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Motivation

To understand the dynamical behavior of a phenomenon or a

process, development of a good IS

essential. To develop a good spatiotemporal model, well-
and well- that could be

from spatial and/or temporal data are important
ingredients.

Mathematical Morphology is one of the better choices to deal
with all these key aspects mentioned.
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Mathematical Morphology in Spatial Informatics

Retrieval and
Visualization

/

/

\
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Basic description of Multivalued Functions (e.g.: Terrestrial Data)

Mathematical Morphology in Image Analysis and Spatial Informatics

Retrieval of unique phenomena (e.g. Networks), Analysis and
quantitative characterization of unique phenomena and processes via
various metrics

Spatial interpolation, Spatio-temporal modeling, spatial reasoning,
spatial information visualization
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Digital Elevation Models




|. Mathematical Morphology

Binary Mathematical
Morphology

Grayscale Morphology




Mathematical Morphology: Recent
Advances

Graph Mathematical
Morphology

Adaptive Mathematical
Morphology
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* Morphological Skeletonization

* Multiscale operations, Hierarchical
segmentation

* Recursive Morphological Pruning

e Hit-or-Miss Transformation

* Morphological Thinning

* Morphological Reconstruction

» Watersheds

* Morphological shape decomposition
e Granulometries

* Hausdorff dilation (erosion) distance
* Morphological interpolation

* Directional Distances

e SKIZ and WSKIZ

B. S. Daya Sagar
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Mathematical Morphological Operations

Spatlal Informatics include:
Morphological Erosion

Morphological Dilation

Morphological Opening

Morphological Closing

Multiscale Morphological Operations
Hit-or-Miss Transformation

Morphological Thinning , Thickening, Pruning
Geodesic Morphological Operations
Morphological Skeletonization

Skeletonization by Zones of Influence

Weighted Skeletonization by Zones of Influence
Granulometries and Anti-Granulometries
Morphological Distances

Hausdorff Dilation Distances

Hausdorff Erosion Distances

Morphological Interpolations and Extrapolations

The implementations of the aforementioned transformations binary, grayscale, graph and geodesic
domains
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[Spatial Data : Various Representations ]

Sets (Thresholded Elevation regions,
Binary images decomposed from

Images)
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Mathematical Morphology (cont)

Binary MM

s Binary erosion transformation of X by structuring element, B

o the set of points s such that the translated B, is contained in the original set
X, and is equivalent to intersection of all the translates.

o X6 B={xB,cX}= bﬂ )
eB
s Binary dilation transformation of X by B

o the set of all those points s such that the translated B, intersects X, and is
equivalent to the union of all tfranslates.

o X®B={:B,nX &)= X,

beB

s« The dilation with an elementary structuring template expands the set
with a uniform layer of elements, while the erosion operator eliminates a
layer from the set.

so Multiscale erosions and dilations are
- X6 B BB6..eB=(X6SnB),
-X@®B)®@B®...®B=(X®nB),
where nB=B® B ® ... ® B and n is the number of transformation cycles.
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Mathematical Morphology (cont)

Binary MM (cont)
s By employing erosion and dilation of X by B, opening and closing
transformations are further represented as:
o XoB=(X© B)®B))
o XeB=(X®B)© B))
s After eroding X by B, the resultant eroded version is dilated to achieve
the opened version of X by B.

s Similarly, closed version of X by B is obtained by first performing dilation
on X by B and followed by erosion on the resultant dilated version.

so Multiscale opening and closing transformations are implemented by
performing erosions and dilations recursively as shown below.
-(XonB)=[(X© nB) ® nB)],
-(XenB)=[(X® nB)© nB)],
where n is the number of transformations cycles.
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Mathematical Morphology (cont)
F

s @Greyscale dilation and erosion operations - expansion and contractions
respectively
s> Let f(x,y) be a function on Z2, and B be a fixed structuring element of size one.

The erosion of f(x) by B replaces the value of f at a pixel (x, y) by the minima
values of the image in the window defined by the structuring template B

(1 & BY(xy)= (il ety 1)
so The dilation of f(x) by B replaces the value of f at a pixel (x, y) by the maxima
values of the image in the window defined by the structuring template B

(f @B)(x, y)=(rir}§1€>é{f (x=i,y- J)}
s In other words, (f © B) and (f @ B) can be obtained by computing minima and
maxima over a moving template B, respectively.

so Erosion is the dual of dilation :
o Eroding foreground pixels is equivalent to dilating the background pixels.
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Mathematical Morphology (cont)

~ Grey-scale MM (cont)

29

29

Opening and closing are both based on the dilation and erosion
transformations.

Opening of f by B is achieved by eroding f and followed by dilating with respect
toB, (foB) =[(f& B) @ B],

Closing of f by B is defined as the dilation of f by B followed by erosion with
respect to B, (feB) =[(f ©®B)© B,

Opening eliminates specific image details smaller than B, removes noise and
smoothens the boundaries from the inside, whereas closing fills holes in
objects, connects close objects or small breaks and smoothens the boundaries
from the outside.

Multiscale opening and closing can be performed by increasing the size (scale)
of the structuring template nB, where n =0, 1, 2,..., N. These multiscale
opening and closing of f by B are mathematically represented as:

(fonB)={[(f© B)©BS...©B®B®B®...® B} =[(f © nB)® nBj,
(femB)={[(f ®B)®B®..®B|©SBO6 BOS..6 B =[(f®nB) ©nBj,
atscalen=0,1, 2,..., N.

Performing opening and closing iteratively by increasing the size of B transforms
the function f(x,y) into lower resolutions correspondingly.
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Mathematical Morphology (cont)

so Multiscale opening and closing of f by nB effect spatially
distributed greyscale regions in the form of smoothing of
contours to various degrees. The shape and size of B
control the shape of smoothing and the scale respectively.

s Important problems like feature detection and
characterisation often require analysing greyscale functions
at multiple spatial resolutions. Recently, non-linear filters
have been used to obtain images at multi-resolution due to
their robustness in preserving the fine details.

s Advantages of mathematical morphology transformations
o popular in object recognition and representation studies.
o The non-linearity property in preserving the fine details.
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. . / c/,o . . ] s 5x5

<l 77

11x11

Octagonal symmetric structuring elements of various primitive
sizes ranging from 5 x 5 to 11 x 11. These primitive sizes can
be considered as B.
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limipionctant; phases ol Researehirelated To lmaee Amalysis

Is there a single mathematical field that can address Research
related to Digital Images?

Deal Images with Mathematical Morphology!
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Networks extraction and their properties :
Sub-basins delineation

eSS
s Geomorphologic basin is an area outlined by a topographic boundary that
diverts water flow to stream networks flowing into a single outlet.

so DEM is an useful source for watershed and network extraction.

so Hydrologic flow is modelled using eight-direction pour point model
(Puecker et. al., 1975).

75 73 72

73 70 e——- 65

74 72 71

o The two topologically significant networks, include Channel & Ridge
networks.

o The paths of these extracted networks are the crenulations in the
elevation contours.

so Crenulations can be isolated from DEMs by using nonlinear
morphological transformations.
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Network Extraction: Binary Morphology-Based

Step-1:

Threshold Step 2:
decomposition Skeletonization
of f(x,y)
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ftlif
o if

ft:Xt;fH:X

f(xy)2t
f(xy)<t

"'fN:X

1

where

0<f(x,y) <255

Sk (X,)U X,

(Sk(X,)UX, )\ X,

(Sk(Xz)UXs)l" X

Sk(Xx,)U X,

(Sk(x)Ux, )\ X,

Sk(f) = Ch(f)

13 April 2015
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Networks extraction: Grayscale Morphology-

Based

s

so The DEM, f is first eroded by B, with n=1, 2,...,N, and the eroded DEM
is opened by B of the smallest size. The opened version of each eroded
image is subtracted from the corresponding eroded image to produce

the nth level subsets of the ridge network. Union of these subsets of
level n = 0 to N gives the ridge network for the DEM.
RID!(f)=[(f © B)\{[(f ©B;) ©B]®B}]

4

RID(f) = Llon[RID‘n(f)]

i=1
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Networks extraction and their properties
eI,

so DEM, f is first dilated by B, and the dilated f is closed by B of the smallest size. The

closed version of each dilated image is subtracted from the corresponding dilated
image to produce the nth level subsets of the channel network. Union of these subsets

of level n = 0 to N gives the channel network for the DEM.

CH,(f)=[(f ®B,)\{[(f ®B;)®B!]©B'}]

4

CH(f) = UICH ()]

i=1

s 1-D structuring elements of primitive size

1 1 1
1] [1]1]1] 1 1
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#a) Ridge networks, and
rom Cameron Highland

13 April 2015

(tB channel networks extracted
s DEM.

B. S. Daya Sagar
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Algorithm

. Algorithm is to extract singular P | can= efan sviefan )
networks such as channel and e=0:12:N
ridge connectivity networks from
DEMs. o Step-2. CE o CJC’Hg A

o Sub watershed boundary in c—014  n

DEM is automatically generated
by considering channel and s Step-3.

ridge connectivity networks. RID.(M =Ei{{CH[M]}t}” le{Ei“CH(M]]E}}
¢+ Mathematical morphology

transformations such as © Step4 | ripan = Qjﬂﬂem

dilation, erosion, opening and e—0.1.2. . .n

closing are used in this

algorithm. s Step-b. | CHIWD TT BEID (1D
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Channel Network of Gunung

Ledang Region

Ridge Network of Gunung

Ledang Reglon
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Networks : Binary Vs Grayscale

Binary Morphology Gray-scale Morphology
Binary morphology-based Grayscale-based network
network extraction is: extraction—
= more stable, = may not be accurate like
= more accurate, and binary-morphology based—
- computationally expensive " generates network that

yields disconnections some
times, but

= computationally not
expensive.
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Il.1l. Terrestrial Analysis
Scale invariance and Power-laws In
networks

Shape-dependant power-laws

Granulometric analysis
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Il.1l.I. Scale Invariant Power-laws: Morphometry

and Allometry of Networks

First step in drainage basin
analyses is the classification of
stream orders Dby Horton-
Strahler’s ordering  system
(Horton, 1945; Strahler, 1957).
The order of the whole tree is
defined to be the order of the
root. This ordering system has
been found to correlate well
with important basin properties
in a wide range of
environments.

This figure shows a sample
network classified based on
Horton-Strahler’s ordering
system.

13 April 2015

Cie
S B » / - 4
3 e j\j ¢
g { L&
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/ “J/} . ; NN i
cd g
— First order
— Second order
— Third order
— First order SE SIS prate
— Second order
— Third order _
Forth order Cameron Highland
e Outlet
Model network. channel network.
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Scale Invariant Power-laws: Two Topological

Quantities

eI,
s> Two topological quantities bifurcation ratio (R,) and length ratio (R,)

Networks extraction and their properties : Morphometry

s Besides these two ratios, the universal similarity of stream network can
be shown through Hack’s law and Hurst’s law as follows:

s« Hack’s Law: me oC Ah
where A is the area of basin with main channel length L.

% Hurst’s law: L o LM

where Ly, |£ the longitudinal length and

L transverse length respectively.
13 April 2015 B. S. Daya Sagar 43




Allometric power-laws

s Allometric power-laws are
derived between the basic
measures such as basin
area, basin perimeter,
channel length, longitudinal
length and  transverse
length

s Observed that these power-
laws are of universal type
as they exhibit similar
scaling relationships at all
scales.

Existing allometric  power-laws:
Decomposed basins & networks
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Existing allometric power-laws

Decomposed basins and networks

The number of
decomposed sub-basins
of respective orders
from the simulated 6th
order F-DEM include:

e two 51

e five 41

* ten 3

thirty six 2", and

o eighty six 15t order
basins.
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Decomposed sub-basins

are

e two 4t

* eight 31

* twenty-eight 2", and

* one hundred twenty-four 1%t
order basins.
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Existing allometric power-laws : Basic Measures

Longitudinal
length \
Transvers

Length

Basic measures for a basin, (a) basin area, (b) total channel length, (c) main channel length, (d) basin

perimeter, (e) longitudinal Iength and (f) transverse length.
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cale Invariant allo ric power-la

Area and main channel length Area and Main Channel Length relationship P T hip Area and Perimeter
relationship 4 5 58
. .
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Logarithm of area
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Logarithm of main length Logarithm of main channel lenght Logititim ofLongkudinal Length
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Allometric relationships among various areal and length parameters for all sub-basins of F-DEM and TOPSAR DEM.
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Scale Invariant allometric power-laws

F-DEM TOPSAR DEMSs

Relations Notatio | For Basin's order Eelations MNotatio For Basin’s order
ns all ns all
i 1 2 3 4 3 6 ord 1 2 3 4 5

Aand me h 0.53 0302 | 0.56 056 | 0.55 0.55 0.56 Aand me h 0.57 0.60 0.37 0.50 | 0.58 0.56
Aand P a 135 131 136 141 | 144 148 146 Aand P 24 1.97 1.62 1.78 1.78 | 1.69 1.62
Pand L | # 139 151 132 128 | 1.26 123 1.23 ¥l 0.84 0.78 092 0.88 | 1.09 1.05

Pand L,

L, andl, | - 0.97 092 101 104 | 1.03 0.94 093 L,andl, | - 1.17 0.73 1.00 0.92 | 1.02 1.08
[ and f H 0.95 0.94 094 096 | 098 0.94 0.98 [ and L, H 1.00 0.39 0.53 0.68 | 1.00 0.97

L 0 L
2h D 1.06 1.00 111 111 | 1.10 1.10 112 2h D, e 1.14 1.20 1.14 1.00 | 1.16 1.12
Na D, 148 153 147 142 | 1.39 135 1.37 2 a D, 1.02 1.23 112 1.12 | 1.18 1.23
1= Dy - 155 1.52 1.57 139 | 1.56 1.57 1.57 1+ Die - 1.57 1.86 1.74 1.60 | 1.58 1.57

1+H 1+H

Existing allometric power-laws : Scaling laws

Our results shown for basins derived from F-DEM and TOPSAR DEM are in
good accord with power-laws derived from Optimal Channel Networks
(Maritan et. al., 2002) and Random Self-Similar Networks (Veitzer and Gupta
2000) and certain natural river basins.
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Novel scaling relationships between travel-time channel
networks, convex hulls and convexity measures

Network topology and watershed geometry are important
features in terrain characterization.

Travel-time networks are sequence of networks generated by
removing the extremities of the network iteratively. Hit-or-Miss
transformation and Thinning transformations is used in
generating travel-time network. Half-plane closing-based

algorithm (Soille, 2005) is employed to generate convex hulls
for these travel-time networks.
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The process of deleting the end points from
the networks is named as pruning.

To decompose the stream network subsets
from n =1to N, structuring template of B
and B, are decomposed Into various

subsets. B where 1=1,2,....8 and n=12

1

Both structuring templates are disjointed into
eight directions. The intersecting portion of
eroded S and eroded Sc by disjointed
templates {B/}and {Bd} k=12,..,8
respectively are computed to derive pruned
version of S.

The X’s in the structuring templates signifies
the ‘don’t care’ condition — it doesn’t matter
whether the pixel in that location has a value
of O or 1.

13 April 2015 B. S. Daya Sagar
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Proposed scaling relationships : Travel-time networks

eI,
s« Mathematically,
S*B=(S 6Bf)n(S°© B;) where B=BfUB}

s> By subtracting (S * B)from S, a pruned version of S is obtained and
expressed as

» S, =S ®{B} where, S®{B}=S—(S*B))
= {BYis the sequence of (B!,BZ, -, BY), (B, BZ, -, B}

so After pruning of S in first pass with B, the process continue with pruning
with B, and so on until S is pruned in the last pass with Bg.

S{B}=((---((S®B')®B?%)--)®B®)
s The whole process removes the first-encountered open pixels of S and
produces S,.

so Repeating the same process on S, will produce S, . The process is
repeated until no further changes occur, where the closed outlet is

reached.
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Proposed scaling relationships : Convex hull

Convex hull is the
smallest convex set that
contains all the points of

the network.

Since convex hull
represents the basin of
network, convex hulls of
the travel-time networks
are generated. |
_4
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Proposed scaling relationships : Pruned network and

convex hull

eSS,
Properties of the pruned network:

N-1
L. S = k_JO(Sn _Sn+1)
2. SycSy,ccS, <S5, S

3. S, Sl, 82 RN SN obtained by iterative pruning.
The final convex polygon containing all the points of S yields C(S).

el ] ]
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Proposed scaling relationships

IS
so Network - pruning - network

length =S

s Convex hull computed -
convex hull area = C(S,)

s Convexity measures, CM =

ratio between the areas of S

and C(S,).
L(S,) ~ AIC(S,))”

1

1
AIC(S,)I’

CM(S,) ~

13 April 2015

B. S. Daya Sagar

Graph of lengths of the sequential pruned networks
versus the corresponding areas of convex hulls.

Log length of travel-time

as of convexhulls

Relationship between channel lengths and
conyexitv measures

Relationship between areas of convex hulls
and canvex measures

0 10000 20000 30000

Areas of convexhulls
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Sample basin

Simulated F-DEM basins
Cameron basins
Petaling basins

13 April 2015 B. S. Daya Sagar
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Proposed scaling relationships

Network a, (R?) o, R? A, R? R, R, h H

Sample 0.5693, (0.9671) 0.6988, (0.8325) 0.4307, (0.9439) 3.84 1.66 - -

Basin 1 (Cameron) 0.5777, (0.9883) 0.7109, (0.9358) 0.4223, (0.9783) 3.60 221 0.5414 0.9714
Basin 2 (Cameron) 0.5774, (0.9925) 0.7189, (0.9586) 0.4226, (0.9861) 4.35 2.25 0.5561 1

Basin 3 (Cameron) 0.5799, (0.9934) 0.7131, (0.963) 0.4201, (0.9875) 3.31 2.39 0.5612 0.9256
Basin 4 (Cameron) 0.5521, (0.9835) 0.7814, (0.92) 0.4479, (0.9752) 4.47 3.18 0.5671 0.9506
Basin 5 (Cameron) 0.5798, (0.9905) 0.7083, (0.9469) 0.4202, (0.982) 3.31 2.16 0.5766 0.9162
Basin 6 (Cameron) 0.5819, (0.9865) 0.6955, (0.925) 0.4181, (0.9743) 4.00 2.64 0.5746 0.8597
Basin 7 (Cameron) 0.5885, (0.9887) 0.68, (0.9348) 0.4115, (0.9772) 2.82 2.39 0.5548 0.895
Basin 1 (Petaling) 0.5462, (0.969) 0.7741, (0.8561) 0.4538, (0.9557) 5.00 257 0.5568 0.9319
Basin 2 (Petaling) 0.5393, (0.9899) 0.8357, (0.9532) 0.4607, (0.9863) 4.00 3.51 0.5828 0.8623
Basin 3 (Petaling) 0.5198, (0.9852) 0.8953, (0.9367) 0.4802, (0.9827) 4.24 3.30 0.597 0.9019
Basin 4 (Petaling) 0.5592, (0.9938) 0.7771, (0.9684) 0.4408, (0.99) 4.24 2.96 0.5807 0.8902
Basin 5 (Petaling) 0.5729, (0.9906) 0.729, (0.9492) 0.4271, (0.9832) 4.79 3.96 0.5844 0.8704
Basin 6 (Petaling) 0.5547, (0.9872) 0.7798, (0.937) 0.4453, (0.9804) 4.89 3.42 0.5713 0.9116
Basin 7 (Petaling) 0.6059, (0.9929) 0.6387, (0.9551) 0.3941, (0.9834) 3.60 3.39 0.5865 0.8312

Allometric power-laws between travel-time channel networks, convex hulls, and convexity measures for model
network, networks of Hortonian fractal DEM, and networks of fourteen basins of Cameron Highlands and
Petaling region.
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* Proposed scaling relationships

These proposed scaling exponents are shown for basins derived
from simulated F-DEM and TOPSAR DEMs.

These exponents are scale-independent.

At macroscopic level, these exponents complement with other
existing scaling coefficients can be used to identify commonly
sharing generic mechanisms in different river basins.
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Proposed Technique

Stepl: Channel network is traced from topographic map.

(Step2: Channel network is dilated and eroded iteratively until the entire basin\

is filled up with white space. This step is to generate catchment boundary
automatically. Dilation followed by erosion is called structural closing, which

will smoothen the image.
% € Y

~ ™
Step3: Generate the basin with channel network and non-network space with

boundary by subtracting the channel network from the catchment boundary
\aohieved in Step2.

y,
"Stepd: Structural opening (erosion followed by dilation) is performed’
recursively in basin achieved in Step3 to fill the entire basin of non-network
_Space with varying size of octagons. )

N

Stepb: Assign unique color for each size of octagons.

S

rStep6: Compute morphometry for the basin.

rStep?: Compute shape dependent dimension.




* As per the previous fig. the slopes of the best-fit
lines (o and o) for number-radius and area-
radius relationships yield 2.37 and 1.34.

* These slope values of the best-fit lines provide
shape dependent dimensions as Dy = oy — 1 and
D, =a,.

* As i previous Fig., Dy and D, for non-network
space yield 1.37 and 1.34.

A Power-law relationship is shown in earlier
Fig. with an exponent value 1.79 between the
area and number of NODs observed with
increasing radius of structuring template.

. (a) Appollonian Space, and (b) after decomposition by
13T [ means of octagon.



Algorithm Implementation:

Step 1: Channel network of sub basin 1 il e

Y RN
& k’%!\ « "3\’ Vs AT
/\} T~ P \S\?l \\\ : K\
L T, sy S 1
/,;7 fj’\\ - ) \ '7/1,7 S
Step 2: Close-Hull Generation e

A

Iterative dilation of channel netw ork of basin 1 Tterative erosion applied to previous Fig




[terative erosion applied to previous Fig. [terative dilation applied to previous Fig.
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Dimensions derived from Morphometric parameter
morphometry of network || computations achieved through

and non network space decomposition of non-network
& I o 240 2200
Basi | Network | LogRs/ | Rvs | Rvs | Avs g ’- i:f%
n# | FD |LogRn| A | N N ;'3 i gt
1 1.83 1.93 | 134 | 206 | 150 | |z5 " f =206 0802
2rls Pz w’
2 | 086 | 163 | 133|123 | 159 sg . ‘/‘41“
!
m L) Ll L\l
3 | 08 | 141 | 202|187 | 180 | |5 [T T
4 | 207 | 201 | 143|217 | 152 Logracls o huctrng lomort (B 1)
1,
5 | 173 | 190 | 1.34 | 1.94 | 1.43 '
15 el ARG
6 | 184 | 204 | 113 | 1.87 | 1.63 " K alrs
7 | 133 | 161 | 123 208 | 1.70 183
8

|
1.65 2.06 1.61 | 2.38 | 1.49 " /
'
0




Basin number versus varied dimensions derived
from morphometry of networks and non-network

' —&— Seriesl —8— Series?2 Series3 —<— Series4 —x— Serie35|

N

=
o U1k U1 N O
|

morphometry of

network and non-
network space

Dimensions
computed through

Basin number




IL.11.11l. Granulometric analysis of
digital topography
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Granulometric analysis

Morphological multiscaling transformations are shown to be a potential
tool in deriving meaningful terrain roughness indexes.

onsider two diiferent basins of two different physiographic setup

(fluvial and tidal) that possess similar topological quantities, i.e., their
networks may be topologically similar to each other. But the processes
involved therein may be highly contrasting due to their different
physiographic origins. Under such circumstances, the results that exhibit
similarities in terms of topological quantities and scaling exponents would
be insufficient to make an appropriate relationship with involved
Drocesses.
Therefore, granulometric approach is proposed to derive shape-size
complexity measures of basins. This approach is based on probability
distribution functions computed for both protrusions and intrusions (in
other words supremums and infimums) of various degrees of sub-basins.

This granulometry-based technique is tested on sub-basins with various
sizes and shapes decomposed from DEMs of two distinct geomorphic
regions.
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Granulometric Analysis

—
s Multi-scale opening till completely black
s Multi-scale closing till completely white
s Subtraction

s> Probability function PS.(—nB)= Al(f B )—(f+B, )l1<n=K

PS,(+n,B)=A[(foB,)-(foB,,)j0o<n<N
A(foB,)-A(foB,,)
A(f 0B,)
A(feB )—A(feB 1)
A(foB)-A(feB,) "

s Average size n=012,.,N

ps(n, )=

=12,...,K

ps(-n, f) =

s Average roughness AS(f ,B)zznps n, f)
n=0

H(f/B) =—i ps(n, f)log ps(n, f)
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Anti(Granulometric) Analysis

Multiscale opening/closing by rhombus

» Scale 1 , 40, 80, 120, 160

SO
EREE

Multiscale opening/closing by octagon

Multiscale opening/closing by square
* Scale 1, 20, 40, 60, 80

om0
NN
1|

)
A

R
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Granulometric analysis : Basin wise analysis

s> Average size - 14 sub-basins
s Average roughness - 14 sub-basins

13 April 2015

Average Size for opening

(b)

Average Size for closing

Basin Basin Basin Basin Basin Basin Basin Basin Basin Basin Basin Basin Basin Basin
| 3 3 4 5 6 T 8 9 1 " 12 13 14
Basin number

Basin Basin Basin Basin Basin Basin Basin Basin Basin Basin Basin Basin Basin B.
1 2 3 4 5 6 7 8 9 10 " 12 1

basin nuber

asin
14

Normalised AR (Nmax) for opening

Basin Basin Basin Basin Basin Basin Basin Basin Basin Basin Basin Basin Basin Basin
1 2 4 5 6 7 3 9 10 1 12 13 14
basin nunber

Normalised AR (Nmax) for closing

NAR maz

Basin Basin Basin Basin Basin Basin Basin Basin Basin Basin Basin Basin Basin Basin
1 2 3 4 5 6 E 8 9 0 1" 12 13 14
basin nunmber
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Granulometric Analysis : Basin wise analysis

The number of iterations required to make each sub-basin either become darker or brighter
depends on the size, shape, origin, orientation of considered primitive template used to
perform multiscale openings or closings, and also on the size of the basin and its
physiographic composition. More opening/closing cycles are needed when structuring
element rhombus is used, and it is followed by octagon and square.

Mean roughness indicates the shape-content of the basins. If the shape of SE is
geometrically similar to basin regions, the average roughness result possesses lower
analytical values. If the topography of basin is very different from the shape of SE, high
roughness value is produced, which indicates that the basin is rough relative to that SE. In
general, all basins are rougher relative to square shape as highest roughness indices are
derived when square is used as SE.

A clear distinction is obvious between the Cameron and Petaling basins. Generally, roughness
values of Cameron basins are significantly higher than that of Petaling basins.

The terrain complexity measures derived granulometrically are scale-independent, but strictly
shape-dependent. The shape dependent complexity measures are sensitive to record the
variations in basin shape, topology, and geometric organisation of hillslopes.

Granulometric analysis of basin-wise DEMs is a helpful tool for defining roughness parameters
and other morphological/topological quantities.
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‘ Ill. Mathematical Morphology in GISci \

Spatial Interpolations

Spatial
Reasoning
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VISUALIZATION OF SPATIO-TEMPORAL BEHAVIOUR

OF DISCRETE MAPS VIA GENERATION OF




Objectives

To show relationships between the layers depicting noise-free
phenomenon at two time periods.

To relate connected components of layers of two time periods
via FOUR possible categories of spatial relationships of
THREE groups.

To propose a framework to generate recursive interpolations
via median set computations.

To demonstrate the validity of the framework on
epidemic spread.
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THREE Groups and FOUR Categories

Three groups are conceived by checking
the intersection properties between the
corresponding connected components.

Four categories under the above three
groups are visualized via logical
relationships and Hausdorff erosion and
Hausdorff dilation distances.

What are these Hausdorff
distances?

What basics do we require to
know to compute these
distances?

13 April 2015 B. S. Daya Sagar 78



Spatial Relationships Between Sets and Their

Categorization

s Ordered sets.

semi-ordered sets, if subsets
of X' (resp. X*1) are only
partially contained Iin the
other set X*1 (resp. XV).

Whereas, (XY and (X*1) are
considered as disordered
sets If there exists an empty
set while taking the
intersection of (XY and (X"1)
(or) of their corresponding
subsets.

Description of
categories via logical
relations



Categories via Hausdorff Erosion and

Dilation Distances

,_|Ll,,,LLllllLllllLLInIIN=—M.,.,,,!\0
TABLE 1. CATEGORY-WISE HAUSDORFF DISTANCES

Group | Category {,( x!, X;]‘H) o0 ( x', Xl_f+1)
| 1 0 0
| 2 =1 =1
[l 3 Does not exist =1
Il 4 Does not exist Does not exist
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Morphological interpolation sequence of fractal M, and its convex hull Mg (left-right, then top-
bottom).
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Morphological interpolation sequence of cloud field f, and its convex hull f,4 (left-right, then top-
bottom).
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Interpolated Sequence of Lakes’ Data of Two Seasons

Fig. 4. A sequence of imnterpolated sets (slices) in between the two input
slices shown m Figs. 3a, b. Equations 8(a) and 14 are used to recursively

generate the interpolated slices. The layer depicting water bodies with ma-
genta color 1s the median set shown in Fig_ 3c.
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http://www.isibang.ac.in/~bsdsagar/AnimationOfEpidemicSpread.avi
http://www.isibang.ac.in/~bsdsagar/AnimationOfEpidemicSpread.avi
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Earth Surface Transiormation

Hierarchical Morphological
Interpolation between
landscape functions, say, f;
and fys4

1:1 f256
f128

f64 f192

f32 f96 f160 f224
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I1l.1l. Spatial Reasoning

Strategically important set(s)

Directional spatial relationship

Point-polygon conversion



1/ P(4,)= =2 P P(4, JloePe [ P(4,)]
H/C(4, )=—ZP1~[(  Jlog Pr[ C( 4, )]

|

Ha(4, )= zpr[d( 4 o (4, | Pl4,)= P4 ®B)N(4,)
tjd(4, )= ZPr[ (4, JlogPrla(a, )| d(4,)=minn: 4, < (4, @nB)j,
(sm7) =mm{H/P A7) max{z NP (4 )} C(4)=C(A4 )

i e :
(SHd):ngn{rmn{H/d( 4,).07/d(4,)}] i p(4) W
(sHf )=nyn{{H/C } } : : )
(s47) mmLZ Nd(4,), > Nd(A, )J ) Ne(4;;)
(SA;)zm\gx{ziC(Ag)} x| 4 ). Nd( ﬂ)]]
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Matrices and Parameters
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Fig. 1.

[lI.11.1I Directional Spatial Relationship

(A1, Ar . As ) three disjoint objects possessing different
directional spatial relationship.

-

(a)
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4

()

4

G

-

-

(=)

-
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(e)
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@

Fig. 3. Directional dilations on objects .4 by all nine origins. (a) A & B?_
maeBl.mASB . (MAeB? @A®B . MA@ B . (@A
=B ma® B’ @A®BE.
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Fig. 4 Shows (a) origms of structuning element, and their corresponding
1 (1) 1 (1) 1 1 1 1 1 directions in (b) and color codes m (c).
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Fiz. 3. Structuring element is shown with different possible onigins. Except

the first stucturing element for which the erigin 15 shown at the center, all

other eight structuring elements are with other eight possible positions as

origins. Those eight other structuring elements are asymmetric stucturing

elements as ther are mot of their posed

versions.
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http://www.isibang.ac.in/~bsdsagar/AnimationOfDirectionalSpatialRelationship.wmv
http://www.isibang.ac.in/~bsdsagar/AnimationOfDirectionalSpatialRelationship.wmv

l1l.11.1l. Directional Spatial Relationship

YWisnalization of Dhrectional Belations
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[IL.ILIIT Spatial Interactions: Gravity Moc




IILIV Spatiotemporal Visualization

To visualize point-data into polygonal data

Weighted Skeletonization by Influence Zones (WSKIZ)
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Point-to-Polygon Conversion

(a
Fig_ 2. (a) region considered is south India, and (b) gauge-station locations
(A Ay Aj, Ad)

( (b) (d)

a) (c)
Fig. 3. The variable strengths (in terms of propagation speeds are given as
'I:ﬂ.:l d'i: :3' Ji4 :3' Ji- ::' J{!_- I:b:l Ji: ::' .4:[ :-:' d'i3 ::' di"- {C} Fig. S1. (a) original map with three poinss (shown with 1) for (4 ). (4 ). and (4 ). ®) i point (4)=(4) , (c) vnion
of j* points, y.{,-m‘zUl»&n () Hrst cycle of dilation of #* point by B (Square in shape) with the propagation speed of
A>Ad >4 >4, mdd) 4 >4, >4 >4

2-1.denoted by 57 (4], () first cycle of dilation of * point (&) by B with the propagation speed of i-3, 5% (4], (©
first cycle of dilation of i point (4)by 5 with the propagation speed of i-2. 57 (4,). (2) union of 57 (4) and
e=(4). @ sH 4P| JoB(4). @ sH(4) @ simmlaly for pext merasom: 5T (4)JoT(4).

. E(A! :]
) (b)

oo PeTsy

sH 41 6B ) Us P (4). © Z1A~-U[5“-‘|41‘5:—‘(1,.U5’—=.4|.I. (m) similarly follow the steps from (b-D by

changing the #* point from (4)to (4), and by weating (4)and (4) as i points; the Z(.4)is obtained (1) obained
Z(4), and (o) three zomes Z(4), Zi4),and Z(4)are shown with 1s, 25, and 35

13 April 2015 B. S. Daya Sagar 95



Point-to-Polygon Conversion

www.isibang.ac.in/~bsdsagar/AnimationOfPointPolygonConversion.wmv

(<) (d)
Fig. 4. {(a) 34 points (locations) of ramn-gauge stations spread over India
mdexed (A: — Azs). (b) Rainfall zonal map generated by having vanous

possible propagation speeds. and the vanable strengths in terms of propaga-
tion speeds are given according to ranks shown in Table 1. (¢) broader
zones obtained after merging the zones (Fig. 4b) obtained with simlar 96
propagation speeds. and (d) knged map generated for 34 gauge station data.
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Extracting pore throat from eroded triadic Koch curve images by structuring
element of octagon.
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Top and side views of 3D
model at

(a) binary pore,
(b) pore-bodies,

(c) pore-channel, and

(d) pore-throat

of triadic Koch curve
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(a) The photograph of schist rock sample; (b) the CT scans
applied at schist rock sample
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The 3D reconstruction of (a) binary schist image; non-overlapping
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Book on Mathematical Morphology in Geomorphology and Glyei

GIS

Mathematical Morphology in
Geomorphology and GISci

great care is taken in introducing the morphological notions in a pedagogical
way. ... the numerous examples will allow engineers and researchers in structural
geology to exercise their creative faculties and to find new formulations of their own
problems.”
—From the Foreword by Jean Serra, Université Paris-Est

Mathematical Morphology in Geomorphology and GISci presents a multitude
of mathematical morphological approaches for processing and analyzing digital
images in quantitative geomorphology and geographic information science
(GISci). Covering many interdisciplinary applications, the book explains how to use
mathematical morphology not only to perform quantitative morphologic and scaling
analyses of terrestrial phenomena and processes, but also to deal with challenges
encountered in quantitative spatial reasoning studies.

For understanding the spatiotemporal characteristics of terrestrial phenomena and
the author provides morphological approaches and algorithms to:
unique geomorpholegic networks and certain terrestrial features
Analyze various geomorphological phenomena and processes via a host of
scaling laws and the scale-invariant but shape-dependent indices
Simulate the fractal-skeletal-based channel network model and the behavioral
phases of geomorphologic systems based on the interplay between numeric
and graphic analyses
Detect strategically significant sets and directional relationships via
quantitative spatial reasoning
Visualize spatiotemporal behavior and generate contiguous maps via spatial
Interpolation

Incorporating peer-reviewed content, this book offers simple explanations that
enable readers—even those with no background in mathematical morphology —to
understand the material. It also includes easy-to-follow equations and many helpful
lllustrations that encourage readers to implement the ideas.
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