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of the vertices of G into two sets; and the weight of a cut is the
number of edges that has an end point in each set, that is, the
edges that connect vertices of one set to the vertices of the
other.
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max Cut

e A cut in a undirected graph G = (V/,E) is defined as partition
of the vertices of G into two sets; and the weight of a cut is the
number of edges that has an end point in each set, that is, the
edges that connect vertices of one set to the vertices of the
other.

e The max-cut is the problem of finding a cut in G with
maximum weight.

e As an example, we note that the bipartite graph has maxcut
exactly equal to the number of its edges.

e This is the MAX-2COLORING problem, namely, that of finding
the maximum number of edges in a graph G which can be
colored by using only two colors.



the edge set

Max CUT

A it "”j’“fe" G-= (\7.6) b oA par [5, V\%7
’lmujmeek Qﬂw wh i e set of all odgons

Elsvls) = feck | lensl = lenwisl = 1]




the edge set with labels




the edge set with crossings marked










e ][]
o L]
o LI
[N
° H[]

[ —



e LJILIL]
e L0
o LJJML]
o /ML
cHILN

- ™ o «



o LI
o IO
e LIL/NTICIM
o /MUILIN[]
e ML IL/MUI]

- = N N O ™



o IO
NN
uinl miml | N
H] |[Him _EEn
IDDIDDDD

111111



e LHLOOOHON
HENNnnN
e LINMOOMETINC]
H] _[Wim| W
| [

111111 <t < v o w



e LHLHOOOHIOMCN
DoOoHOdrfeCOomo
e IMUCMET M0
H] _[HiE W
[ JIOY

111111 <t < o v © ©



Cut Norm

e LHLHOOOHIOMCN
DoOoHOdrfeCOomo
e IMUCMET M0
H] _[HiE W
[ JIOY

111111 <t < o v © ©

maximum, over all /I C R,JC S,



Cut Norm

maximum, over all /I C R,JC S,

| Yicijey aij
1
+
2 3
4
5 6

Claim:The cut norm
(of the matrix on the right)
is equal
to the size of the max cut
(of the graph on the left).
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the Cut norm

e The cut-norm ||A||¢ of a real matrix A= «aij))ieR,jeS is the
maximum, over all / C R,J C S, of the quantity |3 ¢/ jcy ajjl-
e It is not difficult to show that the norm || -||¢ is equivalent to

the norm ||Al|c—1, that is, for any n x n matrix A, we have
4Allc = [[Allo—1 = [[Allc,

where

n
> ajksjtk‘ Hsil [t = 1,1 < j k< n},

Aot = sup{
k=1

sj,tk € R (resp. in C).



proof

For any x;, yj € {—1,1},

doagxiyi= >, a— Y, aij
i =1.j:yi= =1.j:yi=

- > Ayt > ai
ixi==1,j:y;=1 ixi=—1,jyj=—1

The absolute value of each of the four terms in the right hand
side is at most ||Al|| ¢, implying, by the triangle inequality, that

[Alloc—1 < 4[[Allc.



proof (contd.)

Suppose, now, that ||Allc = YXjc; jeyai,j (the computation in
case it is — Y jc jeyaij is essentially the same). Define x; =1 for
i €l and x; = —1 otherwise, and similarly, y; =1 if j € J and

yj = —1 otherwise. Then

- 1+y;
1Alle =3 a5 5" =
IJ

1(231'7] +Zai7jxi ) 1 +Zai7j1 'y-j +Zai7inyj> '
ij ij iJj iJj

The absolute value of each of the four terms in the right hand
side is at most ||Al|so—1/4, implying, by the triangle inequality,
that

[Alloo—1 = [|Allc-



integer linear program

e Finding the norm ||Al|co—1 is called an integer linear program
since

Y sup{

n
Z aijjtk‘ 1Syt € {—1,1},1 <j, k< n},
Jk=1

at least in the real case.
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e Finding the norm ||Al|co—1 is called an integer linear program
since

n
Z aijjtk‘ 1Syt € {—1,1},1 <j, k< n},

Y sup{
k=1

at least in the real case.

e Thus one may wish to simply compute the ||Al|s—1 instead of
the CUT norm. However, this is not easy either.

e Let us see if we can give ourselves a little more room and
compute a norm, namely, the 2-summing norm, related to the
cut norm and the norm ||A||oc—1 that we have already seen.



the LP relaxation

e The 2 - summing norm ~(A) is defined as follows:

Y(A) = SUP{

n
> ajk<Xja}/k>‘ DX, Yk € (52)1,1 <j,k< n}~
k=1

Finding v(A), the 2 - summing norm, is called a semi-definite
program.



the LP relaxation

e The 2 - summing norm ~(A) is defined as follows:

n
> ajk<Xja}/k>‘ DX, Yk € (52)1,1 <j,k< n}.
J,k=1

Y(A) = SUP{

Finding v(A), the 2 - summing norm, is called a semi-definite
program.
e Define the numerical constant, the Grothendieck constant:

Ke(n) % sup{7(A) : A= Apsm, | Ao < 11.

e The constant Kg(n) depends on the ground field.



what we know about the Grothendieck constant

e The fact that Kg(n) remains finite, say K¢, as n — oo was
established by Grothendieck and is known as the Grothendieck
constant, that is,

SUP{||A7||Z‘)_>1 :AeC™" neN} < 0.

e The Grothendieck inequality says that the two norms ||A||co—1
and ~y(A) can differ only by a constant factor.

e The exact value of K¢ is not known. However,

KE(1) = KE(2) =1 and KE(2) = V2 = KE(3).

e Although, not entirely trivial, it is known that Kg > 1.

e Kirvine's prOOf gives m =1.782....

e Krivine conjectured that his bound is actually the exact value
of K¢. Recently, this conjecture has been shown to be false.



Grothendieck constant for graphs

e Let G be a graph with n vertices denoted by {1,...,n} and

E C {1,...,n}? be the set of its edges.

e Following Noga Alon, Assaf Naor and many others, define the
Grothendieck constant of the graph G, denoted by K(G), to be
the smallest constant K such that

sup{| D ay(xd,y) il = 1=lyll} <
{ijteE

Ksup{ Z a,'js,-tj:\s,-|:1:|tj|}
{ij}€E

holds true for any real matrix A = ((au))



the original Grothendieck inequality

e The original Grothendieck inequality is the particular case that
corresponds to the bipartite graphs (i.e. of chromatic number 2)
and, as a consequence,

K¢ = sup {K( G): G is a bipartite graph on n Vertices}.
neN
e Additionally, if C, stands for the complete graph with n
vertices, the corresponding Grothendieck constant is of order
log(n). The Grothendieck constant of a graph G is clearly
related to the combinatorics of G.
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e On the other hand, the expression on the right hand side of
the Grothendieck inequality for graphs is relevant statistical
physics: if G weighted by the matrix A represents the possible
interaction of n particles affected by a spin i = +1, then the
total energy generated by these particles in the system in the
Ising model of the spin glass is

5:—( Z a,-J-e,-ej).
{ij}€E

A configuration of the spins (¢;) € {—1,1}" represents its ground
state if it minimizes the energy.



Kirvine's proof of the Grothendieck inequality

Let S C Ck be the Euclidean sphere of radius 1.

Lemma
sup{)z,'{j_l ajjsin~uj, Vj>‘ NAlloos1 < Ly uiy v € 5} <7
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Kirvine's proof of the Grothendieck inequality

Let S C Ck be the Euclidean sphere of radius 1.

Lemma
sup{}z,'{j_l ajjsin~uj, Vj>‘ NAlloos1 < Ly uiy v € 5} <7

Proof. Let y be the unique probability measure on S which is
rotation invariant. First, show that

l::/SSig”<X> u)sign(y, u)du(u) = 1— 2.4 = cos }(x,y),x,y €S.

e The verification consists of finding an unitary
U : la(k) — lo(k) with

Ux =(1,0,...,0), Uy = (cost,siny,0,...,0),

where ¢ = cos 1(x,y), 0 <1 < 7 and sin_1<x,y> =Z—1.



Kirvine's proof

e If x and y are linearly dependent, namely x = —y, then

Ux =(1,0,...,0), Uy =(-1,0,...,0) and ¢» = 7. Similarly, if

x =y, then choose Ux = (1,0,...,0), Uy =(1,0,...,0) and

1 =0. Now, extend this map linearly to all of /3(k) to an unitary.



Kirvine's proof

e If x and y are linearly dependent, namely x = —y, then

Ux =(1,0,...,0), Uy =(-1,0,...,0) and ¢» = 7. Similarly, if

x =y, then choose Ux = (1,0,...,0), Uy =(1,0,...,0) and

1 =0. Now, extend this map linearly to all of /3(k) to an unitary.

e If x and y be linearly independent, then applying
Gram-Schimdt, obtain a pair of orthonormal vectors a1, and
define a linear map U on the span of these two vectors:

UOél = (1,0,...,0), UOéQ = (0,1,0,...,0)

and extend it, as before, to an unitary on all of £>(k).



an integral

e A simple calculation gives Ux = (1,0,...,0),

Uy = (cos®),sin,0,...,0).

Therefore, in computing (Ux, Uu) and (Uy, Uu), we assume
without loss of generality: Uu = (cosf,sin6,0...,0).

e The integral / is U invariant, we have

I = /Ssign(Ux,Uu}sign(Uy,Uu)du(Uu)

= /Ssignulsign(cosq/zul +sinyur)du(Uu)

27
= 21/0 sign(cosf)sign(cos(0 —1))d0d
T

_

T
2

= ZsinHx,y).
T



evaluation of the integral

1 27

2= o sign(cosf)sign(cos(f — x))d0

Integrand is +1 when 0
lies in the red regions
and -1 when 0 lies in
the green regions




tensor product

e The hypothesis on A implies that
n
—1< ) aysign{ui, x)sign{vj,x) <1,
ij=1

for any choice of vectors ||ui||2 =1 =|vj||2. The proof is then
completed by integrating with respect to x. O]



tensor product

e The hypothesis on A implies that

n
—1< ) aysign{ui, x)sign{vj,x) <1,
ij=1

for any choice of vectors ||ui||2 =1 =|vj||2. The proof is then
completed by integrating with respect to x. O]

Lemma
For each positive integer k, there is a mapping wy : 15 — IV such
that for all x, y, (wk(x), wk(y)) = (x,y)*.

e For the proof, set wy(x) to be the k - fold tensor product of
the vector x.



sine hyperbolic

Lemma
Given ¢ > 0, there exists u: l(n) — {2 and v : l2(n) — {3 such
that
(u(x),v(y)) =sin c{x,y),
lu(x)|[2 = sinh (c||x|[*) and [[v(y)[[> = sinh (c|ly[|?), x,y € t2(n).

Proof. From the Taylor series expansion
o

sinc(x,y) = Z(—l)k_1Ck<W2k—1(X)a wak—1(¥)),
1

2k—1
where ¢, = ﬁ, we see that we just have to set

u(x) = i\/C_szk—l(X)a

o0

viy) == D (-1 Vewaa(y).

1



completing the proof

o Let c =sinh~1(1) = In(1+v/2).
Set uj = u(x;), v; = v(¥;), |Ixill2 =1 = ||yj||2, and note that
luil] = 1= [vll-



completing the proof

o Let c =sinh~1(1) = In(1+v/2).

Set uj = u(x;), v; = v(¥;), |Ixill2 =1 = ||yj||2, and note that
luill =1 =1l

e However, we know that

C<Xl'>.yj> :Sin_1<ui7‘/j>7 | C<Xi7}/j> |S 1

and
n . .
> aysin Huig) |< 5
ij=1
So
T

n
™
aii(xi, yi) |< — = ]
|iJZ—1 i) 1< 5 2In(14/2)



Theorem (Varopoulos inequality)
Suppose K g denote the complex Grothendieck constant. Then

KE <supl|lp(Ti,..., Tn)| <2KE

where supremum is over all n € N, tuples of commuting
contractions T = (Ty,..., T,) and polynomial p of degree 2 with
plloe < 1.



sharpening the Varopolous inequality

e Thus Grothendieck constant had made an unexpected
appearance in the early work of Varopoulos. Setting

Co(n) = sup{[Ip(T)I| : Ipllpr.oo < 11| Tlloe < 1},

where the supremum is taken over all complex polynomials p in n
variables of degree at most 2 and commuting n - tuples
T :=(Ti,..., T,) of contractions, he shows that

: C
nll_ggo C2(n) < 2KG7

where Kg is the complex Grothendieck constant.



sharpening the Varopolous inequality

e Thus Grothendieck constant had made an unexpected
appearance in the early work of Varopoulos. Setting

Co(n) = sup{[Ip(T)I| : Ipllpr.oo < 11| Tlloe < 1},

where the supremum is taken over all complex polynomials p in n
variables of degree at most 2 and commuting n - tuples
T :=(Ti,..., T,) of contractions, he shows that

: C
nll_ggo C2(n) < 2KG7

where Kg is the complex Grothendieck constant.
e Rajeev Gupta in his PhD thesis shows that

. V3,
lim_Go(n) = 2KE,

which is a significant improvement in the inequality of
Varopoulos.
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