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Earth Surface Architecture : Geomorphology

Changing Paradigms
1. Evolutionary Geomorphology
- Davisian Erosion Cycles / peneplain (Davis, 1840) (Footprints of Darwinian Evolution)
- Time is a process
- Questioned by Penk (1845) (Slope retreat / pediplain)
2. Process Geomorphology
- Landforms achieve equilibrium between resisting forces and driving forces (Gilbert, 1918)
- Triad : Process - Form — Time
3. Quantitative Dynamic Geomorphology
- Drainage basin morphology (stream order, density etc.) (Horton, 1945, Strahler, 1952)

- Newtonian mechanistic approach (stream power, fluvial erosion, diffusion/transport laws (Schumm,
1956, Melton, 1958)

- Dynamic equilibrium approach (Tectonic geomorphology : Landform/Tectonics/Climate coupling)
4. Thermodynamic Geomorphology

- Entropy concept (Leopold & Longbein, 1962, Scheidegger, 1970, Hugget, 2007)
5. Predictive Geomorphology

- Earthcast ( extreme events — flood, landslide)

- Mathematical morphology (Fractal, Spatio-temporal Geoscience Information System analysis)

- Deterministic & Numerical models

- Artificial Neuron Network (ANN)



Landscape evolution model of Davis (1840)
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Landscape evolution : Davis vs Penk



Geomorphic Diversity

Geomorphic diversity comprises dynamic systems :

1. Morphologic System (Form) (e,g.Landform, hill-slope
geometry, drainage system, soil system etc.)

2. Cascading System (Flow) (e,g. erosion, mass-flow, chemical
flux etc.)

3. Process-Response System (e.g. process-product dynamics
produce process-form domains )

These domains constitute the Earth Surface
3D aspect of Earth Surface : CRITICAL ZONE



Anderson et al., 2004
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The Critical Zone = the zone extending from
the outer vegetation envelope to the lower
limit of groundwater
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Factors driving critical zone development
d., =f (P, L, t)

®., = Specific property of critical zone (e.g. soil type and
structure)
P, = External energy (solar radiation) + mass flux
(precipitation) + primary production (carbon cycle)
L, = System state (e.g. relief, parent rock)
t = Age of system
(Jenny, 1961)



Critical zone energy balance

Energy flux balance equation :

E.,= Egy + Eppr + Egio + Egpy + Egeo (W mM2)  (Rasmussen et al, (2011)

E.; = Energy flux balance in critical zone

Eg; = Latent heat of evapotranspiration

Eppr = Precipitation X specific heat of water X temperature

Egio = Net biomass production X biomass enthalpy

Eg, = Potential energy of regolith X mass of regolith

Eqeo= Gibbs energy of mineral transformation reaction in regolith

Energy flux balance (E., ) controls the composition and structure of the

critical zone
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Critical Zone Interfaces

Landscape - atmosphere
Landscape - surface water
Soil — vegetation

Soil - bedrock

Vadose zone — groundwater
Microbe — soil/bedrock

The interface dynamics controls Critical Zone geometry and
composition

Critical Zone is a timed memory of the past and present biosphere-
geosphere dynamics.

Interface dynamics and fluxes of critical zone control earth-surface
architecture and produce Earth-Surface System



Earth Surface System
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Earth Surface : System Approach

System characters

1. Nonlinearity

- System output (or response) is not proportional to
input (or forcing)

- Possess self-organised criticality (SOC) producing
geopatterns caused by system’s internal dynamics
without external forcing

- Attain dynamic equilibrium until SOC is reached

- SOC defines system disturbance that separates two
sub-systems



2. Fractal geometry

- Many landscapes show fractal pattern, power-law scaling and
evolve self-similarly (Evolutionary Geomorphology (cf. Phillips,
2006)

- If landscape morphology follows Chaos theory simple perturbation
(Butterfly effect) can cause complex geopatterns and drastic
response (catastrophe) in non-linear manner

- This makes prediction/forecasting (Earthcast) of extreme events
(e.g. flood, landslide etc) difficult. Mathematical morphologic
analysis may help earthcasting.



Thermodynamics of Earth-Surface System

1. Mass Balance
dM /dt=M, - M,_, . =0 (Steady-state)
= Positive (Aggradation)
= Negative (Degradation)
where M = Mass of system
M., = Mass input
M, . = Mass output

Law of mass conservation controls basin storage & mass flux which controls threshold
parameters of the system

2. Entropy Balance
dG =dH-TdS where dG = Free energy change
dH = Enthalpy change
dS = Entropy change
T = Temperature



Entropy balance in Earth-surface System (ESS)

* In geomorphology Scheidegger (1970) suggested :
T (temp.) = h (height)
H (enthalpy) = M (mass),

Entropy balance equation becomes dS = dMi/h

* Kleidon et al (2013) modified the entropy balance equation :
G (free energy) = A (potential + kinetic energy
of water and sediment)
Entropy balance equation becomes dS =- dA/T(h)

Inferences :

All natural processes are Max. Entropy Production (MEP) process
So : 1. Free energy of Earth-Surface System (ESS) decreases with time
2. MEP happens if mass of ESS increases and/or height is reduced
3. MEP happens if free energy of ESS decreases
4. MEP causes chaos/disorder of ESS to increase, ESS becomes
increasingly nonlinear and unpredictable



Earth-Surface System (ESS)

Two important system state conditions

1. Threshold

- Intrinsic (variability absorbed by the system (e.g.
stream gullying)

- Extrinsic (external forcing creating permanent
change in the system) (e.g. climate change, tectonics)

2. Equilibrium



{a} Static equilibrium ie) Steady-state equilibrium

(b} Stable equilibrium (recovery) if) Thermodynamic equilibrium (decay)

Maximum entropy

(c} Unstable equilibrium (stabilization) ig) Dywnamic equilibrium

Equilibrium state 2

Equilibrium state 1 I

thy Dynamic metastable equilibrium

—

Threshald

Types of equilibrium in Earth Surface System

(Chorley & Kennedy, 2002)



Evolutionary Earth Surface System under forcing

Forcing / Stimulus
(natural or anthropogenic)

State change at SOC
(MEP, Nonlinearity,

: ) Multiple system
Disorder increases)

pathways possible.
Exact pathway to be

—

New System
Regime

Evolutionary Geomorphic decided by forcing
System in dynamic equilibrium parameters at
singularity
Threshold ‘
Birfurcation point
SINGULARITY New
threshold

(Sinha-Roy, 2012)



Tectonic forcing

Tectonic forcing makes geomorphic systems to cross
thresholds and change equilibrium dynamics

Therefore, geomorphic systems record and preserve
signatures of tectonic features, their degree and scale of
activity

Response of drainage systems and landforms to tectonic
forcing is relatively quick and definitive

Quantitative geomorphology for neotectonic and active
deformation studies deals mainly with fluvial systems and
their products in terms of Tectonic Geomorphic Indices.

| discuss 10 geomorphic attributes linked with tectonic forcing
in landform system



AR

- 74"
29 . 74° .
; [ : 78 ) - s0* .
- 2d
- BERACH GRANITE DELMY *
BUNDELKMAND GNEISS
SN taoee aneissic m DELWI SUPERGROUP
R eriveora omamire
XM
amaMTE 1N s0C ‘"'.'0 ?
elnt VINDHYAN
@ ARAVALLY SUPERGROUP SAR ‘ o
o DECCAN TRAP
Y :
o - = " e 0 0 g
) et -
C27] aaao smoup
JAIPUR m 234
P
J ke
’,", % \ 3 ) N
] 'l! I3 \ NN
\ W\
\§> 7 /7
294 o
']
® VR
J PALANPUR ©
. ANMACABAD T T e S
234 & A~ ==~ ———_
AP Sl e B PR 23
R
72* 74" 78° 78 > e’




GBF and BDZ Traces

image, Landsat C ‘,( ) I \t'zl\‘ ~2Aari
¢

ImageryDate: 4/10/2013 25°23/142.48" N 75230/06.35 eye alt 184.3:
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1. Longitudinal River Profiles

Longitudinal profile of streams
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Normalised longitudinal river profile and its relation with river

gradient

1 Banas l‘ Berach _1 Kothari
— ' 5yl 55 =3
H \
' - ‘ b - L
- = )
: \
= ] A . = ~ A o
] l’ \\ \\ \\ £\
e et
I', \\ — — AN A\ ~. —
2 % = -
\ /\\ W R N P, P ooy A4 .
o b -l’ S e l_ Nt ==
TR LI 72 ) TR AT S L, 3 T A T N T AT A AT T
= T — & . =
PN Gomti b2 Chandrabhaga Khari
— \\\ — ; — —
oy A
= N - - & M- -
\\ x> [} “
] N = i 1 o C s
~ M ~
~ ea! ™
. N I \ 05
~ A ) —
1 - >
\_ —
\h
T T T T T T T T  § T T T
Dai Mashi Dhil
2l i i B
— L — . - i
N\
\
- S e . [
\ 1N
S > N
-_—— — N
2= % — ~ e =T &
\\,,’h ey i \\\\ e, > S e e <
= —~
T T T T T T T T T T T T
e 1:0 10 7
Morel Galwa
= — % - |- o.s 8 —
\\ 8
=4
=4 ooy \ i = =
\ [=2.9:6. =5 ] S
NN = i~
= =
1 N =i — — o0.a X s a4
N S
Y ~
== Bx -~ = \, Pan ity — — 0.2 2
N\ 3 ~ N ’ N
N Sasas el N g% ~ R Li /L
T T T T T T T

confluence of major tributaries.

(o]

T
0.2

T T
0.4 o.6

T
o.8

10

Fig.2. Normalised longitudinal profiles (solid thick lines) and along-river gradients (broken lines) of the studied rivers. Arrows indicate

Sinha-Ro

JOUR.GEOL.SOC.INDIA, VOL..58, AUGUST 200

y,2001



Elevation

Hypothetical longitudinal river profile showing methodology
of recognising neotectonic fault— block movement
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FAULT GEOMETRY AND BLOCK MOVEMENT PATTERN DEDUCED FROM
LONGITUDINAL RIVER PROFILE
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Longitudinal river profiles showing position of knckpoints and stages of incision
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Neotectonic blocks uplifted at different phases deduced
from stream incision phases downstream of knickpoints
and corresponding upstream uplift
(SECTOR - 1)
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2. Hypsometry
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Ea = Hypsometric integral
Eh = Maximum concavity of the curve
I = Curve slope inflection point
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Examples of normalised hypsometric curves
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Hypsometry and relative terrain uplift

U=2Z+ Qs where U = Terrane uplift
Z = Elevation
Qs = Mass efflux (both
advective & diffusive)

Replace Z by hm ( mean elevationii.e.
Elevation covering
50% area normalized
against max. height)

Replace Qs by (1-Ea) (where Ea = Hypsometric
Integral)

Uplift equation becomes :

U=hm + (1-Ea)

h/H

Ea

Hypsometry of @lative terrane

uplift
— Low relative uplift, high

— denudation
Steady state landform

— High relative uplift, low
denudation



Blocks of relative terrane uplift deduced from drainage basin

hypsometry
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3. Topogarphic Profiles and Planation Surfaces

Topographic Profiles and Planation Surfaces
(SECTOR - 1)
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4. Stream Sinuosity Index

‘\\ S=SL/L

S = Stream Sinuosity Index

L = Straight line distance of stream
SL = Actual distance along the

“ i stream

S > 1.0 High tectonic activity
(Slope-steepening due to
fault)
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5. Drainage Basin Asymmetry

Channel migration and abandoned channels of
Mangli river on GBF Footwall

AF = 100(Ar/At)

where

AF = Drainage basin asymmetry
At = Total basin area

Ar = Basin area on right bank

Lower the value of AF higher is the
tectonic tilting



Fault — bound tilted tectonic blocks

27 o 75 ol 76 23
/ / 27°
/ Jaipur
- e SIDF / ®
§ [ 4 ~
L =3
= e
\J/ .
~~a ‘
- 5 A
Ajmer
| 4
g L/
A%
“ >
Tonk
Pl Y A ® >
26 °| = 26 °
>
SLp
- A
” s
~\ Bundi
[ _J
>
Bhilwara GBY O
> s ¥ R
‘L % Kot

\/ ota
25° Y/ _—_

75 ‘ 76 o

N .
Sinha-Roy,

|
0 25 km
L | |

2006



6. Drainage Basin Relief Ratio

RR=(Ed-Ev)/L

Where

RR = Relief ratio

Ed = Elevation of the highest point
Ev = Elevation of the lowest point
L = River length

Higher the RR value higher is the incision at
river mouth due to tectonically controlled
basin uplift

Ev

River

Ed



8. Stream Length Gradient Ratio

SL = (AH/AL)L

Basin boundary h
where

SL = Stream length gradient ratio
AH = Change of elevation of reach (A-B)
AL= Length of reach
L = Total length of the channel from AL
AL mid-point of the reach where the
index is calculated to the highest
point of the channel

SL =< 50 : very low tectonic activity
= > 200 : very high tectonic activity



Eld

Elevation

Esc.

9. Valley Floor Width to Height Ratio

River channel

7\ l

—~

Distance

Erd

Vf = 2Vfw / [(Eld — Esc) + (Erd — Esc)]

Where

Vf = Valley floor width to height ratio

Vfw = Width of the valley floor

Eld = Elevation of left-hand valley divide
looking downstream

Erd = Elevation of right-hand valley divide
looking downstream

Esc = elevation of stream channel (valley floor)

Vf = < 1.0 : Very high tectonic activity
(V-shaped valley)

1.0 — 1.5 : Moderate tectonic activity

> 1.5 : Low tectonic activity (U-shaped
valley)



Deciphering reactivation of old faults using Smf, SL and Vf
indices

Tectonic Activity Rank (TAR) of indices
(Smf : >3.0 = very low, <1.4 = very high.
SL : <50 =very low, >200 = very high,
Vf:>1.5 = very low, <1.0 = very high

Relative Tectonic Activity (RTA)
(RTA = Sum of TAR / Total no. of geomorphic indices used)

5 RTA classes : very low (<1.5), low (1.5-2.0), moderate (2.0 2.5), high
(2.5-3.0), very high (>3.0)
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Variation of Relative Tectonic Activity along Banas Dislocation Zone
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Variation of Relative Tectonic Activity along Great Boundary Fault
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Neotectonic segmentation of older faults

74.30 ' 76.00

26.00| Relative neotectonic activity in segmented
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inferred from other geomorphic indices and

space imagery study
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10. Fault Scarp

Fault Scarp

Fault Scarp Geometry

Upslope Upslope

Footslope Downslope
———————— — angle

i

Distance Morphogenic dating of fault scarp

Extensional component of fault tan® = a/V(rr) + b (Avouac, 1993)
Where

e = d/tan@ (Wikins & Schultz, 2001) 0 = Midslope angle
a = Half scarp surface offset

Where b =tan of upslope angle

e = Extension (m) Tt =kt (where k = coefficient of mass

d = Fault scarp surface offset diffusion, t = oldest age of

8 = Scarp mid-slope angle scarp formation (faulting)

(k in tropical climate = 5 sa. m per vr)



Segmented nature of fault reactivation
deduced from morphogenic age
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Neotectonic Fault System
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INDEX

Shear system related to transpressional

Great Baundary Fault and Banas Dislocation Zone
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Geotectonic conclusion from
guantitative geomorphology

Cambay fault
—
o/

)

>

margln '°"a/ fo
Foreland basm

b

==

/Bundelkhand '{7

A
=

wedge
< Extrusion }

/
~— on
1 | “3?
Indentation o1

Slip-field

Far-field max. stress
(India motion vector)

Fore ang o ional f oh\
29 margip, :(gramyf ’alle/

tlng) tenslo

250 km

Cambay-

Barmer Fault

Retro-wedge

ADFB
Bactop Neotectonic Faults

/Bundelkhand

Pro-wedgef



Thank you



