domains as soon as an analogue of our recursion formula
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(Proposition 2.4) is available for the Jack polynomials which play the role
of the Schur polynomials in the context of arbitrary Cartan domains.
Precise conjectures generalising the results of this paper were formulated in
[3] where we also announced the results proved here. If 0 is any Cartan
domain of genus g and rank r in Cd, one can define analogous operators
M (*) for * in the corresponding Wallach set W. The proofs presented here
easily generalise to show that (i) M (*) is unbounded for * # Wd , (ii) M (*)

has Taylor spectrum 0� wherever it is bounded, and (iii) M (*) is subnormal
for *>g&1 and for at most r values of *�g&1. The recursion formula
for Jack polynomials will be needed only to prove its boundedness for
* # Wc and its subnormality for the r points * # d�r+Wd .

The proof of Theorem 1.1, as presented in section 3, works by reducing
the question of boundedness of the tuple M(*) to that of a single operator,
viz. multiplication by the linear spherical function on 0. To settle the
boundedness of this operator, we reduce it to the question of positivity of
an associated kernel and answer it by invoking the explicit formulae for the
elementary spherical functions. Theorem 1.2 follows fairly easily from the
nature of the action of PSU(n, m) on 0. The proof given in Section 4 does
not involve any explicit calculation of Koszul complexes. The proof of the
part (ii) O (i) in Theorem 1.3 depends on the techniques developed in
Section 2. Our proof has the advantage of explicitly describing the
measures +* , whenever they exist. To establish the part (i) O (ii) of
Theorem 1.3 we appeal to the wellknown result that any two quasi-
invariant measures on a transitive G-space are equivalent. With the aid of
this result, it is not difficult to show that each of the n G-orbits in �0
supports at most one of the measures +* . The relationship with representa-
tion theory is obtained by an appeal to Mackey's theory of systems of
imprimitivity. Finally in Section 6, we prove Theorem 1.4 on the determi-
nant. This involves an examination of the representation of the maximal
compact subgroup of PSU(n, m) on H(*).

2. Group Action and Spherical Functions

2.1. Group Action

Let G denote the connected component of identity in the full group of
biholomorphic automorphisms of 0=0n, m . We have G=PSU(n, m);
abstractly it is the group of linear automorphisms of a non-degenerate unitary
form of signature (n, m) on Cn+m, modulo scalar matrices. Taking
(In)�(&Im) as the matrix of such a form, G consists of the matrices (modulo
scalars) g=( a

c
b
d) with a # Cn_n, b # Cn_m, c # Cm_n, d # Cm_m satisfying

a*a&c*c=In , d*d&b*b=Im , a*b=c*d, det g=1.
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G acts on 0n, m as Mo� bius transformations:

G % g=\a
c

b
d+ : z � (az+b)(cz+d )&1, z # 0n, m . (2.1)

This action of G on 0 is transitive. Indeed for each w{0 in 0, there is
a unique involution ,w # G which interchanges 0 and w. It is given by:

,w(z)=(1&ww*)&1�2 (w&z)(1&w*z)&1 (1&w*w)1�2, z # 0. (2.2)

Thus as homogeneous spaces, we have the identification 0=G�K, where
K is the stabiliser in G of 0 # 0. Explicitly, K=PS(U(n)_U(m)), consisting
of pairs (u, v) of unitaries with det(u) det(v)=1, modulo scalars. The
element (u, v) # PS(U(n)_U(m)) is identified with the element u�v of G.
Specialising (2.1), one sees that k=(u, v) acts on 0 by

z � uzv*. (2.3)

The Shilov boundary S of 0 consists of the maximal partial isometries.
The action of G mentioned above extends naturally to 0� , and under this
action, K is transitive on S. We fix a base point e # S. For definiteness, we
take e # Cn_m given by e=(In_n , 0n_m&n). Let L be the stabiliser of e in
K. Thus we have S=K�L. Explicitly, L consists of elements
(u, v) # PS(U(n)_U(m)), where v=u�w for some w # U(m&n). Thus,
abstractly, we have L=PS(U(n)_U(m&n)).

Note that in the special case n=m, S is naturally identified with U(n)
and the action of L on S is that of PSU(n) acting on U(n) by conjugation.

For 1�j�n, let ej # 0n, m denote the matrix with 1 in the ( j, j) position
and 0 elsewhere. Also, let 2n denote the subset of the n-dimensional box
given by

2n=[(t1 , ..., tn) : 0�t1� } } } �tn�1]. (2.4)

2n is embedded in 0� n, m via the identification

2n % (t1 , ..., tn) W :
1� j �n

tjej # 0� n, m . (2.5)

Using polar decomposition, it is easy to see that each K-orbit in 0� meets
2n in a singleton. This gives an identification of the orbit space 0� �K with
2n . Explicitly, the projection ?: 0� � 2n=0� �K is given by

?(z)=the n-tuple of singular values of z arranged in the increasing order.

(2.6)
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Note that under this identification, e=�1�j�n ej corresponds to the point
1
�
=(1, ..., 1) # 2n .
For * in the Wallach set W, g # G acts on H(*) as an unitary operator

U (*)(g) by the formula (with Jg=complex Jacobian determinant of g as a
function on 0)

U (*)(g)( f )=(Jg)*�(m+n) ( f b g), f # H(*). (2.7)

The unitarity of U (*) on H (*) is equivalent to the following transformation
rule for the reproducing kernel B(*) (see [1]):

J*�(m+n)(g, z) J *�(m+n)(g, w) B(*)(gz, gw)=B(*)(z, w) (2.8)

for g # G, z, w # 0n, m .
Excepting when * is an integer, g � U (*)(g) is not a ``genuine'' represen-

tation, but is only a projective representation. However the restriction of
this action to K is a genuine representation of K on H(*). The decomposi-
tion of H(*) under K-action is described as follows. In the present context,
a signature is an n-tuple s

�
=(s1 , ..., sn) of integers with s1� } } } �sn�0.

When wishing to emphasise the parameter n, we shall call this a signature
of rank n. |s

�
| =def �n

j=1 sj will be called the weight of the signature. The
group K acts by composition on the vector space Hom(k) of analytic
homogeneous polynomials of degree k�0. Under K-action, Hom(k)
breaks up into inequivalent irreducible components indexed by the
signatures of weight k. The component indexed by s

�
will be denoted by Ps

�
.

Thus,

Hom(k)= �
s
�
: |s

�
|=k

Ps
�
. (2.9)

The space Ps
�
may be constructed as follows. For z # 0, and 1�i�n, let z(i)

denote (temporarily) the top left i_i submatrix of z. Then the conical poly-
nomial Ns

�
associated with the signature s

�
is defined by

Ns
�
(z)=det(z(1))s1&s2 } } } det(z(n&1))sn&1&sn det(z(n))sn. (2.10)

Thus Ns
�

is a homogeneous analytic polynomial of degree |s
�
| on 0. Now,

Ps
�

is defined to be the minimal K-invariant vector space of polynomials
containing Ns

�
.

It is known that H(*) contains all analytic polynomials if and only if
* # Wc . Indeed for * # Wd , H (*) contains precisely those spaces Ps

�
for which

*< j �n O sj=0. Further, the polynomials belonging to H(*) are dense in

178 BAGCHI AND MISRA



File: 580J 283209 . By:CV . Date:25:01:00 . Time:15:57 LOP8M. V8.0. Page 01:01
Codes: 2809 Signs: 1754 . Length: 45 pic 0 pts, 190 mm

H(*), whence H (*) is the direct sum of its subspaces Ps
�
. In particular, we

have

H(*)=�
s
�

Ps
�
, for * # Wc , (2.11)

where the direct sum is over all signature s
�
.

Since the inner product on H(*) is K-invariant and for distinct signatures
s
�

the representations of K on Ps
�

are inequivalent irreducible representa-
tions, Schur's lemma implies that the above direct sum is an orthogonal
direct sum.

Recall from (2.7) the unitary U (*)(g) on H(*) representing g # G. The
operator tuple M(*) on H(*) transforms nicely under the G-action. As g is
an analytic function on a neighborhood of 0� , there is no ambiguity in the
definition of g(M(*)); it is just multiplication by g: g(M(*))( f )(z)=g(z) f (z),
z # 0, where defined. And we have

g(M(*))=U (*)(g) M(*)U (*)*(g), g # G. (2.12)

In the language of [8], M(*) is a G-homogeneous tuple of operators.
For use in Section 5, we recall that under G-action, the boundary �0 of

0 breaks up into n orbits

Sj=[u # �0: rank(In&uu*)=j], j=0, 1, 2, ..., n&1. (2.13)

In particular, S0=S is the Shilov boundary of 0. We have

S� j=S0 _ } } } _ Sj , 0�j�n&1. (2.14)

Note that the image of Sj under ?: 0� n, m � 2n is 2j identified as a subset
of 2n by 2j=[(t1 , ..., tj , 1, ..., 1): 0�t1�. . . tj�1], 0� j �n.

2.2. Spherical Functions

A spherical function on 0 is a bounded analytic function . fixed by the
group L (acting by composition). An elementary spherical function (esf) is
a spherical function . such that the minimal K-invariant linear space of
functions containing . is K-irreducible.

Each Ps
�

contains, upto scalar multiplication, a unique esf .s
�
, which we

normalise by the requirement .s
�
(e)=1. (Recall that e is the L-fixed base

point in the Shilov boundary S of 0.) This indexes the esf 's by the
signatures. Note that we have

.s
�
=|

L
Ns

�
b l dl,
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where the integration is with respect to the Haar probability on L, and Ns
�is as in formula (2.10). Also,

Ps
�
=� [.s

�
b k: k # K]

where � denotes linear span.
Since Ps

�
is K-irreducible, by Schur's Lemma it admits an essentially

unique K-invariant inner product ( } , } ) s
�
. Being finite dimensional,

(Ps
�
, ( } , } ) ) is a functional Hilbert space; say with reproducing kernel Ks

�
.

Since the inner product is K-invariant so is the kernel:

Ks
�
(gz, gw)=Ks

�
(z, w), z, w # 0� , g # K. (2.15)

In particular,

Ks
�
(z, e)=Ks

�
(lz, le)=Ks

�
(lz, e), l # L.

Thus Ks
�
( } , e) is an L-fixed element of Ps

�
, and hence Ks

�
( } , e)=.s

�
after

suitable normalisation. Since Ks
�

is K-invariant and K acts transitively on
the Shilov boundary S, this determines Ks

�
(z, w) for w # S, and hence (as Ks

�is coanalytic in w) for all w. Namely we get:

Proposition 2.1. Let s
�

be a signature. Then, with suitable normalisation,
the reproducing kernel of a K-invariant inner product on Ps

�
is Ks

�
(z, w)=

.s
�
(zw*e).

(Note that this implies, in particular, that for any esf .s
�
, the kernel

(z, w) � ,s
�
(zw*e) is non-negative definite.)

Proof. By the preceding discussion, upto scalar multiplication there is
a unique K-invariant kernel on Ps

�
. So it suffices to verify that the kernel

(z, w) � .s
�
(zw*e) is K-invariant in the sense of (2.15). In view of the action

(2.3) of K, we need to show that for x=zw* # 0n, m and for u # U(n), we
have .s

�
(uxu*e)=.s

�
(xe). Define v # U(m) by v=u�1. Since (u*, v*) # L

and .s
�

is L-fixed, we have .s
�
(uxu*e)=,s

�
(xu*ev). Since u*ev=e, this com-

pletes the proof. K

One interesting consequence of this proposition is:

Corollary 2.1. For any signature s
�
, &.s

�
&�=1.

(Here, of course, &.s
�
&� is the supremum over 0 of |.s

�
| .)

Proof. For z # S,

|.s
�
(z)| 2=|Ks

�
(z, e)| 2�Ks

�
(z, z) Ks

�
(e, e)=.s

�
(zz*e) .s

�
(ee*e)=.2

s
�
(e)=1.
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The inequality is Cauchy-Schwartz applied to the space Ps
�

with repro-
ducing kernel Ks

�
. Since .s

�
is analytic, S is the Shilov boundary of 0 and

.s
�
(e)=1, this completes the proof. K

Proposition 2.2. For any signature s
�
, let ,s

�
and .*s

�
denote the corre-

sponding esf 's on 0n, m and 0n, n respectively. Then these two polynomials
are related by

.s
�
(z1 , z2)=.*s

�
(z1), z1 # Cn_n, z2 # Cn_(m&n).

Proof. In view of the comments preceding Proposition 2.1, the kernel
in this proposition is a scalar times .s

�
(z) at w=e. Equating the value at

z=e, the scalar must be equal to 1. In other words, we have .s
�
(ze*e)=

.s
�
(z) for z # Cn_m. That is, .s

�
(z) depends only on the first n columns

of z.
Embed 0*=0n, n in 0=0n, m by z1 [ (z1 , 0). To complete the proof, it

suffices to show that the restriction of .s
�

to 0* equals .*s
�
. The group

actions discussed in section 2.1 behave nicely with respect to this embed-
ding; also, clearly, the conical polynomial Ns

�
restricts to the corresponding

conical polynomial N*s
�
. It follows that the image of the space Ps

�
under

restriction contains P*s
�
. Hence there is a . # Ps

�
, such that . |0*=.*s

�
. Now,

for l # L, . and . b l have the same restriction to 0*. Therefore, replacing
. by its L-invariantisation � . b l dl (integration with respect to the Haar
probability on L) does not change its restriction .*s

�
. So we may assume

that . is spherical. Since . # Ps
�
, and (as e # 0*) .(e)=1, it follows that

.=.s
�
. Hence .s

�
|0*=.*s

�
. K

Remark (i). The fact that .s
�
(z) depends only on the first n columns of

z may sound incredible until one notices that in the description of the sub-
group L of K, we have singled out the first n columns by the arbitrary
choice of e as base point. A more direct way to establish the same fact is
as follows. Put z=(z1 , z2) with z1 # Cn_n, z2 # Cn_(m&n). For v # U(m&n),
(1n , 1n �v) # L, so that L-invariance of .s

�
implies .s

�
(z1 , z2)=.s

�
(z1 , z2 } v)

for all v # U(m&n). For each fixed z1 , the polynomial z2 � .s
�
(z1 , z2), being

an U(m&n)-invariant analytic polynomial, is a constant. Thus .s
�
(z)

depends only on z1 .

Remark (ii). Let 0 and 0* be as above, and, for any signature s
�
, let

Ps
�

and P*s
�

be the spaces of polynomials, on these two domains, indexed by
s
�
. Then, by Proposition 2.1 and Proposition 2.2, the reproducing kernel of

P*s
�

is obtained from that of Ps
�

by restricting the latter to 0*_0*. There-
fore, the theorem in Aronszajn [2, p. 351] implies that P*s

�
is the image of

Ps
�

under the restriction map.
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Recall from the representation theory of symmetric groups that the
Schur polynomial Qn( } | s

�
) corresponding to the signature s

�
is the polyno-

mial in n variables X
�

=(X1 , ..., Xn) given by:

Qn(X
�

| s
�
)=\ :

_ # Sym(n)

sgn(_) `
n

k=1

X sk&k+n
_(k) +\ `

1�i< j �n

(Xi&Xj )+
&1

(2.16)

(Clearly this is a homogeneous polynomial of degree |s
�
|. Though named

after Schur, these polynomials were first studied by Jacobi and his student
Trudi. In the theory of symmetric groups the polynomial Qn( } | s

�
) is often

denoted simply by [s
�
]. Be warned that, at any rate, ours is not the usual

notation for Schur polynomials. The standard theory of these polynomials
may be found in [7].)

Now we have the following explicit formula for the esf 's:

Proposition 2.3. For complex numbers t1 , ..., tn , and for any signature
s
�
, we have

.s
� \ :

n

j=1

tjej+=
Qn(t1 , ..., tn | s

�
)

Qn(1, ..., 1 | s
�
)

.

(Here ej # 0� are as in our discussion of 0� �K in section 2.1. Since each
L-orbit inside the Shilov boundary S of 0 intersects the torus
[�n

j=1 tjej : |tj |=1], the L-invariant function .s
�

is determined on S, and
hence by analytic continuation on the whole of 0, by its restriction to this
torus. Thus the formula in Proposition 2.3 determines the esf 's uniquely,
subject only to L-invariance and analyticity.)

Proof. In view of Proposition 2.2, we may (and do) assume n=m.
In this case, the Shilov boundary S of 0 is naturally identified with U(n),

and the action of L=PSU(n) on S=U(n) is by conjugation. Being analytic
polynomials, the esf 's may be identified with their restriction to S=U(n).
Thus viewed, they are class functions on U(n). We claim that upto scaling,
the esf's are the irreducible characters of U(n).

Let . be a spherical function on 0 with .(e)=1. Then . is an esf if and
only if the minimal K-invariant vector space V of polynomials containing
, is K-irreducible. Since V is spanned by . b k, k # K, this happens if and
only if upto a multiplicative constant . is the only spherical function in V,
i.e., if and only if the L-invariantisation of . b k is a constant times . for
every k # K. In view of the specific action of K=PS(U(n)_U(n)) and
L=PSU(n), this shows that an analytic polynomial . on 0 with .(e)=1
is an esf if and only if

|
U(n)

.(uvwv*) dv=.(u) .(w) for all u, w # U(n). (2.17)
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(This is, of course, the usual functional equation for spherical functions as
defined in the context of representation theory.)

On the other hand, we claim that a class function / on U(n) with
/(1){0 is a scalar times an irreducible character if and only if

|
U(n)

/(uvwv&1) dv=/(u) /(w)�/(1) for all u, w # U(n) (2.18)

(More generally, this characterisation is valid for any compact group.)
Indeed, if / is any irreducible character and ? is the matrix representa-

tion affording /, then putting T=� ?(vwv&1) dv for a fixed w # U(n), we
find that T commutes with every ?(u), u # U(n), whence T=cI by Schur
lemma. Comparing traces, we get c=/(w)�/(1). Now, trace (?(u) T )=
c/(u), which is (2.18).

Conversely, if / is a class function with /(1){0 satisfying (2.18), then we
take an irreducible character � such that (/, �){0, multiply both sides of
2.18 by �� (u) and integrate with respect to u. Using the fact that � also
satisfies (2.18), and �(w&1)=�(w), we get (/, �)(/�/(1)&���(1))#0.
Hence /=c } �, proving the converse.

Comparing the characterisations of esf 's and of irreducible characters, we
find that esf's are precisely the functions /�/(1) as / ranges over the analytic
irreducible characters of U(n). Since the irreducible character /s

�
with

highest weight s
�
=(s1 , ..., sn) is analytic if and only if sn�0, this proves

.s
�
=/s

�
�/s

�
(1) for a signature s

�
. (To be precise, a little more work is needed

to establish the exact correspondence. We omit this. For our purpose this
formula may be taken to define the esf corresponding to the signature s

�
, in

case n=m.)
The proposition now follows from Weyl's character formula for U(n)

(see [14]): on the torus [�n
j=1 tj ej : |tj |=1]�U(n), the irreducible charac-

ter /s
�

of highest weight s
�

is given by

/s
� \ :

n

j=1

tjej+=Qn(t1 , ..., tn | s
�
). K

Corollary 2.2 Let � and . be the esfs corresponding to the signatures
(1, ..., 1) and (1, 0, ..., 0) respectively. Then for any signature s

�
, we have

(a) ..s
�
=

1
n

:$
n

k=1
\ `

n

i=1
i{k

\1+
=i, k

|i&k|+|si&sk |++ .s+$k ,

(b) �.s
�
=,s

�
+1

�
.
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Here $k is the n-vector with 1 in the kth slot and 0 elsewhere, 1
�

is the
n-vector with 1 in all the slots, =i, k=+1 if i>k and =&1 if i<k, and the
sum �$ in (a) is over those k's (1�k�n) for which s

�
+$k is a signature.

Proof. By the parenthetical remark following the statement of Proposi-
tion 2.3, it suffices to verify these two identities for the variable z ranging
over z=�n

j=1 tjej with tj # C. In view of Propositions 2.3 and 2.5, these
identities follow from

(c) Qn( } | s
�
0) Qn( } | s

�
)=:$ Qn( } | s

�
+$k),

(d) Qn( } | s
�
1) Qn( } | s

�
)=Qn( } | s

�
+1

�
),

where s
�
0=(1, 0, ..., 0), and s

�
1=(1, 1, ..., 1).

From the defining equation (2.16) one sees that Qn(X | s
�
1)=>n

j=1 Xj

and Qn(X | s
�
0)=�n

j=1 Xj . One verifies the identities (c) and (d) by sub-
stituting these expressions, multiplying both sides by >1� j <k�n (Xj&Xk)
and equating coefficients of like powers. K

Remark. The identities (c) and (d) above are special cases of the Lit-
tlewood Richardson rule which expresses the product of any two Schur
polynomial as a linear combination of Schur polynomials. (See [7].) In
principle, this rule can be used to write the product of any two esf 's as a
linear combination of esf 's. In [16], Zhang has generalised the formulae in
Corollary 2.2 to all tube like Cartan domains.

For n=1 the formula (2.16) reduces to Q1(X | s)=Xs. This, together
with the recursion formula in our next proposition, also determines the
Schur polynomials uniquely. To state this formula succinctly, we need
some notations.

Notations. For any two finite sets A, B of natural numbers, we put

=(A, B)=(&1)&(A, B), where &(A, B)=*[(x, y) # A_B: x>y].

If k, l are natural numbers, A, B are two (disjoint) sets of size k and l
respectively, such that A _ B=[1, 2, ..., k+l], then to any signature s

�
of

rank k+l we associate two signatures s
�
A, s

�
B of rank k and l respectively,

as follows. Say A=[a1 , ..., ak], B=[b1 , ..., bl], where a1< } } } <ak ,
b1< } } } <bl . Then,

sA
i =sai&ai+i+l, 1�i�k, (2.19)

sB
j =sbj&bj+j+k, 1� j �l. (2.20)

Note that we then have |s
�
A|+|s

�
B|=|s

�
|+kl.
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In terms of these notations, we have:

Proposition 2.4. Let k, l be natural numbers. Then for any signature s
�of rank k+l, we have

Qk+ l (X1 , ..., Xk , Y1 , ..., Yl | s
�
)=\ `

1� j �l
1�i�k

(Xi&Yj )
&1+ } :

A, B

=(A, B)

_Qk(X1 , ..., Xk | s
�
A) Ql(Y1 , ..., Yl | s

�
B),

where the sum is over all partitions of [1, ..., k+l] into two sets A, B of size
k and l respectively.

Proof. Let Pn( } | s
�
) denote (for the duration of this proof) the

numerator of the formula (2.16): Pn(Z1 , ..., Zn | s
�
)=�? # Sym(n) >n

i=1

Zsi+n&i
?(i) . Then, with Zi=Xi for 1�i�k, Zj+k=Yj for 1� j �l, n=k+l,

we have to show that

Pn(Z1 , ..., Zn | s
�
)= :

A, B

=(A, B) Pk(X1 , ..., Xk | s
�
1) Pl(Y1 , ..., Yl | s

�
B).

To see this, write the sum over ? # Sym(k+l) in the definition of Pk+ l

as a double sum �A, B � } where the outer sum is over all partitions (A, B)
as in the statement of this proposition and the inner sum is over all
permutations ? in Sym(k+l) mapping A and B onto [1, ..., k] and
[k+1, ..., k+l] respectively. For a fixed (A, B), any such ? may be writ-
ten as ?=(_, ') b { for uniquely determined permutations _ # Sym(k),
' # Sym(l). Here { is the element of Sym(k+l) (uniquely determined by
(A, B)) mapping A and B onto [1, ..., k] and [k+1, ..., k+l] respectively
such that the restrictions of { to A and B preserve the natural order. Also,
for _ # Sym(k), ' # Sym(l), (_, ') # Sym(k+l) is defined by (_, ')(i)=_(i)
for 1�i�k, and (_, ')( j+k)='( j ) for 1� j �l. Now, the inner sum over
? may be rewritten as a double sum over _ # Sym(k), ' # Sym(l). This com-
pletes the proof since the notations have been so arranged that (for ?, _, '
related as above) we have sgn(?)=sgn({) sgn(_) sgn(')==(A, B) sgn(_)
sgn(') and >n

i=1 Zsi+n&i
?(i) =>k

i=1 XsAi+k&i
_(i) >l

j=1 YsBj+l&j
'( j ) . K

The next proposition is essentially Weyl's dimension formula for U(n).
Apart from the fact that our derivation of the formula is much more
elementary than the usual one, the identities we come across in the course
of this proof will also be useful later on.
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Proposition 2.5. For any signature s
�

of rank n we have

Qn(1, ..., 1 | s
�
)= `

1�i< j �n \1+
si&sj

j&i + .

Proof. Induction on n. It is trivial for n=1. So assume n�2 and the
formula holds for smaller rank. By the case k=n&1, l=1 of Proposition
2.4 and the induction hypothesis, we get, for any x{0,

Qn(1, ..., 1, 1&x | s
�
)=x&(n&1) :

n

k=1

(1&x)sk+n&k

_ `
i�i< j �n&1

\1+
s (k)

i &s (k)
j

j&i + ,

where, for 1�k�n, the signature s
�
(k) is defined by

s(k)
i ={si+1

si+1

if 1�i<k,
if k�i�n&1.

(2.21)

(Thus s
�
(i) is nothing but the signature s

�
A defined previously for the special

set A=[1, ..., i&1, i+1, ..., n].) The limit as x � 0 of the left side of this
identity is Qn(1, ..., 1 | s

�
), while that on the right is the coefficient of xn&1

in this polynomial in x. Therefore, the induction hypothesis implies

Qn(1, ..., 1 | s
�
)= :

n

k=1

(&1)k&1 \sk+n&k
n&1 + `

1�i< j �n&1
\1+

s (k)
i &s (k)

j

j&i + .

Now, putting xi=si&i+1, 1�i�n, an elementary calculation yields:

`
1�i< j �n&1

\1+
s (k)

i &s (k)
j

j&i +
=(&1)k&1 (n&1)! `

n

l=1
i{k

(xk&xl)
&1 `

1�i< j �n \1+
si&sj

j&i + . (2.22)

Letting p denote the polynomial p(x)=>n&1
l=1 (x+l ), and substituting the

above expression in the previous one, we find that to complete the proof,
it suffices to verify the following identity:

:
n

k=1

p(xk) `
n

i=1
i{k

(xk&xi)
&1=1

for distinct x1 , ..., xn and for any monic polynomial p of degree n&1.
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But this is equivalent to Corollary 2.3 below. K

Lemma 2.1. Let k, l be positive integers and let I be an index set of size
k+l. Then, for any k+l distinct real numbers xi , i # I, we have

:
A, B \ `

h # B

xp
h+\ `

i # A, j # B

(xi&xj )
&1+={0

(&1)kl

if p=0, 1, ..., k&1
if p=k;

where the sum is over all ordered partitions (A, B) of I into two sets A, B of
size k, l respectively.

Proof. Thought of as a rational function in the complex variable xi , the
left side is everywhere analytic except possibly for simple poles at the points
xj , j{i. The residue at xj is a sum over partitions (A, B) as above. Under
the involution on the set of these partitions induced by the transposition
(i, j ), the fixed points contribute 0 to this sum, while the contributions due
to the pair of partitions in any non-trivial orbit cancel each other. Thus all
the residues are 0, so that the left side is an analytic polynomial in each xi .
But as xi � �, this polynomial clearly goes to a finite limit, and hence it
is bounded. By Lieuville, it is independent of each xi and hence is a
constant. Clearly the limit, and hence the constant value, is 0 when p<k.
The limiting value for p=k may be obtained by induction on l as follows.
Clearly it is =1 for l=0. So let l>0. Then the limit is (&1)k times a sum
as in the Lemma with l replaced by l&1 and I replaced by I&[i]. Hence
induction completes the proof. K

We shall use the case l=1 of this identity more often than the general
result, so we record it as

Corollary 2.3. For distinct real numbers x1 , ..., xn , we have

:
n

i=1

x p
i `

j{i
1� j �n

(xi&xj )
&1={0

1
if p=0, ..., n&2,
if p=n&1.

Remark. The identity in Corollary 2.3 is nothing new. For a purely
algebraic proof, and for references to other proofs, see [15].

Proposition 2.6. For * # W,

B(*)(z, w)=:
s
�

.s
�
(zw*e)�&.s

�
&2

* , z, w # 0.

where the series converges uniformly for (z, w) in compact subsets of 0_0.
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Here, &.s
�
&* is the norm of .s

�
as an element of H(*) and the sum is over

all signatures s
�
, provided we take &.s

�
&*=� when Ps

�
�3 H(*).

Proof. Since Ps
�

is K-irreducible and H(*) is K-invariant, for any
signature s

�
for which .s

�
# H (*), i.e. &.s

�
&<�, we have Ps

�
�H(*). For these

signatures, let K (*)
s
�

( } , w) denote the orthogonal projection of B(*)( } , w) to
Ps

�
, and set this =0 for the remaining signatures. Then we have

B(*)( } , w)=�s
�
K (*)

s
�

( } , w) for each fixed w # 0, where the convergence is in
norm and hence also point-wise. It follows that � &K (*)

s
�

( } , w)&2=B(*)(w, w)
and hence

: |K (*)
s
�

(z, w)|=: |(K (*)
s
�

( } , z), K (*)
s
�

( } , w)) |

�- B(*)(z, z) B(*)(w, w).

Since z [ B(*)(z, z) is (continuous and hence) bounded on compact subsets
of 0, this shows that the series � K (*)

s
�

(z, w) converges uniformly on
compact subsets of 0_0. We have already seen that the pointwise limit is
B(*).

To complete the proof, note that K (*)
s
�

is the reproducing kernel for the
space Ps

�
with the inner product inherited from H (*). Hence by Proposition

2.1 K (*)
s
�

(z, w)=c.s
�
(zw*e) for some constant c�0. Now we have

c2 &.s
�
&2

*=&K (*)
s
�

( } , e)&2=K (*)
s
�

(e, e)=c.s
�
(e)=c,

so that c=&.s
�
&&2

* and hence K (*)
s
�

(z, w)=.s
�
(zw*e)�&.s

�
&2

* . K

In [5], Faraut and Koranyi showed that actually the series in the above
Proposition converge uniformly on 0_0� . We shall not need this stronger
result. These authors explicitly determine the constants &.s

�
&* . Their

formula is for general Cartan domains and involves the dimension of
the space Ps

�
. In view of Upmeier's formula (Lemma 2.6 and 2.7 in [12])

for this dimension, it reduces to the following Proposition in the case of the
matrix domains 0n, m . We include an independent derivation of this
formula since it is very crucial to what is to follow.

Proposition 2.7.

&.s
�
&2

*= `
1�i< j �n \1+

si&sj

j&i +
2

} `
n

k=1

1 (n+sk&k+1) 1 (*&k+1)
1 (*+sk&k+1) 1 (n&k+1)

.

Note that this formula is independent of m.
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Proof. Apply Proposition 2.6 to ``diagonal'' elements z, w of 0n, m (i.e.
elements of the form �m

j=1 ajej ). In view of the formula in Proposition 2.3
for the value of esf 's on diagonals, this yields

:s
�
&.s

�
&&2

* Qn(z1 , ..., zn | s
�
)�Qn(1, ..., 1 | s

�
)= `

n

j=1

(1&zj )
&*

where the sum converges uniformly on compact subsets of the polydisc
[(z1 , ..., zn): |zj |<1]. Expand the right side in a power series and for
k=0, 1, ..., equate the homogeneous components of degree k of the two
sides. This yields:

:
s
�
: |s

�
| =k

&.s
�
&&2

* Qn( } | s
�
)�Qn(1, ..., 1 | s

�
)

= :
s
�
: |s

�
|=k \ `

n

j=1
} \&*

sj +}+ Rn( } | s
�
) (2.23)

where Rn(z1 , ..., zn | s
�
) denotes the sum of all the distinct monomials of the

form >n
j=1 zsj

?( j ) , as ? varies over Sym(n). That is, letting |(s
�
) denote the

order of the isotropy group [? # Sym(n): s?( j )=sj for 1�j�n] of the
signature s

�
, we have:

Rn(z1 , ..., zn | s
�
)=

1
|(s

�
)

} :
? # Sym(n)

`
n

j=1

zsj
?( j ) .

Since both sides are polynomials, the identity (2.23) holds throughout Cn,
and in particular on the torus Tn=[(z1 , ..., zn): |zj |=1]. Let + be the
measure on Tn defined by

d+(z1 , ..., zn)=
1
n!

`
1�i< j �n

|zi&zj |
2 dz1 . . .dzn ,

where dz=dz1 . . .dzn denotes the Haar probability on Tn. From the defining
equation (2.16) it is clear that the Schur polynomials form an orthonormal
set in L2(+). Therefore, equating the inner products of the two sides of
(2.23) with Qn( } | s

�
) for a fixed signature s

�
of weight k, we get

1
&.s

�
&2

*

=Qn(1, ..., 1 | s
�
) :

s
�
$: |s

�
$|=|s

�
| \ `

n

j=1 } \
&*
s$j + } + (Rn( } | s

�
$), Qn( } | s

�
)).

(2.24)

Here, of course, ( } , } ) is the inner product on L2(+). So, to complete the
proof we only need to compute the inner product between Rn( } | s

�
$) and

Qn( } | s
�
) for any two signatures s

�
and s

�
$ of the same weight k. But this is
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easy. Substituting the defining formula (2.16) for Qn in the integral
representing this inner product, we get

(Rn( } | s
�
$), Qn( } , | s

�
))

=
1
n!

:
? # Sym(n)

| sgn(?) `
1�i< j �n

(zi&zj )

_ `
n

i=1

z&si&n+i
?(i) Rn(z1 , ..., zn | s

�
$) dz1 . . .dzn

=
1
n!

:
? # Sym(n)

| `
1�i< j �n

(z?(i)&z?( j ))

_ `
n

i=1

z&si&n+i
?(i) Rn(z?(1) . . . , z?(n) | s

�
$) dz1 . . .dzn

=| `
1�i< j �n

(zi&zj ) `
n

i=1

z&si&n+i
i Rn(z1 , ..., zn | s

�
$) dz1 . . .dzn .

Now, substituting the defining formula for Rn and the Vandermonde
formula

`
1�i< j �n

(zi&zj )= :
? # Sym(n)

sgn(?) `
n

i=1

zn&?(i)
i

in the last integral and noting that the monomials are orthonormal in
L2(dz), we get:

(Rn( } | s
�
$), Qn( } | s

�
))=

1
|(s

�
$)

:

: s?=(s$)_

?, _ # Sym(n)

sgn(?).

Here s
�
? denotes the sequence (si+?(i)&i: 1�i�n), and (s

�
$)_ denotes the

rearrangement of s
�
$ by the permutation _. Now, given any ? for which the

non-increasing rearrangement (s
�
?) a of s

�
? equals s

�
$, the permutations _

satisfying s
�
?=(s

�
$)_ constitute a coset of the isotropy of s

�
$ and hence there

are |(s
�
$) permutations _ corresponding to each such ?. Hence we get

(Rn( } | s
�
$), Qn( } | s

�
)) = :

: (s
�
?) a =s

�
$

? # Sym(n)

sgn(?).

Substitute this formula in (2.24), to find the Laplace expansion of a
determinant. Thus,

1
&.s

�
&2

*

=Qn(1, ..., 1 | s
�
) det(a)
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where the n_n matrix a=(aij ) is given by

aij= }\ &*
si&i+j+}=

1 (*+si&i+j )
1 (*) 1 (si&i+j+1)

.

(Here the entry is to be interpreted as 0 when si&i+j<0, which is a
natural convention since Gamma has poles at non-positive integers. Notice
that in view of the functional equation 1 (z+1)=z1 (z), the matrix
elements are actually polynomials in *.)

This proves the Proposition for n=1. To compute the determinant for
n>1, note that the submatrix of a obtained by deleting its first column and
ith row (1�i�n) has the same form as a with n replaced by n&1, s

�replaced by the signature s
�
(i) of rank n&1 defined in (2.21). Therefore,

expanding det(a) along the first column we inductively obtain a formula
for this determinant and hence for &.s

�
&2

* . To show that this formula agrees
with the one in the statement of this Proposition, we need to prove an
identity which simplifies to:

1
(n&1)!

:
n

i=1

(&1) i&1 Qn&1(1 | s
�
(i))

Qn(1 | s
�
)

1 (si+n&i+1)
1 (si&i+2)

_\ `

k{i
1�k�n

(*+sk&k+1)+\ `
n&1

l=1

(*&l )&1+=1.

Now, the left hand side is a rational function of *, so that to prove this
identity it suffices to show that its value at *=� is equal to 1 and its
apparent poles at the points * # [1, 2, ..., n&1] are not really poles, i.e., the
corresponding residues are =0. But, substituting xi=si&i+1, and using
Proposition 2.5 and the formula in (2.22), we find that the reside at
* # [1, ..., n&1] and the value at infinity are given by( except for a finite
multiplicative constant in the first case, but this safely ignored since we
only wish to show that these residues are zero):

:
n

i=1

p(xi) `

l{i
1�l�n

(xi&xl)&1,

where p(x)=>1�h�n&1h{* (x+h) in the case of the residue and p(x)=
>1�h�n&1 (x+h) in the case of the value at infinity. Therefore the result
follows from Corollary 2.3. K

We also have the following formula from Lemma 2.6 and Lemma 2.7 in
Upmeier [12].
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Proposition 2.8. For any signature s
�
, the dimension ds

�
of the space Ps

�is

ds
�
= `

1�i< j �n \1+
si&sj

j&i +
2

} `
n

k=1

1 (m+sk&k+1) 1 (n&k+1)
1 (n+sk&k+1) 1 (m&k+1)

.

Proof. In view of Proposition 2.7, it suffices to show that 1�ds
�

is the
squared norm &.s

�
&2

m of the esf .s
�

in the Hardy space H(m).
Recall that the inner product on the Hardy space H(m) is given by

( f, g)m=|
K

( f b k&1)(e)(g b k&1)(e) dk.

Also, if the space Ps
�
is equipped with the inner product it inherits as a sub-

space of H(m), then its reproducing kernel is

K(z, w)=
.s

�
(zw*e)

&.s
�
&2

m

.

On the other hand, if [fj : 1� j �ds
�
] is any orthonormal basis for Ps

�
then

from the general theory of reproducing kernels we get

K(z, w)= :
ds

�

j=1

fj (z) fj (w).

Now we have

1
&.s

�
&2

m

=K(e, e)=K(k&1e, k&1e)= :
1� j �ds

�

fj (k&1e) fj (k&1e).

Integrating both sides with respect to dk, we get

1
&.s

�
&2

m

= :
1� j �ds

�

( fj , fj ) m= :
1� j �ds

�

1=ds
�
. K

We shall also need the following formula for the invariantisation of |.s
�
| 2

by the group K. It is Lemma 3.3 in Faraut and Koranyi [5]. Though in
the same spirit, our proof is technically simpler than the one in [5] in as
much as it appeals to the general theory of reproducing kernels instead of
using Schur's orthogonality relations.

Proposition 2.9. For any signature s
�
, we have

|
K

|(.s
�
b k)(z)| 2 dk=

1
ds

�

.s
�
(zz*e), z # 0� .

192 BAGCHI AND MISRA



File: 580J 283223 . By:CV . Date:25:01:00 . Time:15:58 LOP8M. V8.0. Page 01:01
Codes: 2813 Signs: 1278 . Length: 45 pic 0 pts, 190 mm

Proof. Continuing with the notations in the previous proof, one obtains

(.s
�
b k)(z)=&.s

�
&2

m K(kz, e)

=&.s
�
&2

m K(z, k&1e)

=&.s
�
&2

m :
ds

�

j=1

fj (z) fj (k&1e).

Hence,

|(.s
�
b k)(z)| 2=&.s

�
&4

m :
1� j, l�ds

�

fj (z) fj (k&1e) fl(z) fl(k&1e).

Integrating both sides with respect to dk, it follows that

|
K

|(.s
�
b k)(z)| 2 dk=&.s

�
&4

m :
1� j, l�ds

fj (z) fl (z) ( fl , jj ) m

=&.s
�
&4

m :
1� j �ds

�

fj (s) fj (z)

=&.s
�
&4

m K(z, z)

=&.s
�
&2

m ,s
�
(zz*e).

Therefore, an appeal to the previous Proposition completes the proof. K

Remark. From the above, it is easy to deduce a formula for the K-
invariantisation ( fg� )K of fg� for any two elements f, g of H (*). Namely, if
f=�s

�
fs

�
, g=�s

�
gs

�
are the break-ups of f, g along the orthogonal decom-

position (2.11) then

( fg� )K (w)=:
s
�

( fs
�
, gs

�
) *

ds
�

.s
�
(ww*e)
&.s

�
&2

*

.

To prove this, note that for any fixed w in 0, ( f, g) =def ( fg� )K (w) defines
a K-invariant inner product on H(*) which is continuous with respect to
the norm on the latter. Since the same is true of the right hand side of the
above formula, to prove it, it suffices to verify it for f=g=.s

�
; but in this

case the formula reduces to Proposition 2.9.

3. Boundedness

3.1. Some General Facts

We begin with some generalities on reproducing kernels. Recall that if
K: X_X � C is non-negative definite (nnd ) in the sense that for any
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x1 , ..., xn # X the matrix ((K(xi , xj )) is nnd, then there is a uniquely deter-
mined Hilbert space H(K) of functions on X such that K is the repro-
ducing kernel of H(K), in the sense that K( } , x) # H(K) for all x # X, and
we have ( f, K( } , x)) =f (x) for all f # H(K). The usual construction of
H(K) is as follows. Take F to be the linear span of K( } , x), x # X, and
define a sesqui-linear form ( } , } ) on F by (K( } , y ), K( } , x))=K(x, y ).
Non-negative definiteness of K implies this form is nnd, whence
Cauchy�Schwarz yields | f (x)| 2=|( f, K( } , x)) | 2�( f, f ) K(x, x), x # X.
Hence ( f, f ) =0 implies f (x)=0 for all x, that is, f=0. Thus, ( } , } ) is an
inner product on F. (Thus, the usual requirement that K be positive
definite is unnecessary. It is enough to have K nnd.) This inequality also
implies that ( } , } )-Cauchy sequences are pointwise Cauchy, and the com-
pletion H(K) of (F, ( } , } ) ) is naturally identified with a Hilbert space of
functions on X, with K as its reproducing kernel.

An alternative and more direct description of H(K) is as follows. For
two kernels K1 , K2 on X, let's write K1�K2 to mean K2&K1 is nnd. For
any complex valued function f on X, define & f& by

& f&=inf[c>0: f f� �c2K]. (3.1)

(Explicitly, the condition within braces means that the kernel on X given
by (x, y) � (c2K(x, y)&f (x) f ( y )) is nnd.) Then

H(K)=[ f: & f&<�]. (3.2)

To see the equivalence of the two definitions, let & }&� denote the norm on
the Hilbert space H(K) in the first construction. For any orthonormal
basis [ fn] of H(K), K is recovered by the formula K=�n�1 fn f� n . Taking
an orthonormal basis with f1=f �c, c=& f&� , we find K&(1�c)2 ff� =
�n�2 fn f� n�0, whence ff� �c2K, so that & f&�& f&� . On the other hand, if
&f&=c, define the kernel K1 on X by K1=ff� �c2. Then both K and K1 are
nnd kernels and K1�K. By [2, Theorem I, p. 354], this implies that the
Hilbert space H(K1) is a subset of the Hilbert space H(K), and the norm
on H(K1) is point-wise greater than or equal to the norm on H(K). Since
H(K1) is clearly the one dimensional space spanned by f and the norm of
f in H(K1) equals c=& f&, this means that & f&�& f&� . Thus we have
&f&=& f&� for all f, proving equivalence of the two definitions of H(K).
This also shows that for any nnd kernel K, (3.1) and (3.2) define a func-
tional Hilbert space. It should be amusing to construct an ab initio proof
of this fact.

Now, let K be an nnd kernel on X, H(K) the associated Hilbert space,
and f any function on X. Let Mf denote multiplication by f. When is Mf

a bounded operator on H(K)? If there is a finite c such that (c2&ff� ) K�0
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then ff� K�c2K and gg� �c2
0K imply that ff� gg� �c2

0 ff� K�(c0c)2 K, so that
Mf is bounded and &Mf &�c for any such c. (Here we have used the
wellknown fact that the pointwise product of two nnd kernels is nnd.) Thus
we have shown

Lemma 3.1. Suppose there is a c # [0, �) such that (c2&f f� ) K�0. Then
Mf is bounded on H(K).

(In fact, it can be shown that &Mf& is the infimum of all c�0 for which
(c2&ff� ) K�0, and the condition in the Lemma is necessary and suf-
ficient.)

3.2. A Reduction

Now we come to the proof of Theorem 1.1. If * # Wd , then there is a
polynomial � such that � � H(*). (For instance, � can be taken to be
the generalised determinant on 0, i.e., the esf corresponding to the
signature (1, 1, ..., 1).) But the constant function 1 is in H(*). Since
1 # H(*), � � H (*), �(M (*))= multiplication by � is not bounded. A for-
tiori, M (*) is not bounded. So, from now on, we assume * # Wc , i.e.,
*>n&1.

Till the end of this section, let . be the generalised trace on 0, i.e.,
the unique esf of degree 1 corresponding to the signature (1, 0, ..., 0).
Suppose we can show that M (*)

. =def .(M (*)) is bounded on H(*), *>n&1.
Since the action of K by composition is unitary on H(*), it will follow that
multiplication by , b k is bounded on H(*) for all k # K. But . b k, k # K
spans the space Ps

�
for s

�
=(1, 0, ..., 0), so that multiplication by each

f # Ps
�

is bounded. But as s
�

is the only signature of weight 1, Ps
�
=Hom(1),

the space of all linear homogeneous polynomials; in particular, all the mn
coordinate functions belong here. Hence the components of M (*) are
bounded. Thus, it suffices to show that M (*)

. is bounded on H(*) for
*>n&1.

3.3 Multiplication by Trace

Fix *>n&1. In view of Lemma 3.1, we only have to show that there is
a finite constant c such that (c2&..� ) B(*)�0. Recall that Hom(1) is a
functional Hilbert space with reproducing kernel K(z, w)=.(zw*e). Since
.=K( } , e), . has norm K(e, e)=.(e)=1 as an element of this space.
Hence by (3.1), ..� �K. Hence, writing

(c2&.(z) .(w)) B(*)(z, w)=(c2&.(zw*e)) B(*)(z, w)

+(.(zw*e)&.(z) .(w)) B(*)(z, w), (3.3)
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we see that the second term is an nnd kernel. Hence, for our purpose, it suf-
fices to exhibit a finite c for which (c2&.(zw*e)) B(*)(z, w) is an nnd ker-
nel. Now using the expansion in Proposition 2.6, we get

(c2&.(zw*e)) B(*)(z, w)=:
s
�

c2

&.s
�
&2

*

.s
�
(zw*e)&:

s
�

1
&.s

�
&2

*

(..s
�
)(zw*e).

Now use the formula (a) from Corollary 2.2 to get

(c2&.(zw*e)) B(*)(z, w)=:
s
�
\ c2

&.s
�
&2

*

&;s
�
(*)+ .s

�
(zw*e),

where

;s
�
(*)=:

s
�
~

$ a(s
�
~ , s

�
)

&.s
�
~ &

2
*

,

the sum �$ is over all signatures s� ~ such that |s
�
~ |= |s

�
|&1, and s

�
~ �s

�
compo-

nent wise; the coefficients a(s
�
~ , s

�
) are given, for such pairs s

�
, s

�
~ of signatures,

by the formula

a(s
�
~ , s

�
)=

1
n

`
n

i=1
i{k

\1+
=i, k

|i&k|+ |si&sk+1|+ ,

where k is the unique coordinate position for which s~ k<sk , and =i, k=1 if
i>k and =&1 if i<k.

Recall from Proposition 2.1 that (z, w) � ,s
�
(zw*e) is an nnd kernel

for each signature s
�
. Hence the nonnegative definiteness of

(c2&,(zw*e)) B(*)(z, w) follows if c can be chosen so that each coefficient
c2�&.s

�
&2

*&;s
�
(*) is nonnegative. Note that, as *>n&1, each &.s

�
&*<�.

Therefore, this argument gives the estimate

&M (*)
. &2�sup

s
�

;s
�
(*) &.s

�
&2

* ,

where the supremum is over all signatures. Thus to conclude the proof of
Theorem 1.1, we need only show that this supremum is finite for *>n&1.
But, using the explicit norm formula from Proposition 2.7, we get:

;s
�
(*) &.s

�
&2

*=
1
n

:

: sk+1<sk
1�k�n

(n+sk&k)
(*+sk&k)

`

i{k
1�i�n \1+

=ik

|i&k|+|si&sk+1|+
&1

,
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with =ik as above. (We adopt the convention that sn+1=0.) For 1�k�n
the k th term in the above formula is clearly a bounded function of s

�
, so

that this supremum is finite. This completes the proof of Theorem 1.1.

4. Joint Spectrum

Through out the rest of this paper, we assume M(*) is bounded, i.e.,
*>n&1. In this section, we will prove Theorem 1.2: the joint Taylor spec-
trum M(*) is 0� . Actually our proof goes through for any notion of joint
spectrum of a commuting d-tuple T of bounded operators provided this
notion satisfies

(i) it is a unitary invariant,

(ii) the joint spectrum contains the eigenvalues of T,

(iii) the associated functional calculus has the correct mapping
property: if f : U � V is an analytic or co-analytic function between com-
plex domains such that U contains the spectrum of T then f maps the spec-
trum of T into the spectrum of f (T), and

(iv) if further, f is component wise rational then f (T) is obtained by
``plugging in'' T into this rational expression.

Note that the Taylor spectrum has all these properties (cf. [4] and [11,
Theorem 1.5]). We have stated Theorem 1.2 for the Taylor spectrum
because there is an agreement among experts that Taylor's notions is the
minimal (and hence best) among all reasonable notions of joint spectrum.

Lemma 4.1. Let z0 # Cn_m with &z0&=t>1. Then there is a g # G such
that

(i) g is analytic in a neighborhood of t0� , and
(ii) &g(z0)&>&z0&.

(Here & }& is the usual operator norm on Cn_m. Recall that 0 is the open
unit ball with respect to this norm.)

Proof. Let = be a small positive number and put a=z0�t2+= # 0. We
claim that g=,a # G works provided = is sufficiently small. Recall from
(2.2) that ,a is the unique involution in G interchanging 0 and a.

,a(z0)=(1&aa*)&1�2 (a&z0)(1&a*z0)&1 (1&a*a)1�2.

Since z*0 z0 is nnd, t2=&z*0 z0& is an eigenvalue of z*0 z0 . Let u # Cm be a
corresponding eigenvector of norm 1. Put v=z0u # Cn. Since u is an eigenvector
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of z*0 z0 corresponding to a nonzero eigenvalue, we have v{0. An easy
computation shows

(1&aa*)1�2 ,a(z0) u=\1&
t2

(t2+=)2+
1�2

\1&
t2

t2+=+
&1

\ 1
t2+=

&1+ v.

Hence &(1&aa*)1�2 ,a(z0) u&t(c1�=) as = � 0, where c1>0 is independent
of =. Therefore,

&,a(z0) u&�&(1&aa*)1�2 &&1 &(1&aa*)1�2 ,a(z0) u&t
c2

=
as = � 0,

where c2>0 is independent of =.
Hence &,a(z0)&�&,a(z0) u& � � as = � 0. This completes the proof. K

Now the proof of Theorem 1.2 is surprisingly easy. Suppose, if possible,
the spectrum is not contained in 0� . Choose a z0 in the spectrum which
maximises &z0&, say &z0 &=t>1. Then the spectrum is contained in t0� ,
and if g is as guaranteed in Lemma 4.1, then g(z0) is in the spectrum of
g(M(*)). But by homogeneity, g(M(*)) is unitarily equivalent to M(*). Hence
g(z0) is in the spectrum of M(*). But this contradicts the maximality of z0

since &g(z0)&>&z0 &. Thus the spectrum is contained in 0� . Next, take any
z # 0. A straightforward computation shows that z� is a joint eigenvalue for
the adjoint of M(*) with eigenvector B(*)( } , z) # H (*). Therefore, z is in the
spectrum of M(*), whence the spectrum contains 0 and therefore 0� . This
completes the proof of Theorem 1.2.

5. Joint Subnormality

Recall that a commuting tuple of bounded operators on a Hilbert space
is called jointly subnormal if it is the restriction of a commuting tuple of
normal operators to a common invariant subspace. In this section, we
prove Theorem 1.3 and, in particular, determine the range of * for which
M(*) is jointly subnormal.

5.1. A Question of Measure

We begin by proving a general theorem which implies, in particular, the
equivalence of (i) and (iii) in the statement of Theorem 1.3.

Theorem 5.1. Let X�Cd be a bounded domain and let H be a Hilbert
space of analytic functions on X such that the set of analytic polynomials is
densely contained in H. Let M be the (densely defined) d-tuple of multiplica-
tion by coordinate functions on H. Suppose the Taylor spectrum of M is X� .
Then the following are equivalent:
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(i) M is a subnormal tuple of bounded operators,

(ii) There is a uniquely determined finite measure + supported inside X�
such that the inner product ( } , } ) on H is given by ( f, g)=� fg� d+ for all
analytic polynomials f, g.

Proof. (ii) clearly implies (i), since, under (ii), H is naturally embedded
as a closed subspace in L2(+) and the natural extension of M to L2(+) is
normal.

So, assume (i). If T is any commuting tuple of bounded subnormal
operators on H, then letting S denote a normal extension of T and letting
E be the spectral measure of S, we have for all x # H and all multi-indices
I, J,

(TI x, TJx) =(SIx, SJ x)=| zI z� J d(Ex, x) .

Taking x to be the constant function 1
�
# H, T=M, and +=d(E1

�
, 1

�
) ,

where E is the spectral measure of the minimal normal extension of M, this
formula specialises to

(zI, zJ ) =| zIz� J d+(z),

for all analytic monomials zI, zJ. Hence the integral representation in (ii)
follows. The support of + is contained in the spectrum of the minimal
normal extension, which in turn is contained in X� . Also, since the linear
span of [ fg� : f, g analytic polynomials] is dense in C(X ) by Stone-
Weirstrass, + is uniquely determined by the integral � fg� d+. This completes
the proof. K

Lemma 5.1. Let * # Wc . Then M(*) is subnormal if and only if there is a
probability measure +* supported inside 0� such that +* is quasi-invariant
under G-action, with

\d+* b g
d+* + (z)=|Jg(z)| 2*�(m+n), \g # G, \z # 0� . (5.1)

In this case, +* is uniquely determined by this condition. Moreover, either
+*(0)=1 or +*(Si)=1 for a uniquely determined value of i, 0�i�n&1.

(Here Si is the i th boundary component as defined in (2.13).)

Proof. Let M (*) be jointly subnormal. By Theorems 1.2 and 5.1, there
is a finite measure +* supported in 0� such that ( f1 , f2)*=� f1 f� 2 d+* for
analytic polynomials f1 , f2 . Since the constant function 1

�
=B(*)( } , 0) # H(*)
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has norm B(*)(0, 0)=1, taking f1=f2=1
�

we find +*(0� )=� 1
�

d+*=
&1

�
&2=1, so that +* is a probability measure. Fix g # G. Since the operator

U (*)(g&1) defined by (2.7) is unitary on H(*), it follows that for any two
analytic polynomials f1 , f2 , we have

| f1 f� 2 d+*=( f1 , f2) *

=(U (*)(g&1)( f1), U (*)(g&1)( f2)) *

=| U (*)(g&1)( f1) U (*)(g&1)( f2) d+*

=| |Jg&1(z)| 2*�(m+n) ( f1 b g&1(z)) ( f2 b g&1(z)) d+*(z)

=| |Jg(w)| &2*�(m+n) f1(w) f2(w) d+* b g(w).

Since the finite linear combinations of the function f1 f� 2 form a dense set in
C(0� ), it follows that +* is quasi-invariant (i.e., +* b g and +* are equivalent
measures for all g # G) and the density d+* b g�d+* is given by (5.1).

Now assume the probability +* satisfies (5.1). In particular, +* is K-
invariant. Thus, +* is invariant under z � ei%z, for each % # [&?, ?]. Also,
if f is analytic in a neighbourhood of 0� then for each fixed z # 0� , we have
f (0)=1�2? �?

&? f (ei%z) d%.
Hence, for any such f,

| f (0)| 2=|
0�

| f (0)| 2 d+*(z)

=|
0� }

1
2? |

?

&?
f (ei%z) d% }

2

d+*(z).

�|
0�

1
2? |

?

&?
| f (ei%z)| 2 d% d+*(z).

=
1

2? |
?

&?
|

0�
| f (ei%z)| 2 d+*(z) d%

=
1

2? |
?

&?
|

0�
| f (z)| 2 d+*(z) d%

=|
0�

| f (z)| 2 d+*(z)

=& f&2.
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Thus, if f # L2(+*) is analytic in a neighbourhood of 0� , then we have
| f (0)|�& f&. That is f � f (0) is bounded on the subspace P of L2(+*)
consisting of such functions. Since G is transitive on 0 and +* is quasi-
invariant with respect to G-action, it follows that for each fixed
z # 0, z � f (z) is bounded on P, the bound being uniform for z in compact
subsets of 0. Putting H=P� , we see that H is a closed subspace of L2(+*),
and indeed, it is a functional Hilbert space of analytic functions on 0. Let
K be the reproducing kernel of H. Retracing the computations in the
beginning of this proof, with fj=K( } , wj ), j=1, 2, wj # 0, we find that K
transforms under G action exactly like B(*). Also, K( } , 0), being K-
invariant, is a constant function. Hence K=cB(*) for this constant c. But,
c=K(0, 0)=� 1 d+*=1. Thus, K=B(*), and hence H=H(*). Thus, the
inner product on H(*) is ``given by'' the probability measure +* , so that
M(*) is subnormal on H(*).

The uniqueness of +* now follows from the uniqueness statement in
Theorem 5.1. Since 0� is the union of the n+1 G-orbits 0 and Si ,
0�i�n&1, there is at least one of these orbits, say 3, for which
+*(3)>0. Define the probability + by +(A)=+*(A & 3)�+*(3). Then +
also satisfies (5.1), so that by the uniqueness +=+* . Hence
+*(3)=+(3)=1, which proves the last statement in the Lemma. K

5.2. Subnormality versus Induced Representations

Given Lemma 5.1, the equivalence of (i) and (iv) of Theorem 1.3 is very
easy. Namely, if M(*) is subnormal on H(*), then let +* be the probability
measure guaranteed by this Lemma. Define the V-algebra homomorphism
�* : C(0� ) � L(L2(+*)) by �*( p) equal to multiplication by p. The projec-
tive representation U (*) of G=PSU(n, m) on H(*) extends naturally to a
representation U� (*) on L2(+*) having the property:

U� (*)
g �*( p) U� (*)V

g =�*(g } p), p # C(0� ), g # G, (g } p =def p b g&1).

Thus (0� , �* , U (*)) is a system of imprimitivity of multiplicity one, which is
transitive since by Lemma 5.1, +* sits on a single G-orbit in 0� . Hence by
Mackey's imprimitivity theorem [13, Theorem 6.12, p. 223], the projective
representation U� (*) of G on L2(+*) is induced from a one dimensional
representation (of the isotropy subgroup of any point in the orbit on which
+* sits), and U (*) on H(*) is a subpresentation of this induced representa-
tion. Clearly this argument goes backwards to prove the converse as well.

5.3. Measure for Measure

In this subsection, we prove the implication (ii) O (iii) of Theorem 1.3.
That is, M(*) is subnormal if * # m+W. We begin by stating our final
criterion for subnormality of M(*):
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Lemma 5.2. M(*) is subnormal if and only if there is a probability
measure m*=mn_m

* on 2n satisfying

|
2n

Qn(x�
| s

�
) dm*(x)

= `
1�i< j �n \1+

si&sj

j&i + `
n

k=1

1 (m+sk&k+1) 1 (*&k+1)
1 (*+sk&k+1) 1(m&k+1)

for all signatures s
�

of rank n.

(Note that, since Qn( } | 0
�
) is the constant function 1

�
, the measure mn_m

* ,
when it exists, is necessarily a probability measure.)

Proof. By Theorem 5.1., M(*) is subnormal if and only if there is a
probability measure + on 0� such that & f&2

*=� | f | 2 d+ for all f # H(*). Since
the norm on H(*) is K-invariant, such a probability +, when it exists,
satisfies:

+ b k=+ for all k # K, &.s
�
&2

*=| |.s
�
| 2 d+ for all signatures s

�
.

(5.2)

Conversely, if a probability + satisfies the conditions in (5.2), then it defines
a K-invariant inner product on the space of polynomials on 0� . By Schur
Lemma, the K-irreducible subspaces Ps

�
are mutually orthogonal with

respect to this inner product. Now, by assumption the norm defined by +
agrees with & }&* on at least one element (viz. the esf) in each of these sub-
spaces. Since by Schur Lemma the K-invariant inner product on each
irreducible subspace is unique upto a scalar multiple, and since H(*) is the
orthogonal direct sum of these subspaces, it follows that the norm defined
by + is precisely & }&* under the hypotheses in (5.2). This shows that M (*)

is subnormal if and only if there is a probability measure + on 0� satisfying
(5.2).

Now, there is a natural bijection between the set of K-invariant measures
+ on 0� and the set of all measures & on 2n , given by &=+ b ?&1. Here
?: 0� � 2n=0� �K is the quotient map given by (2.6). For + and & thus
related, we have

|
0�

f d+=|
2n

f K d& for all f # L1(+),

where f K is the K-invariantisation of f : f K=�K f b k dk. In particular, by
Propositions 2.3 and 2.9, the K-invariantisation of |.s

�
| 2 at z=�n

k=1 xkek ,
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is d &1
s
�

Qn(x2
1 , ..., x2

n | s� )�Qn(1
�

| s
�
). Therefore, a measure + on 0� satisfies the

two conditions in (5.2) iff the corresponding measure &=+ b ?&1 satisfies

|
2n

Qn(x2
1 , ..., x2

n | s
�
) d&=ds

�
Qn(1

�
| s

�
) &,s

�
&2

* . (5.3)

Now, letting _: 2n � 2n denote the squaring map (x1 , ..., xn) [ (x2
1 , ..., x2

n),
and taking m to be the measure on 2n given by m=& b _&1, we see that the
above holds iff �2n Qn( } | s

�
) dm equals the righthand side of (5.3). Since by

the formulae in Propositions 2.3, 2.7 and 2.8, the right hand side of (5.3)
equals that of the equation in the statement of Lemma 5.2, this completes
the proof. K

Next we prove a Lemma which shows that for the proof of the equi-
valence (ii) � (iii) in Theorem 1.3, one loses no generality in assuming
m=n.

Lemma 5.3. For any *, M(*) is subnormal on H(*)(0n, n) if and only if
M(*+m&n) is subnormal on H(*+m&n)(0n, m) for all m�n.

Proof. First suppose that * is such that M(*) is subnormal on
H(*)(0n, n). Then by Lemma 5.2, there is a measure m on 2n for which

|
2n

Qn(x | s
�
) dm(x)= `

n

k=1

1 (n+sk&k+1) 1 (*&k+1)
1 (*+sk&k+1) 1 (n&k+1)

.

By repeated application of the formula (d) in the proof of Corollary 2.2,
we have

`
n

i=1

xm&n
i } Qn(x1 , ..., xn | s

�
)=Qn(x1 , ..., xn | s

�
+(m&n) 1

�
).

Therefore, letting m~ denote the measure on 2n defined by

dm~ (x)=c } `
n

i=1

xm&n
i dm(x), (5.4)

(where c is a suitable constant to make this a probability) we get

|
2n

Qn(x | s
�
) dm~ (x)=|

2n

Qn(x | s
�
+(m&n) 1

�
) dm(x).
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From the assumption on the measure on the right, we find that this
integral is

c } `
n

k=1

1 (m+sk&k+1) 1 (*&k+1)
1 (*+m&n+sk&k+1) 1 (n&k+1)

= `
n

k=1

1 (m+sk&k+1) 1 (*+m&n&k+1)
1 (*+m&n+sk&k+1) 1 (m&k+1)

,

so that m~ satisfies the requirement of Lemma 5.2 with * replaced by
*+m&n. Hence M(*+m&n) is subnormal on H(*+m&n)(0n, m).

For the converse, assume that the measure m~ satisfies the requirement of
Lemma 5.2 with * replaced by *+m&n. By the note following this
Lemma, m~ is a probability measure; also, Propositions 2.1, 2.3 and
Corollary 2.1 imply that

0�
Qn(x | s

�
)

Qn(1
�
)

�1 for all x # 2n .

Therefore, we get

0�|
2n

Qn( } | s
�
)

Qn(1
�
)

dm~ �1.

But if *<n, then the assumption on m~ implies that the integral goes to
infinity as the signature s

�
goes to infinity coordinate wise. Thus we must

have *�n. The Dirac delta measure at 1
�
# 2n satisfies the requirement of

Lemma 5.2 with *=n, m=n. Therefore there is nothing to prove in case
*=n, and we may assume *>n.

As above, repeated application of the formula (d) in the proof of
Corollary 2.2 shows that for each nonnegative integer h, m~ satisfies

|
2n

`
n

k=1

xh
k } Qn(x | s

�
) dm~ (x)

= `
n

k=1

1 (h+m+sk&k+1) 1 (*+m&n&k+1)
1 (h+*+m&n+sk&k+1) 1 (m&k+1)

. (5.5)

That is, if f : 2n � [0, 1] denotes the function f (x)=>n
k=1 xk , then the h th

moment of the probability ((Qn(x | s
�
) dm~ (x)) b f &1 on [0,1] is given by the

right hand side of (5.5). But, Euler's identity relating the Beta and the
Gamma integral shows that this is also the h th moment of the probability
n b f &1 on [0,1], where the measure n on 2n is defined by

dn(x)= `
n

k=1

xm+sk&k
k (1&xk)*&n&1

;(m&k+1, *&n)
dxk .
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Therefore, by Weirstrass' approximation theorem, these two probabilities
on [0, 1] are equal, and hence have the same h th moment not only for
h�0, but for all h for which the second probability has finite h th moment,
viz. for h�n&m. (Here we have made use of the assumption *>n.)
Hence, in particular, the equation (5.5) holds for h=n&m. That is, the
measure m defined by the equation (5.4) satisfies the requirement of
Lemma 5.2 with m=n. K

In view of this Lemma, we assume m=n and break up the proof of the
implication (ii) O (iii) (in Theorem 1.3) in this case into two parts:

Claim 1. If m=n, and *>2n&1, then the measure mn_m
* on 2n given

by

dmn_n
* (x1 , ..., xn)=c*(n) `

1�i< j �n

(xi&xj )
2 } `

n

k=1

(1&xk)*&2n dx (5.6)

with

c*(n)= `
n

h=1

1 (*&n+h)
1 (h)2 1 (*&2n+h)

(5.7)

satisfies the requirement of Lemma 5.2.

Claim 2. If m=n and *=n+k for some k # [0, 1, ..., n&1], then the
measure mn_n

* given on 2n by

mn_n
* =mk_k

* b ?&1
k, n (5.8)

satisfies the requirement of Lemma 5.2. Here, of course, mk_k
* is the

measure given in Claim 1 (with the same * and with n replaced by k) and
?k, n : 2k � 2n is the embedding (x1 , ..., xk) [ (x1 , ..., xk , 1, ..., 1).

(In particular, for *=n, i.e., k=0, the measure mn_n
* given above is to

be interpreted as the Dirac delta measure (what else?) on the singleton set
20=[1

�
].)

Proof. In case *>2n&1, we have,

|
2n

Qn(x | s
�
) `

1�i< j �n

(xi&xj )
2 `

n

k=1

(1&xk)*&2n dx

=
1
n!

:
? # Sym(n)

|
[0, 1]n

sgn(?) `
1�i< j �n

(xi&xj )

} `
n

k=1

xsk+n&k
?(k) } `

n

k=1

(1&xk)*&2n dx
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=
1
n!

:
? # Sym(n)

|
[0, 1]n

`
1�i< j �n

(x?(i)&x?( j ))

} `
n

k=1

(xsk+n&k
?(k) (1&x?(k))

*&2n) dx

=|
[0, 1] n

`
1�i< j �n

( yi&yj ) } `
n

k=1

ysk+n&k
k (1&yk)*&2n dy

= :
_ # Sym(n)

sgn(_) |
[0, 1] n

`
n

k=1

ysk+2n&k&_(k)
k (1&yk)*&2n dy

= :
_ # Sym(n)

sgn(_) `
n

k=1
|

[0, 1]
ys k+2n&k&_(k)(1&y )*&2n dy

= :
_ # Sym(n)

sgn(_) `
n

k=1

1 (sk+2n&k&_(k)+1) 1 (*&2n+1)
1 (sk+*&k&_(k)+2)

.

Here we have used the symmetry of the integrand in the variables xk and
the fact that 2n is a fundamental domain for the action of Sym(n) on
[0, 1]n and the latter is the union of n! essentially disjoint copies of the
fundamental domain. Also, at one point we have used the expression for
>1�i<j�n ( yi&yj ) as the Laplace expansion of a Vandermonde deter-
minant. But the last expression obtained is the Laplace expansion of yet
another determinant. Thus we have:

|
2 n

Qn(x | s
�
) dmn_n

* (x)= `
n

h=1

1 (*&n+h)
1 (h)2 1 (*&2n+h)

} det(b),

where the n_n matrix b=(bij), 1�i, j�n, is given by

bij=
1 (*&2n+1) 1 (2n+1+si&i&j )

1 (*+2+si&i&j )
.

Therefore, to establish Claim 1, we have to show that

det(b)= `
1�i< j �n \1+

si&sj

j&i +
} `

n

k=1

1 (k) 1 (*&2n+k) 1 (sk+n&k+1)
1 (sk+*&k+1)

.

This is trivial for n=1. To do a proof by induction, note that the
submatrix of b obtained by deleting the first column and ith row has the
same form as b with n, *, s

�
replaced by n&1, *&2, s

�
(i), respectively. (Here

the signature s
�
(i) is as in the formula (2.21).) Therefore to complete the
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inductive calculation of det(b), we need to prove an identity which
simplifies (with xi=si&i+1) to

:
n

i=1
\ `

n

k=1
k{i

*+xk&1
xi&xk +\ `

n&1

l=1

xi+l+n&1
*&l&n +=1.

But this may be proved exactly as we proved the analogous identity which
came up in the proof of Proposition 2.7.

Next, let *=n+k, k=0, 1, ..., n&1. With mn_n
* , defined as in Claim 2,

we have, with l=n&k,

|
2n

Qn(x1 , ..., xn | s
�
) dmn_n

* (x)

=|
2k

Qn(x1 , ..., xk , 1, ..., 1 | s
�
) dmk_k

* (x)

=(&1)kl ck(n+k) :
(A, B)

=(A, B) Ql(1
�

| s
�
B)

_|
2k

Qk(x1 , ..., xk | s
�
A) `

1�i< j �k

(xi&xj )
2 dx

=(&1)kl
ck(n+k)

ck(2k)
:

(A, B)

=(A, B) Ql(1
�

| s
�
B)

_|
2k

Qk(x1 , ..., xk | s
�
A) dmk_k

2k (x)

=(&1)kl :
(A, B)

=(A, B) Qk(1
�

| s
�
A) Ql(1�

| sB)

_\ `
k

p=1

(k+sA
p &p)! (2k&p)!

(2k+sA
p &p)! (k&p)!+ .

Here the sum �(A, B) is over all partitions of [1, ..., k+l] into two sets of
size k and l respectively. In this computation, we have applied Proposition
2.4 once and Claim 1 above twice (with n replaced by k and * replaced
once by k+n and once by 2k). Now, to prove Claim 2, we have to show
that the last expression above equals

`
1�i< j �k+l

\1+
si&sj

j&i + } `
k+l

p=1

(k+l+sp&p)! (2k+l&p)!
(2k+l+sp&p)! (k+l&p)!

.
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Substituting xi=si&i+1, 1�i�k+l, and using the definition of s
�
A and

s
�
B from (2.19) and (2.20), this reduces to

:
(A, B)

`

j # B
i # A

(xi&xj )
&1 `

h # B

f (xh)=(&1)kl

where f is the monic polynomial of degree k given by f (x)=
>k

p=1 (x+k+l+p&1). But this is immediate from Lemma 2.1. This
proves Claim 2.

With both claims thus established, the subnormality of M(*) for * #
m+W follows from Lemma 5.2 and Lemma 5.3.

5.4. The Points of Subnormality

To conclude the proof of Theorem 1.3, it remains to show that the only
values of * # W for which M(*) is subnormal are those for which subnor-
mality has been already established. In view of Lemma 5.3 we may (and
do) assume that m=n. (This is only a simplifying assumption that could
be avoided.) For the proof we need:

Lemma 5.4. Let *, *$ in W be such that both M(*) and M(*$) are subnor-
mal. Assume that the corresponding probability measures +* , +*$ (as guaran-
teed by Lemma 5.1) have the same support. Then either

(a) the common support is contained in �0 and *=*$, or
(b) the common support is 0� and (d+*$ �d+*)(w)=: det(1n&ww*)*&*$

for w # 0, where :>0 is a suitable normalising constant.

Proof. By Lemma 5.1., +*(3)=1=+*$(3), where 3=Sj , 0�j�n&1
or 3=0. Since 3 is transitive G-space and these are quasi invariant
measures on 3, [13, Theorem 5.19] implies that these two measures are
equivalent. Define F on 3 by F=d+*$�d+* . The transformation rules (as in
Lemma 5.1) for these two measures, along with chain rule, imply that

(F b g)(z)=|J(g, z)| (2(*$&*))�(m+n) F(z), z # 3, g # G. (5.9)

In particular, if z # 3 is such that F(z){0 (almost all (+*) z in 3 satisfies
this) then (5.9), applied to g in the isotropy subgroup Gz of z in G,
simplifies to

|J(g, z)|=1 for g # Gz , z # 3, (5.10)

provided *{*$. (Since G is transitive on 3, chain rule implies that (5.10)
holds for all z # 3 once it holds for some z.)

It is easy to see that (5.10) is a true statement when 3=0. We prove
part (a) of this lemma by showing that (5.10) is false for z # Sj ��0. To see
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this, choose z=�n
i=j+1 ei , where, as before, ei is the element of �0 with 1

in the (i,i) slot and 0 elsewhere. Take w=rz # 0, where 0�r<1. Then the
formula (2.2) simplifies to ,w(z)=(r&1) z(1&rz2)&1, so that z and ,w(z)
have the same singular values, counting multiplicity. Hence there is a k # K
such that g=k,w # Gz . Since elements of K have unimodular Jacobian
determinants, (5.10) applied to our choice of g and z implies that
|J(,w , z)|=1. But this is certainly false at least for sufficiently large r, since
as r � 1&, w � z and J(,w , z) � �. This proves (a). To Prove (b), assume
3=0, and apply (5.9) to g=,w , z=0. This yields the required formula for
F(x) with :=F(0). K

Now let * # W be such that M(*) is subnormal. By Lemma 5.1, either
+*(Sj)=1 for some j, 0�j�n&1, or +*(0)=1. Take *$=m+j in the first
case and *$=m+n in the second. In view of the explicit determination of
the measure +*$ in the previous subsection, we have +*$(Sj)=1 in the
first case and +*$ is the normalised Lebesgue measure on 0 in the second
case. So Lemma 5.4 yields *=*$=m+j in the first case and
d+*(w)=c det(1&ww*)*&m&n dw in the second. But this last is not a finite
measure unless *>m+n&1, so we have * # m+W in either case. This
completes the proof of the implication (i) O (ii) in Theorem 1.3.

6. Multiplication by Determinant

Throughout this section, we assume m=n. The esf .s
�

corresponding to
the signature 1

�
=(1, ..., 1) will be denoted simply by �. It is the determinant

function on 0n, n . We shall now investigate the operator

M (*)
� =def �(M(*))

of multiplication by � on H(*). Since there is nothing to prove for
*�n&1, we assume *>n&1.

Note that � is almost K-invariant. More precisely, there is a one dimen-
sional character / on K, given by /(k)=det(uv*) for k=(u, v) # K, for
which

� b k=/(k)�, k # K. (6.1)

By part (b) of Corollary 2.2 we get

M (*)
� (.s

�
)=.s

�
+1

�
, (6.2)

where addition of signatures is component wise. From (6.1) and (6.2) we
get M (*)

� (.s
�
b k)=/(k) .s

�
+1

�
b k. Since .s

�
b k (respectively .s

�
+1

�
b k), k # K,

span Ps
�

(respectively Ps
�
+1

�
), this shows that M (*)

� maps Ps
�
onto Ps

�
+1

�
. Also,
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M (*)
� is clearly one-one. Hence M (*)

� pushes the inner product on Ps
�(inherited from H(*)) down to a K-invariant inner product on Ps

�
+1

�
, and

the latter must be a positive scalar times the inner product Ps
�
+1

�
inherits

from H(*). Comparing the norms of .s
�

and .s
�
+1

�
=M (*)

� (.s
�
, one sees that

the scalar must be &.s
�
+1

�
&* �&.s

�
&* . But by Proposition 2.7, we get

&.s
�
+1

�
&*

&.s
�
&*

= `
n

j=1
\n+sj&j+1

*+sj&j+1+
1�2

.

Thus we have proved:

Lemma 6.1. Let f # H(*) and let s
�

be any signature. Then f # Ps
�

if and
only if M (*)

� ( f ) # Ps
�
+1

�
. Also, if this holds then

&M (*)
� f&*

& f&*
= `

n

j=1
\n+sj&j+1

*+sj&j+1+
1�2

.

Let us temporarily put T=M (*)
� . Then Lemma 6.1 implies the estimate,

for h=0, 1, 2, ...,

&T h&�
&T h.s

�
&

&.s
�
&*

= `
n

j=1

`
sj+h&1

l=sj
\n+l&j+1

*+l&j+1+
1�2

.

But if *<n, then Sterling's approximation for the factorial shows that the
right hand side above goes to infinity with h, so that the powers of M (*)

�

go to infinity in norm. Hence for *<n, M (*)
� does not admit its spectrum

(which, by Theorem 1.2 and the mapping property of the spectrum, is the
closed unit disc) as a k-spectral set for any k. A fortiori, M (*)

� is not sub-
normal in this case.

Let S0 be the set of all signatures s
�

with sn=0. For any s
�
# S0 , let H (*)

s
�be the closed subspace of H(*) defined by

H (*)
s
�

= �
�

h=0

Ps
�
+h } 1

�
.

Then by (2.11) we have

H(*)= �
s
�
# S0

H (*)
s
�

.

Also Lemma 6.1 implies

Lemma 6.2. For each s
�
# S0 , H (*)

s
�

is a reducing subspace for M (*)
� , and

the restriction of M (*)
� to H (*)

s
�

is the direct sum of ds
�

copies of a weighted
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shift operator T (*)
s
�

with weight sequence [ah=ah(s
�
, *): h=0, 1, 2, . . .] given

by

ah= `
n

j=1 \
h+n+sj&j+1
h+*+sj&j+1+

1�2

. (6.3.)

(Recall that this means that T (*)
s
�

is an operator on a Hilbert space with
an orthonormal basis [xh : h=0, 1, 2, . . .] such that T (*)

s
�

xh=ah xh+1 for
h�0.)

Note that for *�n (6.3) implies suph�0 ah=1, so that &T (*)
s
�

&=1
\s

�
# S0 , whence &M (*)

� &=1 for *�n. This is in sharp contrast with the case
*<n, where M (*)

� is not power bounded.
From Lemma 6.2 it is clear that M (*)

� is subnormal if and only if T (*)
s
�

is
subnormal for all s

�
# S0 . Now, there is a necessary and sufficient condition

in [6, p. 895�896] for the subnormality of the weighted shift operators of
norm 1 with weight sequence [ah : h�0]. Namely, the sequence [bk] of
partial products bk=>k

h=0 a2
h must be the moment sequence of a probabil-

ity on [0,1] with 1 in its support. For T (*)
s
�

, this sequence is given by

bk= `
n

j=1

1 (*+sj&j+1) 1 (k+n+sj&j+1)
1 (n+sj&j+1) 1 (k+*+sj&j+1)

. (6.4)

Hence we have:

Lemma 6.3. M (*)
� is subnormal if and only if for each s

�
in S0 there is a

probability _s
�

supported in [0,1] such that 1 is in the support of _s
�
and such

that for k=0, 1, 2, . . .

|
1

0
xk d_s

�
(x)=bk .

(Here bk is as in (6.4).)
Now note that the moment sequence of the product of finitely many

stochastically independent random variables is the term wise product of the
moment sequences of the factors. Further the support of the product is the
element-wise product of the supports of the factors. Therefore, Lemma 6.3
implies:

Lemma 6.4. For M (*)
� to be subnormal it is sufficient to have, for each j

with 1�j�n and for each signature s
�

in S0 , a probability _j, s
�

supported in
[0, 1] such that 1 belongs to the support of _j, s

�
, and such that for

k=0, 1, 2, . . .

|
1

0
xk d_j, s

�
(x)=

1 (*+sj&j+1) 1 (k+n+sj&j+1)
1 (n+sj&j+1) 1 (k+*+sj&j+1)

.
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Finally we observe:

Lemma 6.5. For b>a>0 there is a probability _ such that the support
of _ is [0,1] and for k=0, 1, 2, ...,

|
1

0
xk d_(x)=

1 (b) 1 (a+k)
1 (a) 1 (b+k)

.

Proof. By Euler's identity connecting his Beta and Gamma integrals,
the measure

d_(x)=
1

;(a, b&a)
xa&1(1&x)b&a&1 dx, 0�x�1,

satisfies the requirement. K
Now taking a=n+sj&j+1, b=*+sj&j+1 in Lemma 6.5, we get a

probability _j, s
�

satisfying the requirement of Lemma 6.4, provided *>n. If
*=n then this argument fails since the Beta integral ;(x, y) diverges for
x=0 or y=0. However, in case *=n, (6.4) reduces to bk=1 for all k, so
that the Dirac delta measure at 1 works as _ in this case. Thus for *�n,
M (*)

� is subnormal. This completes the proof of Theorem 1.4.
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