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Abstract

New examples of homogeneous operators involving infinitely many parameters are constructed. They are real-
ized on Hilbert spaces of holomorphic functions with reproducing kernels which are computed explicitly. All the
examples are irreducible and belong to the Cowen - Douglas class. Even though the construction is completely
explicit, it is based on certain facts about Hermitian holomorphic homogeneous vector bundles. These facts also
make possible a description of all homogeneous Cowen - Douglas operators, in a somewhat less explicit way.

Ou construit une nouvelle famille d’examples d’opérateurs homogènes dépendant d’une infinité de paramètres.
Les exemples sont réalisés sur des espaces de fonctions holomorphes possédant des noyaux reproduisants qu’on
calcule explicitement. Les exemples sont tous des opérateurs irréductibles appartenant à la classe de Cowen -
Douglas. Tout en étant complètement explicite, la construction est fondée sur certaines propriétés des fibrés
vectoriels hermitiens holomorphes homogènes. Ces propriétés permettent aussi une description, un peu moins
explicite, de tous les opérateurs homogènes de la classe de Cowen - Douglas.

An operator T on a Hilbert space is said to be homogeneous if its spectrum is contained in the closure
of the unit disc D in C and if g(T ) is unitarily equivalent to T for every element g of the holomorphic
automorphism group G of D. There are general results about such operators, but relatively few examples
are known (cf. [7,2,3,1]). In this note a large family of examples is constructed and a step is made towards
the description of all such operators in the Cowen - Douglas class of D (see [4]).

1. Construction of the examples

Let G̃ denote the universal covering group of G. For λ > 0, let A(λ) denote the Hilbert space of
holomorphic functions on D with reproducing kernel (1− zw̄)−2λ. The well-known discrete series D+

λ of
unitary representation of G̃ acts on A(λ) by
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(D+
λ (g)f)(z) =

(∂(g−1z)
∂z

)λ
f(g−1(z))

with the power defined to ensure continuity on G̃× D.
Let m ≥ 1 be an integer and let λ > m

2 . For 0 ≤ j ≤ m we write λj = λ− m
2 +j and define the operator

Γj : A(λj)→ Hol(D, Cm+1) by

(Γjf)` =


0 if ` < j(

`

j

)
1

(2λj) `−j

f (`−j) if ` ≥ j
.

Denote by A(λj) the image of Γj . The algebraic sum of the spaces A(λj) can be shown to be direct. Hence,
for any µ1, . . . , µm and µ0 = 1 we can define a norm on the direct sum by〈 m∑

j=0

Γjfj ,
m∑

j=0

Γjgj

〉
=

m∑
j=0

µ2
j 〈fj , gj〉, fj , gj ∈ A(λj).

We denote the Hilbert space obtained in this way by A(λ,µ) (we write µ = (µ0, µ1, . . . , µm)).
The direct sum of maps Γ := ⊕µj Γj is then a Hilbert space isomorphism of ⊕A(λj) onto A(λ,µ). This

isomorphism transfers the representation ⊕D+
λj

to A(λ,µ); we denote its image by U .
For g ∈ G̃, we have g′′(z) = −2c g′(z)3/2 with a constant c depending on g. We use c with this meaning

in the following theorem.
Theorem 1.1 U is a multiplier representation of G̃, that is, (U(g)f)(z) = J(g−1, z)f(g−1(z)) for g ∈
G̃, z ∈ D. The matrix entries of the multiplier are given by

J(g, z)p,` =

0 if p < `(
p

`

)
(−c)p−`g′(z)λ−m

2 + p+`
2 if p ≥ `.

The theorem is proved by direct computation.
It is well known that in each A(λj) the monomials, appropriately normalized, form an orthonormal

basis. Using the isomorphism Γ we obtain an orthonormal basis of A(λ,µ).
Explicitly, the basis is {µj ej

n}, 0 ≤ j ≤ m, n ≥ 0, where the `’th component of ej
n is

ej
n(z)` =


0 if ` < j or ` > n + j(

`

j

) √
n!

(n− ` + j)!

√
(2λj)n

(2λj)`−j
z(n−`+j) if j ≤ ` ≤ n + j.

Here (x)p := x(x + 1) · · · (x + p − 1) is the Pochhammer symbol. It follows that the polynomials form a
dense set in A(λ,µ). Therefore, the linear operator M = M (λ,µ) on A(λ,µ) defined by

(Mf)(z) = zf(z)

is densely defined. To find the expression of M in terms of our orthonormal basis, we define the subspace
H(n) as the linear span of the vectors {ej

n−j : 0 ≤ j ≤ min(n, m)} for each n ≥ 0. Clearly M maps H(n)
to H(n + 1). We have

Mµj ej
n−j =

m∑
n=0

M(n)k,j µk ek
n+1−k.

We define the number E(n)`j by (ej
n−j(z))` = E(n)`jz

n−` and write E(n) for the matrix E(n)`j . We
define the diagonal matrix D(µ) by D(µ)`j = µ`δ`j . Now we have for n ≥ m

M(n) = D(µ)−1E(n + 1)−1E(n)D(µ),
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(with a small modification for 0 ≤ n < m). Using Stirling’s formula one verifies that, as n→∞,

M(n) ∼ Im+1 + O
(

1
n

)
, (1)

where O
(

1
n

)
stands for an (m + 1)× (m + 1) matrix whose entries are O( 1

n ).
Theorem 1.2 The operator M = M (λ,µ) defined on A(λ,µ) by (Mf)(z) = zf(z) belongs to the Cowen -
Douglas class and is homogeneous.

For the proof one remarks that by (1), the operator M splits into the sum of two operators. The first
one is the direct sum of (m+1) copies of the standard isometric shift operator and the second one belongs
to the Hilbert-Schmidt class. This implies that it is bounded and is in the Cowen - Douglas class.

Using Theorem 1.1 one can verify, in a standard way, that g(M) = U−1
g MUg proving that M is

homogeneous.

2. Inequivalence

Theorem 2.1 For every m ≥ 1, the operators M (λ,µ), λ > m
2 ;µ1, . . . , µm > 0 are mutually unitarily

inequivalent.
One essential ingredient of the proof is the following.

Theorem 2.2 Suppose E is a Hermitian holomorphic vector bundle over D and for every g ∈ G there
exists an automorphism ĝ of E whose action on D coincides with g. Then G̃ acts on E by automorphisms
in a unique way.

In the proof one considers the connected component Ĝ of the full automorphism group of E. There
is a natural homomorphism Ĝ→G which has a compact kernel N . One shows that Ĝ is reductive so it
contains a normal subgroup which is a covering of G.

For the proof of Theorem 2.1 we consider the representation of the Lie algebra g induced by U and
extend it to the complexification gC = sl(2, C), still denoting it by U .

Restricting U to the triangular subalgebra t of gC (the Lie algebra of the stabilizer of 0 in SL(2, C)
acting on the extended complex plane), direct computation using Theorem 1.1 shows that (U(X)f)(0) =
ρλ,µ(X)f(0) for all X ∈ t and f ∈ A(λ,µ), with ρλ,µ(X) independent of f , and therefore, giving a
representation of t on the finite dimensional Hilbert space Cm+1. The unitary equivalence class of ρλ,µ is
uniquely determined by U , and hence by the operator M (λ,µ).

Explicit computation of ρλ,µ shows that different pairs (λ, µ) give inequivalent representations, proving
the theorem.

3. Reproducing kernel and irreducibility

In the following theorem S stands for the matrix with entries S`p = δp+1,` `, T its transpose. D = D(zw̄)
is diagonal with entries D`` = (1− zw̄)m−`. Let Kλ,µ be the diagonal matrix with

(Kλ,µ)`` =
m∑

j=0

µ2
j

∑̀
j=0

(
`

j

)2 (`− j)!
(2λj)`−j

.

Theorem 3.1 The space A(λ,µ) has a reproducing kernel given by

B(λ,µ)(z, w) = (1− zw̄)−2λ−mD(zw̄)ew̄SKλ,µezT D(zw̄).

The normalized reproducing kernel in the sense of [5] is
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B(λ,µ)
0 (z, w) = e−zT (Kλ,µ)−1B(λ,µ)(z, w)(Kλ,µ)−1e−w̄S .

This is proved by computing the effect of the map Γ on the well known reproducing kernels of the
spaces A(λj) and using the identity

B(λ,µ)(z, w) = J(g, z)B(λ,µ)(gz, gw)J(g, w)∗, g ∈ G̃. (2)

Theorem 3.2 The operators M (λ,µ), λ > m
2 ;µ1, . . . , µm > 0 are irreducible.

One proves this by first refining some arguments of [5] to show that any orthogonal projection commut-
ing with M corresponds to an orthogonal projection P in Cm+1 such that PB(λ,µ)

0 (z, w) = B(λ,µ)
0 (z, w)P

for all z, w ∈ D. Such a P then commutes with all coefficients of the power series development B(λ,µ)
0 at

z = w = 0. Using the explicit expressions in Theorem 5 one can show that no non-trivial P can exist.

4. More general results

Every Hermitian holomorphic vector bundle homogeneous under G̃ can be obtained by the process
of holomorphic induction [6, Ch. 13] from representations of t on Cm+1 that are Hermitian on the real
reductive part of t. Unitary equivalence classes of such representations are in one-to-one correspondence
with isomorphism classes of bundles. The ρλ,µ occurring above in Section 2 are certain conjugates of the
restriction of the standard (m + 1)-dimensional irreducible representation of sl(2, C) to t tensored with
a one-dimensional representation. Any finite dimensional representation of t can be written as a tensor
product of a one-dimensional representation ρλ characterized by a real parameter λ and another one ρ0

normalized in some way.
Even though the results are less explicit in the general case than for the operators constructed in

Sections 1 and 2, we can prove the following.
Theorem 4.1 To any ρ0 there corresponds a number λ0 such that the homogeneous bundle induced by
ρλ ⊗ ρ0 for λ > λ0 is the Cowen - Douglas bundle of a homogeneous operator.

It is also possible to make statements about irreducibility and inequivalence of such operators.
A number of results in this Note extend to the case of operator tuples of Cowen - Douglas class on

bounded symmetric domains in several complex variables.
Details will appear elsewhere.
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