MATHEMATICAL MORPHOLOGY: SKIZ and WSKIZ

B.S. DAYA SAGAR

http://www.isibang.ac.in/~bsdsagar

Systems Science and Informatics Unit (SSIU) Indian Statistical Institute-Bangalore Centre

Systems Science and Informatics Unit (SSIU)

V. Spatiotemporal Visualization

To visualize point-data into polygonal data

Weighted Skeletonization by Influence Zones (WSKIZ)

Point-to-Polygon Conversion

Fig. 2. (a) region considered is south India, and (b) gauge-station locations (A₁, A₂, A₃, A₄).

Fig. 3. The variable strengths (in terms of propagation speeds are given as (a) $A_2>A_4>A_1>A_3$, (b) $A_2>A_1>A_3>A_4$, (c) $A_1>A_3>A_2>A_4$, and (d) $A_1>A_4>A_2>A_3$.

$$Z\left(A_{i}\right)=\bigcup_{n}\left(\boldsymbol{\mathcal{S}}^{\overset{n}{\lambda_{i}}}\left(A_{i}\right)\cap\boldsymbol{A}\right)\backslash\bigcup_{\forall j}\left(\boldsymbol{\mathcal{S}}^{\overset{n}{\lambda_{j\neq i}}}\left(A_{j}\right)\cap\boldsymbol{A}\right)$$

$$Z(A) = \left(\bigcup_{i} \left(Z(A_{i})\right)\right)^{C}$$

(333)	(d)	(2)	(d)	0	(a)	
COD	(k)	(h)	(e)		(6)	
(0)	(I)	(1)	œ		(e)	

Fig. 51. (a) original map with three points (shown with 1s) for (A_1) , (A_2) , and (A_3) , (b) t^b point (A) - (A), (c) union of f^b points, $\bigcup_{\mathcal{A}_i} A_i - (A_i) \bigcup_i (A_i)$, (d) first cycle of dilation of f^b point by \mathcal{B} (Square in shape) with the propagation speed of A - 1, denoted by $\mathcal{F}^{\pm}(A_i)$, (e) first cycle of dilation of f^b point (A_2) by \mathcal{B} with the propagation speed of A - 3, $\mathcal{F}^{\pm}(A_2)$, (f) is $f(A_1)$, (f) by $f(A_2)$ by $f(A_3)$.

first cycle of dilation of ℓ^h point (A_j) by B with the propagation speed of A-2, $\delta^{\pm 1}(A_j)$, (\underline{g}) union of $\delta^{\pm 1}(A_j)$ and $\delta^{\pm 1}(A_j) \circ \delta^{\pm 1}(A_$

Point-to-Polygon Conversion

http://www.isibang.ac.in/~bsdsagar/AnimationOfPointPolygonConversion.wmv

propagation speeds, and (d) kriged map generated for 34 gauge station data.

Figure 5. (a) Equal-area projection map of the United States. (b-e) Population cartograms generated for the United States based on (b) contiguous cartogram, ⁷ (c) Cartodraw, ⁸ (d) Gastner-Newman cartogram, ¹² (e) area cartogram of the United States, with each county rescaled in proportion to its population, ¹⁷ and [f] morphology-based cartogram. US population cartogram by Gusein-Zade and Tikunov (reproduced with permission from Gusein-Zade and Tikunov, ¹⁷ page 172, Figure 1, G1993 American Congress on Surveying and Mapping).

The color coding given in (a) is similar to that of (f).

Thank You

