
The CANtor Set
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and so on...



The set we're interested in is 
the limit of this process. 



The set of points that remain after 
all these "middle thirds" have been 

deleted is called the Cantor set . 



The set of points that remain after 
all these "middle thirds" have been 

deleted is called the Cantor set . 

(Georg Cantor, 1845-1918)



It's probably not at all clear that any 
points remain but, as we'll see, there 
are tons of points in the Cantor set!



In spite of the fact that it's hard to 
visualize the Cantor set, it's not hard 
to understand why it must be a very 

big set.
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Formally:
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Also:

∆1 ⊃ ∆2 ⊃ ∆3 ⊃ · · · ⊃ ∆n ⊃ · · ·



So     is the limit of the      ‘s.∆ ∆n



To see that we haven't just given an 
elaborate definition for an empty set, 
let's recall again (a portion of) our 

initial construction, this time labeling 
the endpoints.
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Since we always remove points from the middle of an interval, 
notice that the endpoints 0 and 1 remain after the first "deletion". 
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Both 0 and 1 remain after the second and third deletions, too. In 
fact, they remain after every subsequent deletion. 
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Thus, the limiting set  contains
 at least the two endpoints 0 and 1.
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But now we just apply the same reasoning to the points 1/3 and 
2/3. Notice that they, too, remain in our set after any deletion. 
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The same is true of 1/9, 2/9, 7/9, and 8/9...



In short, the Cantor Set will necessarily contain the 
endpoints of any "discarded middle thirds" 

intervals; namely,

0, 1, 1/3, 2/3, 1/9, 2/9, 7/9, 8/9, ...



Thus the Cantor Set consists of 
an infinite number of points!



In fact: The Cantor Set consists of 
an uncountably infinite 

number of points!



To prove this, we set up a correspondence, or 
"matching", between the points in the Cantor set  

and the points in the interval [0,1]. 

In order to do this, we'll take a fresh look at our 
construction.
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as a process of retaining the left and right thirds of each 

interval, labeling our choices as we go along.
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In order to reach a given point in the Cantor Set , 
we would follow a "path" down this stairstep, 

choosing left or right at each step, always careful to 
choose a subinterval of our current "step". 



In order to reach a given point in the Cantor Set , 
we would follow a "path" down this stairstep, 

choosing left or right at each step, always careful to 
choose a subinterval of our current "step". 

You're not allowed to jump across a gap in the current step; 

you just step down, choosing either the left or right third 

of the current step.
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Any given sequence of choices

LRLLRRRLLLRRR...,
necessarily determines a single point in the Cantor 

Set, since the corresponding interval "steps" are 
nested and their lengths decrease to 0. 

In other words, the left and right endpoints of our 
sequence of "steps" will converge to a common value.



Conversely, each point in the Cantor Set        
uniquely determines the path, or sequence of L's 

and R's, that leads to it. Indeed, given a point in the 
Cantor Set, at the "bottom" of our stairstep, there 
can be but one sequence of interval "steps" that 

contain it. 



But what's so special about L's and R's? 

Nothing really. Let’s use 0’s and 1’s instead of 

L’s and R’s. 



But now... a sequence of 0’s and 1’s

011010001110010...
looks just like a binary decimal

0.011010001110010... (base 2).



Now each point in [0,1] has a binary decimal 
expansion and, conversely, each binary decimal 

represents some point in [0,1]. 



Now each point in [0,1] has a binary decimal 
expansion and, conversely, each binary decimal 

represents some point in [0,1]. 

Thus, we have a correspondence between the points 
in the Cantor set  and the points in the interval 

[0,1].



We have just shown that 
the Cantor set is

“BIG”.



Now we’ll show it is “small”!



Let’s compute the total length of all the 
intervals in the Cantor Set.



We will do this by first computing 

the length of the intervals we removed.



We start with the interval [0,1] and, in the first 
step, we remove 1 interval of length 1/3; in the 

second step, we remove 2 more intervals of length 
1/9; in the third step we remove 4 more intervals of 

length 1/27; and so on. 



In general, at the n-th stage, we remove another  

intervals, each of length
2n−1

3−n
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This is a geometric series, and the sum is easy to find.
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Thus, the total length of all the intervals 
we removed from [0,1] in the 

construction of the Cantor set equals 1 - 
the same as the length of the interval we 

started with! 

In other words, we removed everything!?



We know that the Cantor set is a "big" set 
- after all, it has the same "size" as [0,1] 

itself, at least in one sense...



...and yet it must also be a "small" set, 
since it's the result of removing a set of 

"length 1" from [0,1].



The dilemma, if you will, centers 
around the fact that we've employed 

two different notions of "size". 



Evidently, "total length" and "cardinality" 
are not equivalent notions of size:

 a set can be very small in the first sense 
while being very large in the second!
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