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Letter of 
Ramanujan 
addressed to 
 G. H. Hardy 

containing the 
Claim  

 
We will explain the 
intriguing proof of 

Ramanujan from his notes 
on the right. 
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Ramanujan’s justification

Let C = 1 + 2 + 3 + ⋯

4C = 4 + 8 + 12 + ⋯

Therefore, −3C = 1 − 2 + 3 − 4⋯ ?
=

1
(1 + 1)2 = 1
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Hence   C = − 1
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What is wrong with this?

Well, if the infinite sum  is 
not known to be convergent, then to say 
that  is not legitimate. One of 
the issues is that of subtracting infinities.

1 + 2 + 3 + ⋯

C − 4C = − 3C

Moreover, it is not clear, unless the infinite 
sum  is convergent, why it 
should equal .  
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1
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Recall that 
. 1 + x + x2 + x3 + ⋯ = 1

1 − x , |x | < 1

Differentiating, for  we have, |x | < 1,

.1 + 2x + 3x2 + ⋯ = 1
(1 + x)2

Now, evaluating at  (which is not 
legitimate), we get the desired sum. 

x = − 1
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Some care is needed!

In the series, , putting 
,  we obtain . 

1 + x + x2 + x3 + ⋯
x = − 1 1 − 1 + 1 − 1 + ⋯ = 1

2

However, the sequence of partial sums is 
 and it doesn’t have a limit. 1,0,1,0,…

Clearly, violating the requirement  
leads to meaningless consequences (put ). 

|x | < 1
x = 2
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Exercise Care
The geometric series  is 

convergent and its sum is . 

1+ 1
2 + 1

4 + 1
8 +⋯

2

On the other hand, none of the series 
,  and 
 are convergent.

1 − 1 + 1 − 1 + ⋯ 1 − 2 + 3 − 4 + ⋯
1 + 2 + 3 + 4 + ⋯

How do we make sense of these sums?
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Let us go back to the geometric series: 

. The partial sums of this 

series form a sequence:  

1+ 1
2 + 1

4 + 1
8 +⋯

1, 3
2 , 7

4 , 15
8 , …

We notice that the elements in the 
sequence of the partial sums are at most 
 and they keep getting closer to . 2 2

 Moreover, this sequence has the limit . 2
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The sum of a convergent 
series

Definition: A series is said to be 
convergent if the sequence of its partial 
sums converges to a limit. This limit is 
designated as the sum of the series. 

This need not be the only way that one 
might be able to make sense of an 
infinite series. Are there are other ways?



What can we do with 
convergent series



What can we do with 
convergent series

Let  and  be two 
convergent series with sum  and  respectively. 

a1 + a2 + a3 + ⋯ b1 + b2 + b3 + ⋯
A B



What can we do with 
convergent series

Let  and  be two 
convergent series with sum  and  respectively. 

a1 + a2 + a3 + ⋯ b1 + b2 + b3 + ⋯
A B

Then it makes sense to multiply such a series by 
a scalar  and obtain a new series 

, which is convergent and the 
sum is . Also, . 

α
αa1 + αa2 + αa3 + ⋯

αA a1 + a2 + ⋯ + b1 + b2 + ⋯ = A + B
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The geometric series, again!

Suppose  is convergent 
for some value of . Then setting 

 and subtracting  from 
we conclude that . 

1 + r + r2 + r3 + ⋯
r

R = 1 + r + r2 + ⋯ rR
R, R = 1

1 − r

Caution: All this is valid only if the 
initial series is (somehow) known to be 
convergent. 



Multiplying infinite series
The product of two infinite series is the 

series  , where  .  

The product of two convergent series 
need not be convergent. 

An example:  .

c1 + c2 + c3 + ⋯ ck =
k

∑
i=1

ak−i bi

( 1

1
− 1

2
+ 1

3
− 1

4
+⋯)2
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The Cesaro sum
Recall the examples  and 
its sequence of partial sums: 

1 − 1 + 1 − 1 + ⋯
1,0,1,0,1,…

The problem with convergence was due to 
the lack of convergence of this sequence.

What if we take the average of this 
sequence? We then get a new sequence, 
namely, 1, 1

2 , 2
3 , 1

2 , 3
5

, …

This new sequence of averages converges!



Everything works as before



Everything works as before

For instance, sum of two infinite series 
which are Cesaro summable is again 
Cesaro. Summable. 



Everything works as before

For instance, sum of two infinite series 
which are Cesaro summable is again 
Cesaro. Summable. 

We have a little more, namely, the 
product of two Cesaro stumble infinite 
series is also Cesaro summable. 



Everything works as before

For instance, sum of two infinite series 
which are Cesaro summable is again 
Cesaro. Summable. 

We have a little more, namely, the 
product of two Cesaro stumble infinite 
series is also Cesaro summable. 

An convergent series is Cesaro summable. 
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If the infinite series  is 
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Going back
If the infinite series  is 
convergent in the sense of Cesaro, then it 
sums to . 

1 + r + r2 + r3

1
1 − r

To justify this, recall that the earlier proof 
involved only multiplying the original 
convergent series  with the scalar  and 
the subtraction 

R r
R − rR



What about  1 − 2 + 3 − 4 + ⋯?



What about  1 − 2 + 3 − 4 + ⋯?
The sequence of partial sums is  
The average of this sequence is 

1, − 1, 2, − 2,…
1,0, 2

3 ,0, 3
5

,0, 4
7 …



What about  1 − 2 + 3 − 4 + ⋯?
The sequence of partial sums is  
The average of this sequence is 

1, − 1, 2, − 2,…
1,0, 2

3 ,0, 3
5

,0, 4
7 …

Well, this is not a convergent sequence either. 
So, what do we do. 



What about  1 − 2 + 3 − 4 + ⋯?
The sequence of partial sums is  
The average of this sequence is 

1, − 1, 2, − 2,…
1,0, 2

3 ,0, 3
5

,0, 4
7 …

Well, this is not a convergent sequence either. 
So, what do we do. 

Let us take the average of the averages and 
get  1, 1

2 , 5
9 , 5

12 , 34
75

, 34
90 , …
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Iterate
Started with partial sums

Gone to averages of partial sums, called 
them Cesaro sums 

Average of the average and repeat  

Iterate this process ad infinitum 

Can we ever make sense of 
1 + 2 + 3 + 4 + ⋯
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Complex (analytic) function
Polynomials and convergent power series 
are examples of analytic functions

If we are given an analytic function 
defined on the right half plane, how 
many different ways, can we extend to 
the left?

Unlike the case of smooth functions, if 
there is such an extension, then it is 
unique. 
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Complex series

Everything said about infinite series of 
real number actually applies to the 
complex counter part.

This includes convergence, Cesaro sums, 
average of average etc. 

The series  
converges on the right half plane.

f(z) = 1− 1
2z + 1
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The Riemann zeta function
The Riemann zeta function is defined by 
changing all the negative signs to positive: 
ζ(z) = 1+ 1

2z + 1
3z + 1

4z +⋯

It converges, when the  of  is .σ z = σ + it < 1

It does not converge if . But it has an 
analytic continuation to the entire complex 
plane except 

σ > 1



-1 0 1

ζ(−1) = 1 + 2 + 3 + 4 + ⋯ = − 1
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ζ(z) = 1+ 1
2z + 1

3z + 1
4z +⋯

− 1
12



Apart from the trivial zeros, 
the Riemann zeta function 
has no zeros to the right 
of σ = 1 and to the left 
of σ = 0 (neither can the 
zeros lie too close to those 
lines). Furthermore, the non-
trivial zeros are symmetric 
about the real axis and the 
line σ =   and, according to 
the Riemann hypothesis, they 
all lie on the line σ =  .

1
2

1
2



THANK YOU!


