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My Connection Degree 

First degree separation with Jean Serra 

Two-degree separation with Georges Matheron  

(through SVLN Rao and Jean Serra) 

SVLN Rao (v. 31, no. 2, Mathematical 
Geosciences; Associate Editor for MG 1975-77). 
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To understand the dynamical behavior of  a phenomenon or a 
process, development of a good spatiotemporal model is 
essential. To develop a good spatiotemporal model, well-
analyzed and well-reasoned information that could be extracted 
/ retrieved from spatial and/or temporal data are important 
ingredients. 

Mathematical Morphology is one of the better choices to deal 
with all these key aspects mentioned.  
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Mathematical Morphology in Spatial Informatics 

Retrieval and 
Visualization 

Analysis  

Reasoning 

Modelling 
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Basic description of Multivalued Functions (e.g.: Terrestrial Data) 

Mathematical Morphology in Image Analysis and Spatial Informatics 

Retrieval of unique phenomena (e.g. Networks), Analysis and 
quantitative characterization of unique phenomena and processes via 
various metrics  

Spatial interpolation, Spatio-temporal modeling, spatial reasoning, 
spatial information visualization 
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Digital Elevation Models 
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I. Mathematical Morphology 

Binary Mathematical 
Morphology 

Grayscale Morphology 
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Mathematical Morphology: Recent 
Advances  

Graph Mathematical 
Morphology 

Adaptive Mathematical 
Morphology 
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Concepts, Techniques & Tools 

• Morphological Skeletonization  

• Multiscale operations, Hierarchical 
segmentation 

• Recursive Morphological Pruning  

• Hit-or-Miss Transformation 

• Morphological Thinning 

• Morphological Reconstruction 

• Watersheds 

• Morphological shape decomposition 

• Granulometries 

• Hausdorff dilation (erosion) distance 

• Morphological interpolation 

• Directional Distances 

• SKIZ and WSKIZ 

Mathematical 
Morphology  
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The mathematical morphological transformations useful to develop elegant 

algorithms to address the challenges in relation to Image Analysis and 

Spatial Informatics include: 
 Morphological Erosion 

 Morphological Dilation 

 Morphological Opening 

 Morphological Closing 

 Multiscale Morphological Operations 

 Hit-or-Miss Transformation 

 Morphological Thinning , Thickening, Pruning 

 Geodesic Morphological Operations 

 Morphological Skeletonization 

 Skeletonization by Zones of Influence 

 Weighted Skeletonization by Zones of Influence 

 Granulometries and Anti-Granulometries 

 Morphological Distances 

 Hausdorff  Dilation Distances 

 Hausdorff  Erosion Distances 

 Morphological Interpolations and Extrapolations 

 The implementations of the aforementioned transformations binary, grayscale, graph and geodesic 

domains 

 

 



Spatial Data : Various Representations 

Functions (DEMs, Satellite Images, 
Microscopic Images etc) 

Sets (Thresholded Elevation regions, 
Binary images decomposed from 

images) 

Skeletons (Unique topological 
networks) 
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Mathematical Morphology 

 Dilation 

 Erosion 

 Opening 

 Closing 
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Binary MM 

 Binary erosion transformation of X by structuring element, B  
o the set of points s such that the translated Bx is contained in the original set 

X, and is equivalent to intersection of all the translates.  

o X  B = {x: Bx  X}=    

 

 Binary dilation transformation of X by B  
o the set of all those points s such that the translated Bx intersects X, and is 

equivalent to the union of all translates.  

o X  B = {x: Bx X      } =     

 

 The dilation with an elementary structuring template expands the set 
with a uniform layer of elements, while the erosion operator eliminates a 
layer from the set.  

 Multiscale erosions and dilations are  

  - (X  B)  B  …  B = (X  nB),    

  - (X  B)  B  …  B = (X  nB),    

 where nB = B  B  …  B and n is the number of transformation cycles.  

 

b
b B
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b B
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Binary MM (cont) 

 By employing erosion and dilation of X by B, opening and closing 
transformations are further represented as: 
o X  B = ((X  B)  B))      

o X  B = ((X  B)  B))     

 After eroding X by B, the resultant eroded version is dilated to achieve 
the opened version of X by B. 

 Similarly, closed version of X by B is obtained by first performing dilation 
on X by B and followed by erosion on the resultant dilated version.  

 Multiscale opening and closing transformations are implemented by 
performing erosions and dilations recursively as shown below.  

 - (X  nB) = [(X  nB)  nB)],      

 - (X  nB) = [(X  nB) nB)],      

 where n is the number of transformations cycles.  
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Greyscale MM 

 Greyscale dilation and erosion operations - expansion and contractions 
respectively  

 Let f(x,y) be a function on Z2, and B be a fixed structuring element of size one. 
The erosion of f(x) by B replaces the value of f at a pixel (x, y) by the minima  
values of the image in the window defined by the structuring template B  
o             ,     

 

 The dilation of f(x) by B replaces the value of f at a pixel (x, y) by the maxima 
values of the image in the window defined by the structuring template B  

 

 

 In other words, (f  B) and (f  B) can be obtained by computing minima and 
maxima over a moving template B, respectively.  

 Erosion is the dual of dilation : 
o Eroding foreground pixels is equivalent to dilating the background pixels.  
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  jyixf

Bji



,min

),(

     
( , )

, max ,
i j B

f B x y f x i y j


   

 yxB ,)



17 

Grey-scale MM (cont) 

 Opening and closing are both based on the dilation and erosion 
transformations.  

 Opening of f by B is achieved by eroding f and followed by dilating with respect 
to B,               = [(f  B)  B],     

 Closing of f by B is defined as the dilation of f by B followed by erosion with 
respect to B,  = [(f   B)  B],      

 Opening eliminates specific image details smaller than B, removes noise and 
smoothens the boundaries from the inside, whereas closing fills holes in 
objects, connects close objects or small breaks and smoothens the boundaries 
from the outside.  

 Multiscale opening and closing can be performed by increasing the size (scale) 
of the structuring template nB, where n = 0, 1, 2,…, N. These multiscale 
opening and closing of f by B are mathematically represented as: 

  = {[(f  B)  B … B]  B  B … B} = [(f  nB)  nB],  

  = {[(f   B)  B … B]  B  B … B} = [(f  nB)  nB],  

 at scale n = 0, 1, 2,…, N.  

 Performing opening and closing iteratively by increasing the size of B transforms 
the function f(x,y) into lower resolutions correspondingly.  

)o( Bf

)( Bf 

( o )f nB

( )f nB
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 Multiscale opening and closing of f by nB effect spatially 
distributed greyscale regions in the form of smoothing of 
contours to various degrees. The shape and size of B 
control the shape of smoothing and the scale respectively.  

 Important problems like feature detection and 
characterisation often require analysing greyscale functions 
at multiple spatial resolutions. Recently, non-linear filters 
have been used to obtain images at multi-resolution due to 
their robustness in preserving the fine details.  

 Advantages of mathematical morphology transformations  
o popular in object recognition and representation studies.  

o The non-linearity property in preserving the fine details. 
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11 x 11 

9 x 9 

7 x 7 

5 x 5 

           

           

           

           

           

           

           

           

           

           

           

Octagonal symmetric structuring elements of various primitive 

sizes ranging from 5 × 5 to 11 × 11. These primitive sizes can 

be considered as B.  
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I. Information Retrieval 

II. Information Analysis 

III. Information Reasoning 

IV. Information Modelling and Simulation 

V. Information Visualization 

Is there a single mathematical field that can address Research 
related to Digital Images? 

Deal Images with Mathematical Morphology! 
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II.I NETWORKS 
EXTRACTION &THEIR 

PROPERTIES 

13 April 2015 B. S. Daya Sagar 
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Networks extraction and their properties :      
Sub-basins delineation 

 Geomorphologic basin is an area outlined by a topographic boundary that 

diverts water flow to stream networks flowing into a single outlet.  

 DEM is an useful source for watershed and network extraction.  

 Hydrologic flow is modelled using eight-direction pour point model 

(Puecker et. al., 1975).  

 

 

 

 The two topologically significant networks, include Channel & Ridge 
networks.  

 The paths of these extracted networks are the crenulations in the 
elevation contours.  

 Crenulations can be isolated from DEMs by using nonlinear 
morphological transformations.  
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Network Extraction: Binary Morphology-Based 

Step-1:  

Threshold 
decomposition 

of f(x,y) 

Step 2:  

Skeletonization 

Step 3:  

Systematic logical 
union and difference to 
extract network within 
each spatially 
distributed region and 
Union of network(s) 
obtained 
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Equations for Network Extraction 
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Networks extraction: Grayscale Morphology-
Based 

 The DEM, f is first eroded by Bn with n=1, 2,…,N, and the eroded DEM 

is opened by B of the smallest size. The opened version of each eroded 

image is subtracted from the corresponding eroded image to produce 

the nth level subsets of the ridge network. Union of these subsets of 

level n = 0 to N gives the ridge network for the DEM. 
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Networks extraction and their properties 

 DEM, f is first dilated by Bn and the dilated f is closed by B of the smallest size. The 

closed version of each dilated image is subtracted from the corresponding dilated 

image to produce the nth level subsets of the channel network. Union of these subsets 

of level n = 0 to N gives the channel network for the DEM.  

 

 

 

 

  

 

 1-D structuring elements of primitive size 
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Networks extraction and their properties  

 (a) Ridge networks, and (b) channel networks extracted 
from Cameron Highlands DEM.   
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Networks extraction and their properties 
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(a) Ridge networks, and (b) channel networks extracted from Petaling 
DEM.  



Algorithm 

 Step-1: 

 

 Step-2: 

 

 Step-3: 

 
 Step-4: 

 

 Step-5: 
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 Algorithm is to extract singular 

networks such as channel and 

ridge connectivity networks from 

DEMs. 

  Sub watershed boundary in 

DEM is automatically generated 

by considering channel and 

ridge connectivity networks. 

  Mathematical morphology 

transformations such as 

dilation, erosion, opening and 

closing are used in this 

algorithm. 



Decomposed basins and networks 
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Channel Network of Gunung 

Ledang Region 

Ridge Network of Gunung 

Ledang Region 



Networks : Binary Vs Grayscale  

Binary Morphology 

Binary morphology-based 

network extraction is: 

 more stable,  

 more accurate, and  

 computationally expensive 

Gray-scale Morphology 

Grayscale-based network 

extraction— 

 may not be accurate like 

binary-morphology based— 

 generates network that 

yields disconnections some 

times, but  

 computationally not 

expensive. 
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II.II. Terrestrial Analysis 

Scale invariance and Power-laws in 
networks 

Shape-dependant power-laws 

Granulometric analysis 
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II.II.I. Scale Invariant Power-laws: Morphometry 
and Allometry of Networks 

First step in drainage basin 

analyses is the classification of 

stream orders by Horton-

Strahler’s ordering system 

(Horton, 1945; Strahler, 1957). 

The order of the whole tree is 

defined to be the order of the 

root. This ordering system has 

been found to correlate well 

with important basin properties 

in a wide range of 

environments.   
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This figure shows a sample 
network classified based on 
Horton-Strahler’s ordering 
system.  

Cameron Highland 

channel network. Model network. 



Scale Invariant Power-laws: Two Topological 
Quantities 
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 Two topological quantities bifurcation ratio (Rb) and length ratio (Rl)  

 

 

Networks extraction and their properties : Morphometry 

 Besides these two ratios, the universal similarity of stream network can 

be shown through Hack’s law and Hurst’s law as follows: 

 

 Hack’s Law:   

       where A is the area of basin with main channel length Lmc. 

 

 Hurst’s law:  

  where L|| is the longitudinal length and   

                          L transverse length respectively.  
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Allometric power-laws 

 Allometric power-laws are 

derived between the basic 

measures such as basin 

area, basin perimeter, 

channel length, longitudinal 

length and transverse 

length 

 Observed that these power-

laws are of universal type 

as they exhibit similar 

scaling relationships at all 

scales.  

 

Existing allometric power-laws: 

Decomposed basins & networks 
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Existing allometric power-laws  : 
Decomposed basins and networks 
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The number of 

decomposed sub-basins 

of respective orders 

from the simulated 6th 

order F-DEM include: 

•  two 5th 

•  five 4th 

•  ten 3rd 

•  thirty six  2nd, and  

•  eighty six 1st order 

basins.  



Existing allometric power-laws :  

Decomposed basins and networks 
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Decomposed sub-basins 

are  
•  two 4th 

•  eight 3rd 

•  twenty-eight 2nd, and  

•  one hundred twenty-four 1st 

order basins. 



Existing allometric power-laws : Basic Measures 
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Basic measures for a basin, (a) basin area, (b) total channel length, (c) main channel length, (d) basin 
perimeter, (e) longitudinal length and (f) transverse length. 



Scale Invariant allometric power-laws 
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Allometric relationships among various areal and length parameters for all sub-basins of F-DEM and TOPSAR DEM. 



Scale Invariant allometric power-laws 
       F-DEM                     TOPSAR DEMs 
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Existing allometric power-laws : Scaling laws 

Our results shown for basins derived from F-DEM and TOPSAR DEM are in 

good accord with power-laws derived from Optimal Channel Networks 

(Maritan et. al., 2002) and Random Self-Similar Networks (Veitzer and Gupta 

2000) and certain natural river basins. 



Novel scaling relationships between travel-time channel 
networks, convex hulls and convexity measures 

Network topology and watershed geometry are important 
features in terrain characterization. 

Travel-time networks are sequence of networks generated by 
removing the extremities of the network iteratively. Hit-or-Miss 
transformation and Thinning transformations is used in 
generating travel-time network. Half-plane closing-based 
algorithm (Soille, 2005) is employed to generate convex hulls 
for these travel-time networks.  

Length of the travel-time network and area of the corresponding 
convex hull are used to derive new scaling exponents. 
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Proposed scaling relationships :  

Travel-time networks 
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• The process of deleting the end points from 
the networks is named as pruning. 

• To decompose the stream network subsets 
from n = 1 to N, structuring template of       
and         are decomposed into various  

 subsets,      where                        and           

 

 

1B

• Both structuring templates are disjointed into 

eight directions. The intersecting portion of 

eroded S and eroded Sc by disjointed 

templates        and        ,                 

respectively are computed to derive pruned 

version of S.  

• The X’s in the structuring templates signifies 

the ‘don’t care’ condition – it doesn’t matter 

whether the pixel in that location has a value 

of 0 or 1. 

2B
i

nB 8,...,2,1i 2,1n

}{ 1

kB }{ 2

kB 8,...,2,1k



Proposed scaling relationships : Travel-time networks 

 Mathematically,  

                         Ө                  Ө        ,    where                

 By subtracting               from S, a pruned version of S is obtained and 
expressed as 

                        where,                    

        is the sequence of   

 After pruning of S in first pass with B1, the process continue with pruning 
with B2 and so on until S is pruned in the last pass with B8.  

 

 The whole process removes the first-encountered open pixels of S and 
produces S1. 

 Repeating the same process on S1 will produce S2 . The process is 
repeated until no further changes occur, where the closed outlet is 

reached.  
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Proposed scaling relationships : Convex hull 

Convex hull is the 
smallest convex set that 
contains all the points of 

the network. 

Since convex hull 
represents the basin of 
network, convex hulls of 
the travel-time networks 

are generated. 
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Proposed scaling relationships : Pruned network and 
convex hull 
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Properties of the pruned network: 

 

 1.  

 

 2. 

  

  3.     obtained by iterative pruning. 

 The final convex polygon containing all the points of S yields C(S).  
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Proposed scaling relationships  

 Network – pruning – network 

length = Sn 

 Convex hull computed – 

convex hull area = C(Sn) 

 Convexity measures, CM = 

ratio between the areas of Sn 

and C(Sn). 
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Proposed scaling relationships  

 Sample basin 

 Simulated F-DEM basins 

 Cameron basins 

 Petaling basins 
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Proposed scaling relationships 

Allometric power-laws between travel-time channel networks, convex hulls, and convexity measures for model 
network, networks of Hortonian fractal DEM, and networks of fourteen basins of Cameron Highlands and 

Petaling region. 
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Network α, (R2) σ, R2 λ, R2 Rb Rl h H 

Sample 0.5693, (0.9671) 0.6988, (0.8325) 0.4307, (0.9439) 3.84 1.66 - - 

Basin 1 (Cameron) 0.5777, (0.9883) 0.7109, (0.9358) 0.4223, (0.9783) 3.60 2.21 0.5414 0.9714 

Basin 2 (Cameron) 0.5774, (0.9925) 0.7189, (0.9586) 0.4226, (0.9861) 4.35 2.25 0.5561 1 

Basin 3 (Cameron) 0.5799, (0.9934) 0.7131, (0.963) 0.4201, (0.9875) 3.31 2.39 0.5612 0.9256 

Basin 4 (Cameron) 0.5521, (0.9835) 0.7814, (0.92) 0.4479, (0.9752) 4.47 3.18 0.5671 0.9506 

Basin 5 (Cameron) 0.5798, (0.9905) 0.7083, (0.9469) 0.4202, (0.982) 3.31 2.16 0.5766 0.9162 

Basin 6 (Cameron) 0.5819, (0.9865) 0.6955, (0.925) 0.4181, (0.9743) 4.00 2.64 0.5746 0.8597 

Basin 7 (Cameron) 0.5885, (0.9887) 0.68, (0.9348) 0.4115, (0.9772) 2.82 2.39 0.5548 0.895 

Basin 1 (Petaling) 0.5462, (0.969) 0.7741, (0.8561) 0.4538, (0.9557) 5.00 2.57 0.5568 0.9319 

Basin 2 (Petaling) 0.5393, (0.9899) 0.8357, (0.9532) 0.4607, (0.9863) 4.00 3.51 0.5828 0.8623 

Basin 3 (Petaling) 0.5198, (0.9852) 0.8953, (0.9367) 0.4802, (0.9827) 4.24 3.30 0.597 0.9019 

Basin 4 (Petaling) 0.5592, (0.9938) 0.7771, (0.9684) 0.4408, (0.99) 4.24 2.96 0.5807 0.8902 

Basin 5 (Petaling) 0.5729, (0.9906) 0.729, (0.9492) 0.4271, (0.9832) 4.79 3.96 0.5844 0.8704 

Basin 6 (Petaling) 0.5547, (0.9872) 0.7798, (0.937) 0.4453, (0.9804) 4.89 3.42 0.5713 0.9116 

Basin 7 (Petaling) 0.6059, (0.9929) 0.6387, (0.9551) 0.3941, (0.9834) 3.60 3.39 0.5865 0.8312 



Proposed scaling relationships 

These proposed scaling exponents are shown for basins derived 
from simulated F-DEM and TOPSAR DEMs. 

These exponents are scale-independent. 

At macroscopic level, these exponents complement with other 
existing scaling coefficients can be used to identify commonly 

sharing generic mechanisms in different river basins.  
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  

II.II.II. Scale Invariant But 
Shape Dependent Power-laws 



Objectives 

To propose morphology based method via fragmentation rules 
to compute scale invariant but shape-dependent measures of 
non-network space of a basin. 

To make comparisons between morphometry based parameters 
/ dimensions and dimensions derived for non-network space. 

Topologically Invariant networks with variant geometric organization 



Proposed Technique 

Step1: Channel network is traced from topographic map. 

Step2: Channel network is dilated and eroded iteratively until the entire basin 
is filled up with white space. This step is to generate catchment boundary 
automatically. Dilation followed by erosion is called structural closing, which 
will smoothen the image. 

Step3: Generate the basin with channel network and non-network space with 
boundary by subtracting the channel network from the catchment boundary 
achieved in Step2. 

Step4: Structural opening (erosion followed by dilation) is performed 
recursively in basin achieved in Step3 to fill the entire basin of non-network 
space with varying size of octagons. 

Step5: Assign unique color for each size of octagons. 

Step6: Compute morphometry for the basin. 

Step7: Compute shape dependent dimension. 



Power law relationship 

(a) Appollonian Space, and (b) after decomposition by 
means of octagon. 



Algorithm Implementation: 



Step 3: Non-network 
space of basin 1 

Iterative erosion applied to 
step-3 Fig.  



Step 4: Non-Network Space Decomposition 
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Decomposition of Non-network 
space in to non-overlapping disks 
of octagon shape of several sizes 

for basin 1  

Non-Network Spaces Packed with Non-
Overlapping Disks of basins 2 to 8 



Dimensions derived from 
morphometry of network 
and non network space 

Basi

n # 

Network 

FD 

Log Rs/ 

Log RN 

R vs 

A 

R vs 

N 

A vs 

N 

1 1.83 1.93 1.34 2.06 1.50 

2 0.86 1.63 1.33 1.23 1.59 

3 0.98 1.41 1.02 1.87 1.80 

4 2.07 2.01 1.43 2.17 1.52 

5 1.73 1.90 1.34 1.94 1.43 

6 1.84 2.04 1.13 1.87 1.63 

7 1.33 1.61 1.23 2.08 1.70 

8 1.65 2.06 1.61 2.38 1.49 

Morphometric parameter 
computations achieved through 
decomposition of non-network 

space 
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II.II.III. Granulometric analysis of 
digital topography 
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Granulometric analysis 

Morphological multiscaling transformations are shown to be a potential 
tool in deriving meaningful terrain roughness indexes.  

Consider two different basins of two different physiographic setups 

(fluvial and tidal) that possess similar topological quantities, i.e., their 
networks may be topologically similar to each other. But the processes 
involved therein may be highly contrasting due to their different 
physiographic origins. Under such circumstances, the results that exhibit 
similarities in terms of topological quantities and scaling exponents would 
be insufficient to make an appropriate relationship with involved 
processes. 
Therefore, granulometric approach is proposed to derive shape-size 
complexity measures of basins. This approach is based on probability 
distribution functions computed for both protrusions and intrusions (in 
other words supremums and infimums) of various degrees of sub-basins.  

This granulometry-based technique is tested on sub-basins with various 
sizes and shapes decomposed from DEMs of two distinct geomorphic 
regions. 
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Granulometric Analysis  

 Multi-scale opening till completely black 

 Multi-scale closing till completely white 

 Subtraction 

 Probability function 

 

 Average size 

 

 

 Average roughness 
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Anti(Granulometric) Analysis 
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Granulometric analysis : Basin wise analysis 

 Average size – 14 sub-basins 

 Average roughness – 14 sub-basins 
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Granulometric Analysis : Basin wise analysis 

The number of iterations required to make each sub-basin either become darker or brighter 
depends on the size, shape, origin, orientation of considered primitive template used to 
perform multiscale openings or closings, and also on the size of the basin and its 
physiographic composition. More opening/closing cycles are needed when structuring 
element rhombus is used, and it is followed by octagon and square.  

Mean roughness indicates the shape-content of the basins. If the shape of SE is 
geometrically similar to basin regions, the average roughness result possesses lower 
analytical values. If the topography of basin is very different from the shape of SE, high 
roughness value is produced, which indicates that the basin is rough relative to that SE. In 
general, all basins are rougher relative to square shape as highest roughness indices are 
derived when square is used as SE. 

A clear distinction is obvious between the Cameron and Petaling basins. Generally, roughness 
values of Cameron basins are significantly higher than that of Petaling basins.  

The terrain complexity measures derived granulometrically are scale-independent, but strictly 
shape-dependent. The shape dependent complexity measures are sensitive to record the 
variations in basin shape, topology, and geometric organisation of hillslopes.  

Granulometric analysis of basin-wise DEMs is a helpful tool for defining roughness parameters 
and other morphological/topological quantities.  
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III. Mathematical Morphology in GISci 

Spatial Interpolations 

• Strategic set identification 

• Directional Spatial 
Relationship 

• Spatial-Interactions 

• Point-to-Polygon Conversion 

Spatial 
Reasoning 

13 April 2015 B. S. Daya Sagar 75 



  

III.I. Spatial Interpolations 

Outline 

Mathematical Morphological Transformations 
employed include:  

Hausdorff Dilation, Hausdorff Erosion, 
Morphological Median Element Computation, and 

Morphological Interpolation. 



Objectives 

To show relationships between the layers depicting noise-free 
phenomenon at two time periods. 

To relate connected components of layers of two time periods 
via FOUR possible categories of spatial relationships of 
THREE groups. 

To propose a framework to generate recursive interpolations 
via median set computations. 

To demonstrate the validity of the framework on 
epidemic spread. 
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THREE Groups and FOUR Categories?? 

Three groups are conceived by checking 
the intersection properties between the 
corresponding connected components. 

Four categories under the above three 
groups are visualized via logical 
relationships and Hausdorff erosion and 
Hausdorff dilation distances. 

What are these Hausdorff 
distances? 

What basics do we require to 
know to compute these 

distances? 
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Spatial Relationships Between Sets and Their 
Categorization  

 Ordered sets.  

semi-ordered sets, if subsets 
of Xt (resp. Xt+1) are only 
partially contained in the 
other set Xt+1 (resp. Xt).  

 

Whereas, (Xt) and (Xt+1) are 
considered as disordered 
sets if there exists an empty 
set while taking the 
intersection of (Xt) and (Xt+1) 
(or) of their corresponding 
subsets.  

Description of 
categories via logical 
relations  



Categories via Hausdorff Erosion and 
Dilation Distances 
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Morphological interpolation sequence of fractal M1 and its convex hull M16 (left-right, then top-

bottom). 
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Morphological interpolation sequence of cloud field f1 and its convex hull f16 (left-right, then top-

bottom). 
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Interpolated Sequence of Lakes’ Data of Two Seasons 
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Observed and Interpolated Epidemic Spread Maps 
 http://www.isibang.ac.in/~bsdsagar/AnimationOfEpidemicSpread.avi 
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Observed and Interpolated Sequences 
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Hierarchical Morphological 

Interpolation between 

landscape functions, say, f1 

and f256. 

86 

1 256
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64 192

32 96 160 224

f f
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f f

f f f f



III.II. Spatial Reasoning 

Strategically important set(s) 

Directional spatial relationship 

Point-polygon conversion 
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III.II.I. Strategically significant state(s) 
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Matrices and Parameters 
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Strategically significant state(s) w.r.t 10 parameters 
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III.II.II Directional Spatial Relationship 
 http://www.isibang.ac.in/~bsdsagar/AnimationOfDirectionalSpatialRelationship.wmv  
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III.II.II. Directional Spatial Relationship 
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To visualize point-data into polygonal data 

 

Weighted Skeletonization by Influence Zones (WSKIZ) 
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Point-to-Polygon Conversion 
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Point-to-Polygon Conversion 
 http://www.isibang.ac.in/~bsdsagar/AnimationOfPointPolygonConversion.wmv  
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(a)       (b)              (c)             (d)  (e)                (f)               (g) 

      (h)               (i)               (j)   (k)       (l)               (m)              (n) 

 (o)                (p)               (q)               (r)  (s)                (t)                (u) 

  (v)                (w)            (x)               (y)                (z)               (z1)            (z2) 

Extracting pore throat from eroded triadic Koch curve images by structuring 

element of octagon.  



(a) 

(b) 

(c) 

(d) 

       

Top and side views of 3D 

model at  

(a) binary pore,  

(b) pore-bodies,  

(c) pore-channel, and  

(d) pore-throat 

of triadic Koch curve  



    (a)(i)                (a)(ii)             (a)(iii) 

                

           

                         

   (b)(i)        (b)(ii)      (b)(iii)   
    

                         

   (c)(i)      (c)(ii)                     (c)(iii)   
    

The diagram shows the 

order-wise isolated 3D 

pore quantities at (i) inner, 

(ii) middle and (iii) outer 

layers of  

(a) pore bodies, 

(b) pore channels, and  

(c) pore throats.  



(a) The photograph of schist rock sample; (b) the CT scans 

applied at schist rock sample 

(a) (b) 



(a) (b) 

(c) (d) 

The 3D reconstruction of (a) binary schist image; non-overlapping 

decomposition technique by structuring elements of (b) rhombus, 

(c) square and (d) octagon 



Order-wise isolated 3D 

rock quantities at (i) inner, 

(ii) middle and (iii) outer 

layers rock by structuring 

elements  

(a) rhombus 

(b) square, and  

(c) octagon.  

(a)(i) (a)(ii) (a)(iii) 

(b)(i) (b)(ii) (b)(iii) 

(c)(i) 
(c)(ii) (c)(iii) 
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